
how to elicit beliefs on 
large (infinite) outcome spaces

Generalized LMSR

Idea: Elicit summary information f(x) 
e.g., f(x) = (x, x2) 

agent believes m=Er[f(x)] for any belief distribution r 

Score is log p(x; m) for the maxent distribution p 

maxp   -∫ p(x) log p(x) dx     s.t.  Ep[f(x)] = m
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Gaussian Market
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Cost is C([1, -1/2]T) - C([0, -1/2]T) = $1 
Payoff is 1.x + 0.x2 = $x

outcome drawn from a normal distribution with 
unknown mean and variance
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• sufficient statistics  
• log partition function 
• natural parameters  
• mean parameter

• contract payoff 
• cost function  
• outstanding share vector 
• market prices
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continuous outcome space

Exponential Family  
Prediction Market

Risk Averse Traders
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equilibrium state is  
a convex combination of  
current market state and 
weighted agent beliefs

Bayesian Traders
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Joint Markets
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• Joint distribution GMRF p𝛉  

• Payoff of contracts are xi, xi2, xi xi+1 
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x1 X2 x3 X4 x5

• Current market estimate p𝛉  

• Optimal trade for a trader with partial data

Partially informed traders
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Nash Equilibrium ⟺ local optimum
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Exponential 
Families

Cost Function 
Prediction Market

r✓1C(✓,⇥) = m

r⇥11C(✓,⇥) = m2 + v2
min
✓1,⇥11

�
C(✓1,⇥11)�m✓1 � (m2 + v2)⇥11

 

µ0
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Optimal trade if interested only in x1

Effect on p(x3) for purchase of δ shares in θ1

E[x1] = m,  E[x12] = m2 + v2

We design a class of proper scoring rules for infinite outcome spaces based on maximum entropy distributions that elicit statistics of the data. We define a cost function based 
prediction market based on this scoring rule and consider the semantics of information aggregation in this market. We also explicitly characterize the interaction between markets on 
related events by drawing on results from graphical models. In one instance, we are able to show that a trader in such a market behaves as if he were implementing a learning 
algorithm, even though his incentives are purely financial.


