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Abstract

We demonstrate a relationship between prediction markets and online learning algorithms by using
a prediction market metaphor to develop a new class of algorithms for learning exponential families
with expert advice. The specific problem we consider is that of prediction when data is distributed
according to a particular member of an exponential family. In such a case, cost function based prediction
markets provide a convenient analytical tool for evaluating performance. Prediction markets also provide
a natural technique for learning in an environment where expert advice is not available simultaneously but
sequentially; and experts are either honest and informative, or dishonest and adversarial. As in traditional
models, we combine advice using weights on experts. However, to exploit these particular features,
we use a form of Kelly gambling to relate the weight of an expert to her budget. We give a formal
description of this new model along with relevant definitions and show an equivalence between learning
maximum likelihood estimates of the natural parameters of an exponential family and combining advice
in prediction markets. We provide an abstract architecture for learning in this model that uses this
equivalence to simulate a prediction market to update budgets of experts based on their individual loss.
We apply this technique to construct a concrete algorithm that achieves bounded-regret.

1 Introduction

The problem of combining inputs from multiple experts and taking actions based on a combined forecast
is one of the core areas of machine learning. There has been an equally rich, but mostly separate,
literature in economics focused on the power of markets to aggregate information from multiple sources.
This has led to the study and deployment of prediction markets, which are markets whose main purpose
is to aggregate the information of the traders. One connection between online learning algorithms and

⇤This work was supported by the National Science Foundation awards IIS-0812042 and CCF-0728768

1



prediction markets has been noted recently by [Chen and Vaughan, 2010, Abernethy et al., 2011], who
noted that optimization techniques from online learning can be used to develop tractable market makers.
In this paper, we develop the reverse connection: we present a general technique to use prediction market
metaphors to develop novel machine learning algorithms.

This approach is targeted at real-world machine learning domains that share many of the features of
the environments in which markets operate: participation of agents (experts or traders) is incomplete and
irregular; there are significant incentives for an attacker to disrupt the functioning of the system; and,
information arrives sequentially over time. Markets appear to perform well even in these challenging
environments. Additionally, markets also compose well with each other, in the sense that money made
in one market is portable to other markets. One of our main goals in using algorithms based on a
market metaphor is to develop “open” learning protocols that can be similarly composed across different
domains.

In this paper, we describe a technique to develop machine learning algorithms for forecast aggre-
gation systems based on a specific form of prediction market, the market scoring rule [Hanson, 2003].
In a market scoring rule, traders earn rewards proportional to the reduction in “loss” (measured using
a proper scoring rule) caused by their trades; in other words, the difference in the loss of forecasting
based on market price after their trade as compared to the market price before their trade. Our approach
involves designing a learning algorithm by tracking a budget for each trader, and simulating a prediction
market: Specific market form: Market scoring rule.

Algorithms based on prediction markets are attractive for the particular features of the domains we
are interested in, because of the following reasons: First, traders’ budgets allow us to control the total
net impact of a single identity. By coupling traders’ payoffs to the effects of their actions, and limiting
their effect so that their budget is never negative, we can provide worst-case bounds against adversarial
forecasters. Second, in a setting with honest agents but stochastic outcomes, a budget-proportional
betting scheme (the Kelly criterion [Kelly, 1956]) leads to exponential growth in traders’ budgets (in
expectation), and thus the small initial budgets are not crippling to honest agents in the long run. Third,
betting protocols have been used before in machine learning algorithms, for the reasons above (see, e.g.,
[Shafer and Vovk, 2001]). Prediction markets are a natural extension of betting protocols to a sequential
information setting. Traders’ profits are based on the extent to which they change forecasts, thus ensuring
that merely cloning previous information is not profitable.

We develop a modular framework for the construction of such algorithms. One module, the Influ-
ence Limiting and Scoring module, is domain independent; this implements the budget update and the
determination of influence based on the current budget. The second, domain-specific, module will map
updates of the learned forecast to trades in a prediction market.

We demonstrate the applicability of this framework by using it to construct an algorithm for a general
problem: For a sequence of items, we need to learn parameters of exponential family models, using data
samples received over time from a number of agents. The agents comprise of adversarial attackers and
honest agents with stochastic samples of data. The ultimate objective is to minimize a natural notion of
regret, over a sequence of inspected items.

The rest of this paper is structured as follows: In Section 1.1 we discuss related work. In Section 2 we
provide a formal description of the model we are considering. We also provide performance measures for
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algorithms in this model. We show an equivalence between exponential families and prediction markets
in Section 3. Then in Section 4 we provide an abstract construction for a learning algorithm in this new
model and in Section 5 we provide an instantiation of this construction and provide a general technique to
prove bounded regret in our model. Finally, in Section 6 we provide conclusions and potential directions
for future work. For reviewing purposes, the proofs of the stated results have been deferred to Appendix
A. For the readers’ convenience, we have appended a table of notations in Appendix B.

1.1 Related Work

Our model has several distinguishing features from traditional online learning algorithms. First, we
consider a hybrid model where experts are either honest and informative or dishonest and adversarial.
Although hybrid models have been studied previously, these have focussed on distinguishing the labeling
process from input generation. For instance, [Alessandro and Munos, 2009] consider a model where
inputs are stochastically generated, while labels are adversarial. However, their model assumes that the
labeling function is generated from a hypothesis class, rather than combining expert advice. Next, we
assume sequential expert advice. Traditionally, expert advice is assumed to be available simultaneously,
following Vovk’s model [Vovk, 1995]. One consequence of having a sequential model is that it facilitates
partial aggregation of expert advice. In other words, it is possible to have rounds where some experts
abstain from making predictions. This is close to the ‘sleeping experts’ model that was originally studied
in [Blum, 1997, Freund et al., 1997]; and further investigated under different benchmarks and modeling
assumptions by [Kleinberg et al., 2008, Kanade et al., 2009]. However, in this model, the experts that
do provide advice in a round are assumed to do so simultaneously thus precluding the need to analyze
situations where an adversarial expert may imitate the advice of an honest one. To the best of our
knowledge, the fact that later experts can have access to earlier advice has not been previously studied.
This is a particular factor in our assessment of the value of each expert’s prediction. Another point
of distinction is that we consider a combination of expert advice as opposed to a comparison against a
single best expert. For instance, the benchmark considered in [Kleinberg et al., 2008] is the best ordering
of experts. Further, in an adversarial setting their algorithm requires a reduction where every possible
ordering is mapped to a separate expert making it computationally inefficient. In [Freund et al., 1997]
while they do consider combining experts, their bound gives higher weight to time instants where the
best expert is awake and thus is significantly different.

[Azoury and Warmuth, 2001] consider learning exponential family distributions in a traditional on-
line model (without experts) and provide worst case loss bounds relative to using an offline algorithm.
[Dekel et al., 2008] are concerned with eliciting truthful advice from self-interested agents who each be-
lieve in different true distributions. Thus, rather than comparing against a particular true distribution,
they use the average of all agent’s beliefs as a benchmark. Yu et. al. [Yu et al., 2009] also present an
algorithm to thwart sybil attacks in recommender systems. However, they do not consider a sequential
ordering on the experts; further, unlike our model, their model assumes a strong similarity between the
actual labels and the forecasts of some expert. Resnick and Sami [Resnick and Sami, 2007] consider an
algorithm that uses a prediction market metaphor to make recommendations using influence limits. In
prior work [Kutty and Sami, 2010] we have argued that a prediction market model is useful for learning
in the presence of sequential information. Although [Kutty and Sami, 2010] proved information loss and
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damage bounds for a problem motivated by recommender systems, unlike the current paper, these did
not lead to a regret bound. In this paper, we formalize the connection by giving a general technique
for mapping learning problems to prediction markets. [Wagman and Conitzer, 2008] have previously
posed a problem related to the sequential advice problem we examine here; they consider the selection
of the true majority winner in a ballot. They provide rules to limit damage in cases where an agent
may create multiple identities thus potentially affecting the outcome. [Chen and Vaughan, 2010] and
[Abernethy et al., 2011] have previously explored the connection to learning algorithms to inform the
design and understanding of prediction markets. In particular, [Chen and Vaughan, 2010] consider the
correspondence between prediction markets with market scoring rules and the Follow the Regularized
Leader algorithm proposed by [Kalai and Vempala, 2005] and thus provide insight into the aggrega-
tion mechanism of a prediction market. [Abernethy et al., 2011] use convex optimization techniques
to design efficient markets. [Storkey, 2011] has considered machine learning algorithms, particularly
aggregation methods, and has shown how to interpret these algorithms as prediction markets using ap-
propriately defined utility functions. [Lay and Barbu, 2010] set up and simulate a prediction market to
aggregate multiple classifiers and provide an interpretation for the resultant prices. Rather than providing
a regret bound of the form we give here, they measure the performance of their algorithm experimentally.
Independent of this work, we have learned that [Lahaie and Pennock, 2011] have noticed a connection
between exponential family distributions and market scoring rules, similar to the connection we describe
in section 3.

2 Model

In this section, we set out a new model of online learning and define a measure of algorithm performance
in it. The class of problems we consider is that of fitting a member of an exponential family of probability
distribution to each item in a sequence of items.

Formally, suppose that M items {1,2, . . . ,M} are arriving into the system, one at a time. We assume
that, at any point of time, only one item k is under consideration. Each item will have a realized value
X (this may be an integer, real number, or vector). The realized value is drawn from an unknown
distribution Pk.

The distribution Pk is assumed to be the member of a known exponential family F of distributions.
An exponential family is a generalization of many commonly used statistical families e.g., binomial
distributions with unknown probability of success, normal distributions with known variance, normal
distributions with unknown mean and variance, etc. Formally, an exponential family F can be defined
by specifying a vector of sufficient statistics fff(X), and a set of possible parameters bbb. Both fff and bbb are
of dimension t.

For exposition, we assume that all M items have distributions within the same family F , although
our algorithms and analysis do not require this. We also assume that the true parameter value bbbk of the
kth item is drawn from a known prior hyperdistribution (distribution over parameters) P⇤0 and further
that P⇤0 is a member of the family of Diaconis-Ylvisaker conjugate priors for the exponential family
F [Diaconis and Ylvisaker, 1979]. Thus the conjugate prior family F ⇤ is itself an exponential family.
Each member of F ⇤ is parametrized by a natural parameter b; given a distribution P⇤

b

, the probability
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that the underlying distribution for item k has parameter bbbk is given by:

P⇤
b

(bbbk) = eb.bbb⇤k�y⇤(b)

where b has dimension (t +1), and bbb⇤k = (bbbk,�y(bbbk)). Here y(bbbk), known as the log partition function,
is the normalization coefficient of the original distribution Pk with parameters bbbk.

The task of the learning algorithm is, for each item k, to make a prediction Qk 2 F of the probability
distribution governing item k. This prediction is made after receiving data from the agents (described
below), and with knowledge of the prior P⇤0 , but before observing the realized outcome Xk of item k.
The true parameters bbbk of the distribution governing item k are assumed to be independent for different
values of k. As before, we assume for simplicity that all items have the same prior distribution P⇤0 ; this
assumption is not necessary for our results.

Agents and data There are N agent identities {1,2, . . .N} in the system. Of these, some subset H
(the honest set) are assumed to be honest agents; the remaining set H are identities controlled by an
adversarial attacker.

On an item k, an arbitrary subset of honest agents receive data samples, in an arbitrary fixed order.
Suppose that there are n agents who receive data on item k (the number, subset of agents, and order
may be different for different k). Without loss of generality, let us denote the honest agents as u1, · · · ,un

according to the order in which they make their reports on item k. Each honest agent ui receives a
datapoint xi drawn from the true distribution Pk governing item k. Let xk = (x1,x2, · · · ,xn) denote the
data reported by these honest agents on item k.

Based on these assumptions, the sequences x

def= (x1, · · · ,xn) are distributed according to a joint prob-
ability distribution. The set of all sequences (x1, · · · ,xn) of the honest data sequence can be represented
as a tree Tk, as follows: The root node corresponds to a the null sequence (no reports yet), each node at
level 1 corresponds to a different value of x1, each node at level 2 corresponds to a different value of the
pair (x1,x2), and so on. We can index a node v of Tk at level j by the sequence (x1,x2, · · ·x j) of reports
that lead to node v. Moreover, under the assumption that the prior is correct, the joint distribution will
satisfy a consistency property: At each node v at level j, the posterior distribution of x j+1 is obtained by
conditioning the prior on the sequence (x1, · · ·x j) that indexes v. Further, the eventual outcome Xk is also
jointly distributed with x.

The tree Tk, together with the prior distribution, represents the underlying stochastic process govern-
ing the data on item k in the absence of attack. In order to simplify the notation, we will use x ⇠ Tk to
indicate that x and the eventual outcome XK and true parameter bbbk are jointly distributed according to
the hyperdistribution P⇤0 .

Attack strategies Attackers can modify the observed data by adversarially injecting new data into
the observed sequence, but the data they inject can only depend on honest data that has already been
revealed.

Now, considering all the M items, the honest data can be described by a sequence T1,T2, · · · ,TM

of trees, each with a corresponding joint distribution. By assumption, the data on different items is
independent.
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Definition 1 An attack strategy A = (A1,A2, . . . ,AM) is a sequence of item attack strategies Ak. Each
item attack strategy Ak is a function mapping each node v of Tk to a series Ak(v) of datapoints to be
submitted if and when node v is reached. Ak(v) may be empty, or may consist of a series of pairs of
the form (ai, x̃i), where ai 2 H is an attacker-controlled identity and x̃i is a datapoint submitted by the
attacker.

The attack data Ak(v) may depend on the sequence of reports (x1,x2, · · · ,x j) leading to v, as well as
the realized history on all items in (1,2, . . . ,k�1), the reputation of attack identities and honest identities
at the start of the kth item, etc. The only relevant constraint is that Ak(v) must be independent of future
data (x j+1,x j+2, ..). For example, attack datapoints injected at a level-2 node cannot depend on the data
that the honest agent u3 will report in the future.

Apart from this constraint, the attack data are completely arbitrary, and the attacker is free to choose
the timing of her data as well as their content. Thus, this notion of an attack strategy admits non-myopic
attacks as well: the attacker may inject a datapoint (a1, x̃1) before anticipated honest data, not because
of the immediate effect of the spurious data x̃1, but because of the eventual damage it will cause after
future honest data. Indeed, the data may be injected to improve a1’s reputation on future items, whence
a1 can cause greater damage.

Now, consider a particular item k. Let x denote one realized sequence (x1, . . . ,xn) of honest data. Let
x̃Ak(x) denote the realized sequence of datapoints when the honest data is x, and the attacker is following
an attack strategy Ak. We call x̃Ak(x) the extended data sequence corresponding to honest data x under
attack Ak. When Ak or x is implicit from the context, we abuse notation by dropping the respective
symbol, to write x̃(x) or simply x̃.

Learning algorithms A learning algorithm Z takes as input (for each k) an extended sequence x̃ of
data reports on item k, and produces a prediction QZ,k(x̃). The algorithm may maintain state between
items, so QZ,k(x̃) may depend on the data and outcomes of each of the first (k�1) items.

We consider two kinds of outcome information that may be revealed on each item:

1. In the revealed data model, only the realized outcome Xk of item k is revealed to the algorithm.
In this case, QZ,k(x̃) 2 F is a member of the exponential family of distributions.

2. In the revealed parameter model, we make the stronger assumption that the true parameter bbbk

is revealed after each item k. In this case, QZ,k(x̃) 2 F ⇤ is a forecast distribution over parameter
values, which is a member of the conjugate prior family F ⇤. Although we can prove damage
bounds and information loss bounds in both models, we can also prove a regret bound in the
revealed parameter model, and so we focus on this model in section 5.

We will compare the performance of our learning algorithms to an omniscient algorithm ZO that
knows the honest set H . The algorithm ZO can filter out any attack datapoints, and hence can compute
the optimal posterior distribution given the data x on each item k.

Losses and incremental gains In this paper, the performance objective we consider is that of max-
imizing the log score (equivalently, minimizing the log loss). We consider two variants of the log-score,
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corresponding to the two different information models: In the revealed data model, the log score of a
prediction Qk when the true outcome turns out to be X is given by:

L(Qk,X) def= log [Qk(X)] = b̂bb ·fff(X)�y(b̂bb)

where b̂bb is the natural parameter of the forecast distribution Qk.
In the revealed parameter model, the log score of a prediction Qk when the true parameter value is

bbbk is given by:
L(Qk,bbbk)

def= log [Qk(bbbk)] = b ·bbb⇤k �y⇤(b)

where b is the natural parameter of the forecast hyperdistribution Qk and bbb⇤k is as previously defined.
In each case, note that the loss can be evaluated after the true outcome is known. Now, for the

appropriate loss function and a given learning algorithm Z and extended datapoint sequence x̃, we can
define the incremental gain for each datapoint as the change in log score that that datapoint induced:

Definition 2 Consider agent i who reports the ith datapoint in the extended datapoint sequence x̃ =
(x̃1, ...x̃n) for item k. The incremental gain for an agent i in sequence x̃, given an eventual true outcome
Xk, is given by:

GZ(i, x̃,Xk) = [L(QZ,k(x̃1, . . . , x̃i),Xk)�L(QZ,k(x̃1, . . . , x̃i�1),Xk)]

We reiterate that this may depend on the state of the algorithm Z at the start of the kth item. In the
revealed parameter model, the incremental gain GZ(i, x̃,bbbk) is defined accordingly.

We also define a notion of the informativeness (information content under optimal updating) of each
honest agent ui, on each item k, in terms of the expected gain under the omniscient algorithm ZO. Recall
that ZO knows H , and hence is not affected by attack data.

Definition 3 The informativeness hik of agent ui on item k is defined as:

hik = E
x⇠Tk GZO(ui,x,Xk)

(In the revealed parameter model, the definition is analogous with bbbk in place of Xk.)
The informativeness provides us with a benchmark for the incremental gain obtained from an agent i

in practice; if the sum of expected incremental gains under an algorithm is equal to the sum of informa-
tiveness hik over all honest i, then the algorithm would be optimally using the received data.

Regret Now, consider a particular item k. Let x denote one realized sequence (x1, . . . ,xn) of honest
data. Let x̃A(x) denote the realized sequence of datapoints when the honest data is x, and the attacker
is following an attack strategy A . With the definition of stochastic honest data and adversarial attack
strategies, we can now define a hybrid stochastic-adversarial notion of regret:

Definition 4 The regret of algorithm Z is defined as the maximum, over all possible honest sets H , all
possible attacks A , and all prior distributions Ti 2 F ⇤, of the reduction in total log score over all items
relative to the omniscient algorithm ZO that knows H .

Reg(Z) = max
H ,{Ti},A

(
M

Â
k=1

E(x1,x2,..xk)⇠(T1,T2,...Tk)
⇥
L(QZ,k(x̃A(xk)),Xk)�L(QZO,k(xk),Xk)

⇤
)
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Equivalently, the regret can be defined in terms of the incremental gains, as:

Reg(Z) = max
H ,{Ti},A

(
M

Â
k=1

E(x1,x2,..xk)⇠(T1,T2,...Tk)

"

Â
i2x̃A (xk)

GZ(i, x̃A(xk),Xk)� Â
j2H

h jk

#)

Note that, in the definition of regret, the expectation was taken over all possible values of (x1,x2, ...xk),
and not just over xk. The reason for this is that the state of the algorithm during item k (including, for
example, budget, reputation, or influence values) may depend on the outcomes of earlier items.

In addition to regret, we will analyze weaker performance criteria of damage and information loss.
We will defer their definition until section 4.3, where we define them within the context of our algorithm.

3 Exponential Families and Prediction Markets

In this section, we show that, for any exponential family, we can construct a prediction market (with a
set of securities) such that optimal trade in the prediction market is equivalent to optimal updating in
the exponential family. Here, we show this equivalence in the absence of attack; the constructed market
has traders with unlimited budgets. We also point out an information-theoretic interpretation of this
equivalence. This construction and equivalence forms the basis for our construction of a new learning
algorithm in -5.

An exponential Family F with t sufficient statistics fff(x) is defined as a collection of distributions
over x 2 X of the form Pbbb(x) µ exp(bbbTfff(x)�y(bbb)) where bbb, the vector of natural parameters, is of

dimension t and y(bbb) def= log
R

exp{bbbTfff(x)}dx is the log partition function.
Corresponding to a member of an exponential family, we define a prediction market to be simu-

lated by the learning algorithm. We claim that the maximum likelihood estimate (MLE) of the nat-
ural parameters of an exponential family distribution is exactly the same as an aggregation in a pre-
diction market with log market scoring rule (LMSR) and infinite budget traders with relabelling. For
a given exponential family distribution, the prediction market is defined as follows: For each suffi-
cient statistic l = 1,2, . . . , t, we define a security sl with payoff fffl(x). We define an additional se-
curity s0 with payoff f0(x) := c�Ât

l=1 fl(x) where c is an appropriately chosen constant dependent
on the range of fff so that the payoff of s0 is non-negative. Let q

⇤ = (q⇤0,q
⇤
1, . . . ,q

⇤
t ) be the number

of shares of each security held by the traders. We abuse notation slightly and define the cost func-
tion in this prediction market as y(q) := log

R
exp{q

Tfff(x)} dx. We define the interpretation function
I(q) = (q1� q0,q2� q0, . . . ,ql � q0)

def= (b1,b2, . . . ,bt)
def= bbb. This allows us to interpret the state of the

market in terms of a prediction on the natural parameters of the distribution. We note that under the
assumption of perfectly rational, risk-neutral traders with infinite budget and beliefs as indicated above,
the gradient of the cost function at this point is

⇣
∂y(q)

∂ql

⌘

q=q

⇤
= EPbbb(x)[fffl(x)] def= µl where µl is believed to

be the expected payoff of the lth security by the last trader who traded in this market.
The relationship between the securities of the prediction market so defined and the MLE of the

natural parameters is established by the following lemma:

Lemma 1 The choice of parameters bbb = (b1,b2, . . . ,bt) = (q1�q0,q2�q0, . . . ,qt�q0) satisfies ∂y(bbb)
∂bl

=
µl. Further, the vector bbb is unique.
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If the exponential family is represented so that there is a unique parameter vector associated with each
distribution, the representation is said to be minimal. The Bernoulli, Gaussian, and Poisson distributions
all have minimal representations. Now, for an exponential family whose representation is minimal, the
gradient mapping of the log partition function from the natural parameters to the mean parameter space
is an injection [Wainwright and Jordan, 2008, p.64]. That is, there is a unique parameter vector bbb that
satisfies ∂y(bbb)

∂bl
= µl , for each l 2 {1, . . . , t}. Thus, if the µl’s correspond to the empirical means, since our

choice of bbb satisfies the equality, it must also be the vector corresponding to the maximum likelihood
estimate.

We observe a useful alternative view of the market scoring rule market for exponential family learn-
ing. We connect the cost, payoff and profit function to information-theoretic quantities associated with
the exponential family.

The following result has been previously pointed out by Amari [Amari, 2001].

Lemma 2 (profit decomposition lemma): Consider an exponential family F of distributions over
some set of statistics fff(x), with natural parameters bbb. Let p,r 2 F be any two probability distribu-
tions in the family. We use bbbp to denote the natural parameters of p, and likewise, we can define bbbr,µµµp,

and µµµr. We abuse notation slightly and let y(r) indicate the log partition function of r which technically
depends on its natural parameters. Let H(p) denote the entropy of the distribution p, and K(p||r) denote
the KL-divergence of r relative to p. Then, the following equality holds:

K(p||r)+H(p) = y(r)�bbbr ·µµµp (1)

Equation 1 gives us an alternative view of the market scoring rule construction. Assume that p is
the true distribution, and consider two arbitrary distributions r1,r2 2 F . Note that the first term in the
RHS is independent of p, and the second term is linear in the probabilities p(x). If we want to measure
loss by the KL-divergence, we can do so (in expectation) by setting a cost function that captures the first
term, and defining security quantities (bbb) and payoffs (fff) to capture the second term. In particular, in a
market with cost function y, if the market price initially implies a distribution r1, and a trader moves
the market to price than implies a distribution r2, then the cost she incurs is y(r2)�y(r1). The number
of securities bought to make this trade is given by the vector (bbbr2 �bbbr1 ), and the expected payoff of the
securities are given by µµµp. Thus, by equation 1, the net profit of the trader is equal to K(p||r1)�K(p||r2),
i.e., the reduction in KL-divergence with respect to the true distribution. We note one useful property of
this construction: For a fixed vector bbb of purchased securities, the cost is independent of the outcome
(and outcome distribution p), while the payoff is independent of the initial market state in which these
securities were purchased.

4 Budget-limited Markets

In this section, we describe our solution for constructing learning algorithms based on simulated markets
with limited trader budgets. The basic intuition, as discussed in section 1, is to use the budgets to bound
the worst-case damage from attacker identities, while simultaneously using budget-proportional betting
(Kelly gambling [Kelly, 1956]) to rapidly grow honest agents’ budgets.
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In this section, we describe a protocol for learning based on traders with limited budgets. The pro-
tocol described in this section is abstract, in the sense that it can be used with any prediction and loss
measurement meeting certain requirements. We prove two theoretical results that show that this protocol
can give us control over two metrics of robust learning: (1) We bound the expected loss of information
from honest raters when the algorithm is used in the absence of attack. (2) We bound the worst-case
damage that a set of attackers can cause, over any sequence of items and reports, assuming that the
attack is carried out after all honest reports are in. In the following sections, we will describe multiple
possible instantiations of this protocol, including one instantiation in which these bounds imply a regret
bound.

4.1 Architecture

The architecture of the learning algorithms we describe is as follows. For each item k on which pre-
dictions are to be made, we receive a sequence of datapoints from users. The process of updating the
forecast when a datapoint is received from an agent i is decomposed into two component modules:

• The Influence Limiting and Scoring (ILS) module uses the current budget of an agent i to compute
an influence yik 2 [0,1], and passes this to the Weighted Trade Market (WTM) module (described
below).

• The Weighted Trade Market module uses yik and i’s datapoint xi to update the forecast Qk. It does
not maintain any internal state across items.

• Subsequently, when the outcome on the item is realized, the Weighted Trade Market module uses
this information to calculate the gain (profit) Gik of trader i’s trade, and passes this back to the ILS
module. The ILS module updates the budgets

4.2 Weighted Trade Markets

Here, we describe the Weighted Trade Market module in terms of a set of properties that it must satisfy.
Concrete implementations of this module, based on exponential family market models, will be described
in section 5.

Consider an item k, and an arbitrary fixed sequence x = (x1,x2, . . . ,xn) of honest datapoints on this
item. Let Xk denote the eventual outcome on this item. Let yk = (yik) denote the profile of agent influence
values that is passed from the ILS module.

As the WTM module is internally stateless across items, the prediction Qk depends only on y and
the data sequence x̃ (which may be x if there is no attack, or x̃A(x) if under attack). Thus, let us define
a slightly modified notation for the gain that makes the role of the influence values explicit, as follows:
Let G(yk, i, x̃,Xk) denote the incremental gain attributed to user i when the vector of influences is yk. As
a further abuse of notation, when we are only considering the impact of one user i’s influence yik while
keeping the others fixed, we shall write G(yik, i, x̃,Xk).

With this notation, the WTM must satisfy the following properties:

• (bounded gain) Fixing all influence values other than i, we must always have |G(yik, i, x̃,Xk)| 
yik, i.e., the influence value effectively limits the range of feasible gains. Note that this implies that
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|G(yik, i, x̃,Xk)| 1 for all yik, and G(0, i, x̃,Xk) = 0.

• (concave gain) Fixing all influence values other than i, the gain function must satisfy the following
concavity property:

G(yik, i, x̃,Xk)� yikG(1, i, x̃,Xk)

This property states that, in limiting influence to yik < 1, we get at least a proportional fraction of
the gain that we would have got if there was no influence limiting.

• (bounded variance) Fix all influence values apart from i. For any honest agent ui, and any data-
point sequence x, there exists a universal positive constant c that bounds the variance of the gain
in terms of its expectation:

Var[G(1,ui,x,Xk)] cE[G(1,ui,x,Xk)]

• (substitutes) If there is no attack, i.e., x̃ = x, then, for any yk such that yik = 1, the expected gain
of i must be at least equal to her informativeness:

E
x⇠Tk G(y, i,x,Xk)� hik

This is a ‘substitutes’ property in the following sense. In the absence of attack, the informativeness
is equal to the expected gain if all agents j before i have full influence y jk = 1. If y jk < 1, we are
making incomplete use of the information (data sample) from agent j. This property says that this
should only increase (or keep constant) the value (in terms of expected gain) of the datapoint that
agent i submits.

4.3 Influence Limits and Scoring

We now describe the ILS module. The main purpose of this module is to implement a form of Kelly
gambling, by tracking a budget and limiting the influence of each agent based on her current budget.
Rather than directly expressing the influence in terms of the budget, and the budget updates in terms
of the gain of the limited trades, we define the connection indirectly: We express both the budget and
the influence as functions of an underlying reputation value. This has the analytical advantage that the
reputation values are additively updated, and hence easier to analyze for growth over a number of rounds.
We then prove bounds on the damage by adversarial attackers, and the expected information loss from
stochastic honest raters.

This module has one parameter, a, that is determined based on the smallest constant c for which the
WTM bounded variance property is satisfied; setting a = min 1

8 , 1
4c is adequate. For any gain value G

with bounded variance, define the variance-normalized gain g = aG. We then have E[g] = aE[G], and
Var[g] E[g]

4 when G is the gain of an honest rater.
Define the scoring function S(g), a transformation of the gain, by:

S(g) = g� 3
4

g2

In essence, this transformation makes the score strictly concave; we need control over the degree of
concavity to prove the damage bound. If the WTM module in fact satisfies a strict concavity property,
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this transformation may not be necessary. However, as we seek to prove a general result that holds even
for weakly concave gain, we work with the transformed gain.

Let y(r) denote the logistic function: y(r) = er

1+er . For notational convenience, we define y(r) =
1�y(r) = 1

1+er . The influence is calculated as follows: For a user i in round k, let rik 2 (�•,+•) denote
the reputation of i at the start of the round. Then, the influence yik is set to y(rik). Note that 0 < yik < 1.

Subsequently, the ILS receives a report of the gain Gik = G(yik, i, x̃,Xk).
Let Ĝik = (1/yik)Gik; by the concavity property, Ĝik is at least as high as the actual gain G(1, i, x̃,Xk)

that would have occured if yik had been set to 1. The variance-normalized gain gik = aĜik. Then, update
the reputation by:

ri(k+1) = rik +S(gik)

We define the budget function B(r) def= log(1 + er). Thus, we can speak of a trader with current
reputation rik as having current budget B(rik). Note that B(rik) > 0. As we show below, the current
budget serves as a bound on how much a trader can lose in the future.

4.4 Damage and Information Loss Bounds

In this section, we prove some basic properties about our learning algorithm. First, we begin by relating
the budgets to the worst-case damage that an attacker identity can induce. Here, we measure damage by
the negative of the incremental gain due to that identity.

Theorem 3 Consider any sequence of items and sequences of reports on those items. For any user i, the
net gain due to that user is bounded below in terms of i’s initial budget:

M

Â
k=1

G(yik, i, x̃k,Xk)��
1
a

B(ri1)

As stated, this theorem bounds the net gain attributed to each user. However, because the definition of
gain is based on the change in loss, the theorem directly extends to the case of any number of successive
reports by attackers. In this case, Theorem 3 can be interpreted as follows: consider an attack involving
a number of attack users who insert data only after all honest users. Then, the total damage due to this
attack, measured in terms of the gain, is bounded in terms of the total initial budget of all attack identities.

We now consider the expected impact of the ILS module on the use of data from a single honest user.
For a user contributing informative data, the influence limits will restrict the contribution of that data,
thereby reducing the overall improvement in expected performance. We will now prove a bound on this
reduction in performance over all data from a single user.

For the next bound, we consider the case in which no attack datapoints are inserted prior to the
honest agents’ data. Consider the subsequence of items for which user i has submitted a datapoint;
without loss of generality, let us assume that this set consists of items {1,2, . . . ,M}. First, consider the
sequence of forecasts in the absence of influence limits. For each k 2 {1,2, . . . ,M}, the measured gain
Ĝik = 1

yik
G(yik, i,xk,Xk) in round k would be a random variable. We use the shorthand notation Gk = Ĝik,

and gk = aĜik.
By the concavity and substitutes properties of the gain function, the expected value of the gain Gk

is at least i’s informativeness hik. We assume that hik > 0; hik  1 follows from the requirements on the
gain. Finally, we use Hik to denote the partial sum Hik = Âk

t=1 hik.
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Now, consider the situation with influence limits. In this case, the realized gain in round k will be
G(yik(rik), i,xk,Xk). Here, the reputation rik is a random variable that is determined based on the realized
gains in the previous rounds. We now seek to bound the expected information loss:

ILi =
M

Â
k=1

hik�E
M

Â
k=1

[G(yik(rik), i,xk,Xk)]

Using the concavity of gain, we obtain an alternate expression that is an upper bound on the infor-
mation loss:

G(yik(rik), i,xk,Xk) = y(rik)Ĝik � y(rik)G(1, i,xk,Xk)) ILi 
M

Â
k=1

E[(1� y(rik))hik] =
M

Â
k=1

E[y(rik)]hik

(2)
Note that since rik is independent of the datapoints in this round y(rik) and G(1, i,xk,Xk) are inde-

pendent random variables.
The intuition behind the bound on information loss is as follows: Suppose that, in each round, the

expected gain was some fixed quantity h. Suppose further that the realized score was exactly the expected
gain, so that rik = ri1 +(k�1)h. Then, the expected information loss, over a very large number of items,
would be approximately

R •
ri1

y(x)dx =� log(y(ri1)) = log(1+e�ri1) where we have introduced a change
of variable with x denoting the range of values for rik. In other words, the logistic function approaches 1
at a fast enough rate that the total deficit is bounded.

For the actual bound, we need to handle several complications. Firstly, the score S(g) is not a linear
function of the gain Ĝik, and the expected score is lower than the expected gain. Second, the realized
score is not the same as the expected score, and so we need to handle the full distribution of possible
values of rik, and use concentration results to bound the loss. Finally, we need to take into account the
fact that different rounds k have different expected gains hik.

Then, we can prove the information loss bound:

Theorem 4 Let ri1 denote the initial reputation assigned to user i. Fix a sequence of items, and the
datapoints submitted by users prior to i’s report on each item. Then, the information lost from user i is
bounded above by:

ILi  2+
8
a

+
8

3a
log(1+ e�ri1)

Together, theorem 3 and theorem 4 imply a regret bound against one narrow class of attack: attacks
in which all attack data is inserted after all honest data. In section 5, we will see that for specific
instantiations of the WTM module, we can get a full regret bound.

5 Proving a Regret Bound

In this section, we use the fact that the family of conjugate priors is itself an exponential family to
construct a market where the market state corresponds to the natural parameters of a conjugate prior
in F ⇤, and the securities correspond to the sufficient statistics of the family F ⇤, which are given by
(bbb,�y(bbb)). For now, we assume that we are operating in a revealed parameter environment, so that the
true bbb is eventually known for each item.
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In the following proofs, although we assume a certain finite range for |fff(x)| and |bbb⇤|, the proofs
are easily extended to the case where these ranges hold with high probability. Formally, suppose
that we are given an exponential family F such that |fff(x)| lies within (0,1). Let bbb denote the nat-
ural parameter of the member of F corresponding to the true distribution of data samples, and let
bbb⇤ denote the vector (bbb,�y(bbb)). By assumption, bbb is distributed according to the conjugate prior
P⇤0 . Let D0 > 0 denote a sufficiently large range such that with bbb drawn from P⇤0 , |bbb⇤| < D0. This
implies from the Cauchy-Schwarz inequality that, for any bbb⇤,b̂bb⇤ satisfying this property, and any x,
|(fff(x),1).(bbb�bbb0)| |(fff(x),1)|.|(bbb⇤ � b̂bb⇤)|

p
2(2D0) = D. This constant D will be the scaling param-

eter for the market payoffs.
The key property of conjugate prior distributions is that the parameter b can decomposed as b =

(rz,r), with r > 0, such that the prior P⇤bbb⇤ can be thought of as an observation of r datapoints with mean
z. In other words, given a prior distribution P⇤

b0
and an observation fff(x), the posterior distribution over

bbb is the member P⇤
b

of F ⇤ with parameters b = b0 +(fff(x),1) [Diaconis and Ylvisaker, 1979].
The conjugate prior market is defined as follows: Consider a fixed item k. The initial state is the

hyperparameter b0 corresponding to the prior P⇤0 . At any point of time, the state of the market is de-
termined by the current hyperparemeter b. At this point, if a datapoint xi is reported by an agent i with
influence yik, the hyperparameter is updated to a value bi determined by

bi = bi�1 + yik(fff(xi),1)

This is treated as a purchase of a security vector (yikfff(xi),yik), in a market with cost function y⇤(b)/D.
Eventually, when the true parameter bbb is revealed, the security payoffs are determined by bbb⇤ = (bbb,y(bbb)).
Thus, the net gain for agent i for item k is given by:

Gik =
(bi�bi�1) ·bbb⇤ � [y⇤(bi)�y⇤(bi�1)]

D
=

log(P⇤
bi

(bbb))� log(P⇤
bi�1

(bbb))
D

In other words, the gain as measured by this market corresponds to a scaled log score of predicting a
hyperdistribution P⇤ for a true parameter bbb.

We now show that this satisfies the properties of WTMs:

• bounded gain: Consider an agent i who reports datapoint xi with influence yik, an arbitrary se-
quence of reported data x̃, and an arbitrary outcome bbb. Let by = b+ y(fff(xi),1).

The gain of agent i is bounded by:

G(yik, i, x̃,bbb) =
R yik

y=0(fff(xi),1) · (bbb⇤ �m(by))dy
D

where m(by)
def= mP⇤

by
= EP⇤

by
bbb⇤ is the mean parameter of the hyperdistribution and corresponds to

gradient of the cost function at by. The integrand is bounded in absolute value by Ddy, and hence
|G(yik, i, x̃,bbb⇤)| < yik.

• concave gain: For this we will consider the terms constituting the gain separately: the (negative
of the) cost function and the payoff function and show that these are separately concave in yik; and
hence so is their sum. The cost function y⇤(bi) is convex in bi because it is the cumulant generating
function of an exponential family. Since bi = bi�1 +yik(fff(xi),1), it is convex in yik. The payoff of
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the purchased securities is linear in yik, because the quantity of each security purchased bi�bi�1

is proportional to yik. Hence, the net gain is concave in yik.

• bounded variance: Although we do not have a generic proof that the variance is bounded in terms
of the mean, for a given family, and a bounded range D of bbb⇤, it should be possible to derive
a constant ratio bound. In particular, for small quantities of securities, the variance is twice the
expected score; we believe that this bound will hold in general.

• substitutes: The substitutes property holds for this market. This is a consequence of Lemma 6.

5.1 Proving a regret bound

In this section, we show that the combination of the ILS module and the conjugate-prior WTM satisfies
a regret bound. The bound itself is simply a combination of the damage and information loss bounds
presented in section 4.4. The main challenge is in proving that this bound applies even when attackers
can insert datapoints before or between the honest datapoints. The information loss bound did not cover
this case, because we could not rule out the possibility that an attacker’s strategically chosen data could
create more long-term impact than the immediate damage it causes.

The key to this proof is Theorem 5, which shows that under certain conditions, attackers would do
better by attacking after an honest rating rather than before it. The relative order of ratings does not
matter for the overall log score of our learning algorithm on a given item, because the final prediction Qq

is the same. However, it can affect the incremental gain attributed to different agents. Theorem 5 shows
that, when the initial distribution P⇤b is accurate, an attacker would get higher measured gain (or lower
measured damage) by moving an attack report to after an honest agent’s report. In Theorem 7, we then
use this to show that the total regret is bounded by the regret of an attack in which all attack data came
after all honest data.

Damage Reduction Consider an exponential family F with natural parameter bbb. Let F ⇤ denote the
Diaconis-Ylvisaker family of conjugate priors. Let b denote the natural parameters of F ⇤, and let m

denote its mean parameters. As before, for a distribution P⇤ 2 F ⇤, we use bP⇤ and mP⇤ to denote its
natural and mean parameters, respectively.

Here we denote the posterior distribution after an observation of sufficient statistics, fff(x) as P⇤x and
the corresponding natural parameter as bP⇤x .

Theorem 5 (damage reduction property): Let P⇤0 2 F ⇤ denote an initial distribution. Suppose that
fff(x) denotes an observation of sufficient statistics, distributed according to a distribution p(x). Then,
if P⇤x denotes the posterior hyperdistribution after conditioning on fff(x); we must have bP⇤x = bP⇤0 +
(fff(x),1). The given P⇤0 and p must be such that P⇤0 is unbiased with respect to p: For any bbb, we must
have P⇤0 (bbb) = EpP⇤x (bbb). Consider a vector a of “attack” securities. The entries of a may be positive
or negative. Let P̃0 denote the hyperdistribution if the attack is carried out on the prior: a0 = b0 + a.
Likewise, let P̃1 denote the hyperdistribution with natural parameter coordinates a1 = bP⇤x +a.

Then, the following condition must hold:

K(P⇤0 ||P̃0)� Ep
⇥
K(P⇤1 ||P̃1)

⇤
(3)
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In other words: the damage induced by a fixed vector of securities a purchased at the initial distribu-
tion P⇤0 is greater than the expected error of the same vector of securities after an additional informative
observation x.

Theorem 5 shows that the KL-divergence induced by a vector of attack securities is lower (in expec-
tation) after additional honest datapoints have been received.

Regret bound We can now use the damage reduction property of the conjugate prior market to bound
the total regret in a system with honest set H under any attack A .

We start by considering a fixed item k. For now, let us treat the reputation values rik as fixed;
consequently, the influence values yik = y(rik) are also fixed. Let yik = 1� yik. Consider a given attack
strategy A . There are two potential sources of regret: the effect of the attack data, and the information
loss from the fractional use of honest data. Given fixed values of yik, we can unify these two by thinking
of influence limiting as a form of “attack” on the system.

Consider an honest rating xi, received from honest agent ui when the market state has natural coordi-
nates b0. The optimal use of fff(xi) would be to update the market state to b = b0 +(fff(xi),1). In actuality,
because of influence limiting, the market state would be updated to b j = b0 + yik(fff(xi),1). Noting that
b j = b j�1 � yik(fff(xi),1), we can think of the effect of influence limiting as involving an attack with
negatively weighted data.

Thus, the effect of influence-limited update can be modeled as fully updating by the data xi, followed
by updating based on negatively-weighted data. Let xi denote this latter half; in other words, xi corre-
sponds to updating the natural coordinates by adding (�yikfff(xi),�yik). We can think of this negatively
weighted datapoint as introduced by a phantom agent ui.

We will also use simplified notation to talk about attack. The proof only involves the aggregate effect
of all attack identity, and the aggregate effect on the sum of all attackers’ budgets. Thus, even though
A may specify a sequence of attack datapoints at each point in Tk, we can lump them together into a
single (weighted) datapoint. Let di denote the weighted sequence of ratings that the attacker ai injects
after xi, with the understanding that the di may vary with (x1, ...,xi). The weight can capture the effect
of influence limiting of the attackers as well as the effect of multiple attack datapoints, and so we do not
need to separately model a negative-weighted datapoint to capture the effect of an attack rating.

Now, for a given sequence x = (x1, . . . ,xn) of honest data, the combined effect of influence limiting
and attack ratings can be modeled by an extended sequence x̃(x,A) = x1x1d1x2x2d2 · · ·xnxndn.

For a given extended sequence x̃, there is a fixed posterior distribution (determined by the honest
data x)) on the eventual outcome. Thus, the expected (over possible outcomes) gain of each datapoint
in x̃ is well defined. Denote by G(ui, x̃,Xk), G(ui, x̃,Xk) and G(ai, x̃,Xk) the expected gains due to the
datapoints xi, xi, di respectively .

As we consider influence limits as a special kind of attack datapoint xi, we can generalize the concept
of an attack to denote any mapping from each x to the corresponding x̃ such that di occurs after xi and di

depends only on (x1, · · · ,xi). Starting from the given attack A , let us define a new generalized attack A 0

by specifying its extended sequence mapping:

x̃

0(x,A 0) = x1x2x3...xnx1d1x2d2...xndn
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Note that A 0 does not necessarily correspond to any feasible combination of attack ratings and influ-
ence limits, because xi has a negative weight whereas a real attack rating must have a positive weight.
However, we are using A 0 purely for formal analysis of gain and regret, and so this does not matter.

Now, consider a given sequence x, and let x̃ and x̃

0 denote the extended sequences corresponding to
A and A 0 respectively. The sequence x̃

0 has the property that all the honest ratings are fully accounted
for before the attack or influence-limit datapoints are received. For a given sequence x, the regret of our
algorithm given “attack” A 0 is therefore equal to the total error introduced by the attackers, which is the
negative of the sum of gains of all attack and influence-limit datapoints. Then, the regret Regk(A 0) of
our algorithm on item k with respect to attack A 0 can be equivalently written as

Regk(A 0) =�E{rik}E
x⇠Tk

"

Â
i2H

G(ui, x̃
0,Xk)+ Â

i/2H
G(ai, x̃

0,Xk)

#

We note that Regk(A) can not be analogously defined. This is due to the inherent complication of
combining information loss and damage in extended sequences. Also note that, for any given x, the final
prediction of the algorithm is the same under both attacks A and A 0, because the order of the updates
does not matter. It follows that, for any given influence limits yik, the regret Regk(A 0) with respect to
attack A 0 is the same as the regret with respect to attack A in round k.

The following lemma shows that each honest rater has a higher expected gain under A than under
A 0. This implies that the constructed market satisfies the substitutes property.

Lemma 6 Let Di
def= G(ui, x̃,Xk)�G(ui, x̃0,Xk). Then 8i Di � 0

The proof of this lemma involves using the error-reduction property (Theorem 5) inductively to reorder
these datapoints. Using this lemma we can show that, in the actual attack A , the total regret on any given
item is no more than the sum of the damage that attackers are penalized for and the information losses of
each honest expert. Then, we can bound the total regret by the sum of the damage and information loss
bounds.

The following theorem states the final regret bound over all k items.

Theorem 7 The regret of the conjugate-prior algorithm is bounded by:

D

(

Â
i2H


2+

8
a

+
8

3a
log(1+ e�ri1)

�
+ Â

i/2H

1
a

B(ri1)

)

6 Conclusion and Future Work

Our aim has been to highlight some deep connections between prediction markets and online learning.
To that end, we have demonstrated an equivalence between learning the estimating the natural parameters
of a member of an exponential family distribution and aggregating trader beliefs in a prediction market.
We used this equivalence to construct an online learning algorithm that makes predictions based on the
advice of weighted experts. These weights are updated according to budget changes in the simulated
prediction market; the performance of the experts in this algorithm is measured according to a particular
loss function which satisfies certain properties. The algorithm so defined has certain requirements on the
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underlying loss function. We defined a particular instance of this abstract learning algorithm that uses
the log-loss function. We prove information loss and damage bounds on this algorithm and provide a
general technique to combine these to prove an overall regret bound.

This interesting equivalence leaves open a few questions. In our algorithm we have assumed that
the true parameter is available to us as feedback. Relaxing this assumption would require scoring on
the actual outcome rather than the distribution from which it is drawn. In this case, we could construct
algorithms with damage and information loss bounds, but it is not clear whether a combined regret bound
would be possible. We have assumed here that there is a bound the range of the natural parameter. How
essential is this bound? Is it possible to generalize this technique so that even for an unknown family
such parameter estimates are possible? As is usual in Bayesian updates, we have assumed that we have
access to a true prior. It would be instructive to see the effect of a non-informative prior on the results.
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A Proofs of theorems

A.1 Proofs for Section 3

Lemma 1 We define the interpretation function I(q)= (q1�q0,q2�q0, . . . ,ql�q0)
def= (b1,b2, . . . ,bt)

def=
bbb. This allows us to interpret the state of the market in terms of a prediction on the natural parameters
of the distribution. This choice of parameters satisfies ∂y(bbb)

∂bl
= µl. Further, this vector is unique.

Proof: We observe that for l = 1, . . . , t,

µl =
✓

∂y(q)
∂qi

◆

q=q

⇤
=

✓
∂ log

R
exp(qTfff(x))dx

∂ql

◆

q=q

⇤

=
✓

∂ log
R

exp{q0fff0(x)+Ât
l=1 qlfffl(x)}dx

∂ql

◆

q=q

⇤

=
✓

∂ log
R

exp{q0(c�Ât
l=1 fffl(x))+Ât

l=1 qlfffl(x)}dx
∂ql

◆

q=q

⇤

=
✓

∂ log
R

exp{q0c}exp{Ât
l=1(ql �q0)fffl(x)}dx

∂ql

◆

q=q

⇤

=
✓

∂(q0c)
∂qi

∂ log(
R

exp{Ât
l=1(ql �q0)fffl(x)}dx)

∂ql

◆

q=q

⇤

=
✓

∂y(bbb)
∂ql

◆

q=q

⇤

=
✓

∂y(bbb)
∂bl

∂bl

∂ql

◆

q=q

⇤

=
✓

∂y(bbb)
∂bl

◆

bbb=bbb⇤

The following result has been previously pointed out by Amari [Amari, 2001]. We reproduce the
result and its proof as our notation is slightly different from that used by Amari.

Lemma 2 (profit decomposition lemma): Consider an exponential family F of distributions over
some set of statistics fff(x), with natural parameters bbb. Let p,r 2 F be any two probability distribu-
tions in the family. We use bbbp to denote the natural parameters of p, and likewise, we can define bbbr,µµµp,

and µµµr. We abuse notation slightly and let y(r) indicate the log partition function of r which technically
depends on its natural parameters. Let H(p) denote the entropy of the distribution p, and K(p||r) denote
the KL-divergence of r relative to p. Then, the following equality holds:

K(p||r)+H(p) = y(r)�bbbr ·µµµp (4)
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Proof:

LHS = K(p||r)+H(p) =
Z

x
p(x) log

p(x)
r(x)

dx�
Z

x
p(x) logp(x)dx

= �
Z

x
p(x) logr(x)dx

= �
Z

x
p(x)

⇥
bbbr ·fff(x)�y(r)

⇤
dx

= �bbbr ·
Z

x
p(x)fff(x)dx+y(r)

Z

x
p(x)dx

= RHS

A.2 Proofs for Section 4

Theorem 3 Consider any sequence of items and sequences of reports on those items. For any user i, the
net gain due to that user is bounded below in terms of i’s initial budget:

M

Â
k=1

G(yik, i, x̃k,Xk)��
1
a

B(ri1)

Proof: Consider a fixed round k. For notational convenience, let r0 = rik, and let Ĝik denote the scaled
gain (1/yik)G(yik, i, x̃k,Xk) in this round, let g = aĜik, and let r = r0 + S(g) denote the final reputation.
Recall that B(r) = log(1+er). Taking derivatives, we observe that B0(r) = y(r), and y0(r) = y(r)/(1+er).

Now, consider the function B(r) = B(r0 +S(g)) as a function of g. We will show that this is a concave
function of g. Differentiating twice with respect to g, we see that

dB(r)
dg

= y(r)
dS(g)

dg
= y(r)[1�1.5g]

d2B(r)
dg2 =


(1�1.5g)

y(r)
1+ er (1�1.5g)�1.5y(r)

�

 y(r)
⇥
(1�1.5g)2�1.5

⇤

We have |g| 1
8 , and thus, d2B(r)

dg2  0, and hence B(r) is a concave function of g.
It follows from concavity that:

B(r) B(r0)+g
dB
dg

|g=0 ) B(r)�B(r0) gy(r0) (5)

Now, we move to the theorem statement

a
M

Â
k=1

G(yik, i, x̃k,Xk) = aÂ
k

yikĜik ( by definition of Ĝik) (6)

� Â
k

[B(ri(k+1))�B(rik)] (by eqn. 5) (7)

= [B(riM)�B(ri1)]��B(ri1) (8)

Dividing both sides by a, we obtain the stated result. In order to prove the information loss bound

first, we show that the mean and variance of the score S(g) are “well-behaved”:
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Lemma 8 Suppose that Gk has mean hik and variance at most chik. Then,

E[S(gk)]�
3a
4

hik

and
Var[S(gk)] 0.5E[S(gk)]

Proof: Consider two cases, based on the value of hik. For hik � 0.5, we have

E[G2
k ] = E[(

1
yik

G(yik, i,xk,Xk))2] 2hik

which follows by the bounded gain property. Thus,

E[S(gk)] = aE[Gk]�
3a2

4
E[G2

k ]� ahik[1�1.5a]� ahik[1�
1.5
8

]� 3a
4

hik

Now, consider the case when hik  0.5. We note that E[G2
k ] = E[Gk]2 +Var[Gk] h2

ik + chik. Now,

E[S(gk)] = aE[Gk]�
3
4

a2E[G2
k ]� ahik�

3
4

a2[h2
ik + chik]

= ahik[1�
3
4

ahik�
3
4

ac]� 3a
4

hik ( for a 1/4c,ahik < 1/16)

Next, we consider the variance of S(gk). We bound it using a result due to Tang and See [Tang and See, 2009,
Prop. 2] that states that if | f 0(x)| a, then Var( f (x)) a2Var(x). We see that S0(gk) = 1�1.5gk, and as
gk ��a,

Var[S(gk)]  (1+1.5a)2a2chik

 1
4
(1+1.5a)2ahik

 1
4
(

19
16

)2ahik < 0.36ahik

Thus, Var[S(gk)] < 0.36ahik  0.5E[S(gk)]. (The constants have not been optimized; tighter con-
stants are possible, especially for particular values of c.)

The following lemma establishes the concentration result that we need.

Lemma 9 Let ri1 denote the initial reputation. For any k , we must have:

E[y(rik)] e�
aHik

8 + y(ri1 +
3aHik

8
)

Proof:

Recall that we denote Âk
t=1 hik as Hik. First, note that the expected value of rik is at least ri1 + 3aHik

4
(by Lemma 8). We split the domain of possible values of rik into two components [�•,ri1 + 3aHik

8 ) and
[ri1 + 3aHik

8 ,•]. Then, we have:

E[y(rik)] =
Z ri1+ 3aHik

8

rik=�•
Pr(rik)y(rik)+

Z •

rik=ri1+ 3aHik
8

Pr(rik)y(rik)

< Pr(rik < ri1 +
3aHik

8
)+ y(ri1 +

3aHik

8
)

Z •

rik=ri1+ 3aHik
8

Pr(rik)

 Pr(rik < ri1 +
3aHik

8
)+ y(ri1 +

3aHik

8
)

23



where in the first inequality we have used the fact that as y(rik)  1 in the first term and that y() is
monotonically decreasing in the second.

Now, to bound the term Pr(rik < 3aHik
8 ), we use Bennett’s concentration inequality [Bennett, 1962].

Note that the gain in each round k is independent of previous and subsequent rounds. Thus, the change
in reputation rik� ri1 is the sum of independent random variables. By Lemma 8, the sum of variances of
these random variables is at most 3aHik

8 . We need to bound the probability that the sum of these variables

is more than 3aHik
8 below its mean value. By Bennett’s inequality, this is at most e

�3aHik
8 ⇤0.38  e�

aHik
8 .

Theorem 4 Let ri1 denote the initial reputation assigned to user i. Fix a sequence of items, and the
datapoints submitted by users prior to i’s report on each item. Then, the information lost from user i is
bounded above by:

ILi  2+
8
a

+
8

3a
log(1+ e�ri1)

Proof: We begin with the upper bound on the information loss mentioned in Equation 2:

ILi 
M

Â
k=1

E[y(rik)]hik

Let k be the lowest k such that Hik � 1. Note that Hik  2 (since each user can have gain at most 1 per
item), and y(rik) 1. Then, accounting for all information up to round k as lost, we have

ILi  2+
M

Â
k

E[y(rik)]hik

Now, consider a given k � k. By lemma 9, this can be bounded by the sum:

ILi  2+
M

Â
k=k

e�
aHik

8 hik +
M

Â
k=k

y(ri1 +
3aHik

8
)hik

In each of the two sums, the terms are monotonically decreasing. Moreover, the maximum hik is 1. Let
H be the value of Hik at k. Thus, we can bound the sums by integrals, as:

ILi  2+
Z •

H=H
e�

a(H�1)
8 dH +

Z •

H=H
y(ri1 +

3a(H�1)
8

)dH

The two integrals have closed-form solutions:
Z

e�
a(H�1)

8 dH =
�8
a

e�
a(H�1)

8

and Z
y(ri1 +

3a(H�1)
8

)dH =
8

3a
log


y(ri1 +

3a(H�1)
8

)
�

Substituting these functions, and setting the range of the integrals to (0,•), we get:

ILi  2+
8
a

+
8

3a
log(1+ e�ri1)
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A.3 Proofs for Section 5

Before proving Theorem 5, we first prove the following straightforward but useful lemma:

Lemma 10 Let P⇤0 2 F ⇤ denote an initial distribution. Suppose that fff(x) denote an observation of suffi-
cient statistics, distributed according to a distribution p(x). Then, let P⇤1 denote the posterior hyperdistri-
bution after conditioning on x; we must have the corresponding natural parameter b1 = b0 +(fff(x),1).
The given P⇤0 and p must be such that P⇤0 is unbiased with respect to p: For any bbb, we must have
P⇤0 (bbb) = EpP⇤1 (bbb).

For any vector a of the same dimension as bbb⇤, the variance of a ·bbb⇤ at P⇤0 is at least as high as the
expected variance at P⇤x :

VarP⇤0 (a ·bbb⇤)� Ex
⇥
VarP⇤x (a ·bbb⇤)

⇤

Proof: The condition that P⇤0 is unbiased implies that we can treat P⇤0 as a joint distribution over fff(x)
and bbb⇤: P⇤0 (fff(x),bbb⇤) def= p(x)P⇤x (bbb⇤) has marginal distribution P⇤0 (bbb⇤) on bbb⇤.

Now, treating a ·bbb⇤ and fff(x) as two random variables, we can use the standard result from probability
theory (see, e.g., [Gut, 1995, p.39]) on the conditional variance:

VarP⇤0 (a ·bbb⇤) = ExVar(a ·bbb⇤|fff(x))+Varx[E(a ·bbb⇤|fff(x))]

The second term on the right hand side is non-negative, so we get:

VarP⇤0 (a ·bbb⇤)� ExVar(a ·bbb⇤|fff(x)) = Ex
⇥
VarP⇤x (a ·bbb⇤)

⇤

The next ingredient of the proof of Theorem 5 is to express the KL-divergence induced by a in terms
of an integral over variances. This differential relationship is implicit in the literature on exponential
families, but we include a self-contained proof for clarity and completeness:

Lemma 11 Given any two distributions P, P̃ 2 F ⇤ such that bP̃ = bP + a, the KL divergence can be
expressed as follows:

K(P||P̃) =
Z 1

t=0

Z t

u=0
VarP⇤u [a ·bbb⇤]dudt

(Here, P⇤u denotes the distribution with natural parameter coordinates bP⇤u = bP +ua.)

Proof: We can prove this result by repeated differentiation:

d
du

K(P||P⇤u ) = � d
du

Z

bbb⇤
P(bbb⇤) logP⇤u (bbb⇤)dbbb⇤

= �
Z

bbb⇤
P(bbb⇤) d

du
[logP⇤u (bbb⇤)]dbbb⇤

= �
Z

bbb⇤
P(bbb⇤) d

du
[bP⇤u ·bbb⇤ �y⇤(P⇤u )]

= �
Z

bbb⇤
P(bbb⇤)[a ·bbb⇤]dbbb⇤+

d
du

y⇤(P⇤u )

= �a ·mP +a ·mP⇤u

In the last step, we used the definition of mP and the well-known fact that the gradient of y⇤P⇤u is mP⇤u .
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Differentiating a second time, we get:

d2

du2 K(P||P⇤u ) =
d

du
[�a ·mP +a ·mP⇤u ]

= a · d
du

mP⇤u

Now, we expand mP⇤u by definition:

a · d
du

mP⇤u = a · d
du

Z

bbb⇤
bbb⇤P⇤u (bbb⇤)dbbb⇤

= a ·
Z

bbb⇤
bbb⇤ d

du
P⇤u (bbb⇤)dbbb⇤

By definition of P⇤u (bbb⇤) = Exp[bP⇤u .bbb⇤ �y⇤(P⇤u )], we have:

d
du

P⇤u (bbb⇤) = P⇤u (bbb⇤).[ d
du

bP⇤u .bbb⇤ � d
du

y⇤(P⇤u )] = P⇤u (bbb⇤) · [a ·bbb⇤ �a.mP⇤u ]

Thus,

a · d
du

mP⇤u = a ·
Z

bbb⇤
bbb⇤[a ·bbb⇤ �a ·mP⇤u ]P⇤u (bbb⇤)dbbb⇤)

=
Z

bbb⇤
(a ·bbb⇤)2P⇤u (bbb⇤)dbbb⇤ � (a ·mP⇤u )

Z

bbb⇤
a ·bbb⇤dbbb⇤

=
Z

bbb⇤
(a ·bbb⇤)2P⇤u (bbb⇤)dbbb⇤ � (a ·mP⇤u )2

Finally, observing that EP⇤u (a ·bbb⇤) = a ·mP⇤u , the RHS is observed to be, by definition, VarP⇤u (a ·bbb⇤).
Integrating, and observing that the LHS is 0 when t = 0, we have:

[�a ·mP +a ·mP⇤t ] =
Z t

u=0
VarP⇤u (a ·bbb⇤)du

Integrating a second time, and again observing that K(P||P⇤t ) = 0 when t = 0, we have:

K(P||P̃) =
Z 1

t=0

Z t

u=0
VarP⇤u [a ·bbb⇤]dudt

Now, we can return to the proof of Theorem 5:

Theorem 5 (damage reduction property): Let P⇤0 2 F ⇤ denote an initial distribution. Suppose that
fff(x) denotes an observation of sufficient statistics, distributed according to a distribution p(x). Then,
if P⇤x denotes the posterior hyperdistribution after conditioning on fff(x); we must have bP⇤x = bP⇤0 +
(fff(x),1). The given P⇤0 and p must be such that P⇤0 is unbiased with respect to p: For any bbb, we must
have P⇤0 (bbb) = EpP⇤x (bbb). Consider a vector a of “attack” securities. The entries of a may be positive
or negative. Let P̃0 denote the hyperdistribution if the attack is carried out on the prior: a0 = b0 + a.
Likewise, let P̃1 denote the hyperdistribution with natural parameter coordinates a1 = bP⇤x +a.

Then, the following condition must hold:

K(P⇤0 ||P̃0)� Ep
⇥
K(P⇤1 ||P̃1)

⇤
(9)
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Proof: The proof follows from a careful application of Lemma 10 to the decomposition given in
Lemma 11. We seek to prove:

K(P⇤0 ||P̃0)� Ep
⇥
K(P⇤x ||P̃x)

⇤

By Lemma 11, this is equivalent to proving:
Z 1

t=0

Z t

u=0
VarP⇤u [a ·bbb⇤]dudt � Ep

Z 1

t=0

Z t

u=0
VarP⇤xu [a ·bbb⇤]dudt

where P⇤xu is the distribution with bP⇤xu = bP⇤x +ua.
It is therefore sufficient to prove that, for every u 2 (0,1),

VarP⇤u [a ·bbb⇤]�EpVarP⇤xu [a ·bbb⇤]� 0 (10)

Consider any fixed value of u. Based on the conjugate prior nature of F ⇤, if we started with prior belief
P⇤0 and observed a value a with weight u, the posterior distribution would be P⇤u . Then, conditioning P⇤u
on a further observation of fff(x) would yield the posterior distribution P⇤xu, because P⇤xu is the distribution
obtained by conditioning P⇤0 on observing fffx with weight j and a with weight u. Here, we have used the
property of Bayesian updating that the order of observation does not affect the final posterior. We can
also verify that

P⇤u (bbb⇤) = P⇤0 (bbb⇤|ua observed) =
Z

x
P⇤0 (bbb⇤,fffx|ua observed)

=
Z

x
p(x)P⇤0 (bbb⇤|ua observed,fffxobserved) =

Z

x
p(x)P⇤xu(bbb⇤)

Thus, the conditions of Lemma 10 are satisfied; using this result, we have that, for every value of u,
equation 10 is satisfied.

In other words: the damage induced by a fixed vector of securities a purchased at the initial distribu-
tion P⇤0 is greater than the expected error of the same vector of securities after an additional informative
observation x.

The following corollary shows that a similar result holds for the cost of purchasing the attack securi-
ties.

Corollary 12 Under the same conditions of theorem 5, we must have:

y⇤(P̃0)�y⇤(P⇤0 )� Ep
⇥
y⇤(P̃x)�y⇤(P⇤x )

⇤

Proof: By equation 1,

y⇤(P̃0)�y⇤(P⇤0 ) = K(P⇤0 ||P̃0)+(bP̃0
�bP⇤0 ) ·mP⇤0 = K(P⇤0 ||P̃0)+a ·mP⇤0

Likewise,
y⇤(P̃x)�y⇤(P⇤x ) = K(P⇤x ||P̃x)+a ·mP⇤x

Thus, it is sufficient to prove that a ·mP⇤0 = Ep[a ·mP⇤x ]; the corollary will then follow from Theorem 5.

Epa ·mP⇤x = EpEP⇤x [a ·bbb⇤]

By the condition on P⇤0 , for any random variable Z, P⇤0 (Z = z) =
R

x p(x)P⇤x (Z = z)dx ) EP⇤0 (Z) =
EpEP⇤x (Z), and hence EP⇤0 [a ·bbb⇤] = EpEP⇤x [a ·bbb⇤].

Let Di
def= G(ui, x̃,Xk)�G(ui, x̃0,Xk).
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Lemma 6 8iDi � 0

Proof: The proof is a careful application of the error-reduction property (Theorem 5). Consider any i.
Then, construct a new attack AA from A , defined as

x̃A(x) = x1x2 · · ·xi�1x1d1x2d2..xi�1di�1xixidixi+1xi+1di+1 · · ·xnxndn

Further, construct a new attack AB from A , defined as

x̃B(x) = x1x2 · · ·xi�1xix1d1x2d2..xi�1di�1xidixi+1xi+1di+1 · · ·xnxndn

As the gain G(ui, x̃A,Xk) depends only on the sum of weighted datapoints up to xi, and this sequence
is a reordering of the corresponding sequence in x̃, we must have G(ui, x̃A,Xk) = G(ui, x̃,Xk).

Now, treat the sequence of ratings x1d1x2d2...xi�1di�1 as a single entity, and let a denote the aggregate
update implied by this series of datapoints. Note that x̃A and x̃B differ only in the relative position of the
update a and the rating xi. Further, the datapoints in a are independent of xi, because they come before xi

in A . Based on the assumption that the prior is accurate, and observing that the updates corresponding to
x1,x2, ..xi represent accurate Bayesian updating, we find that the conditions of Theorem 5 are satisfied.
Thus, we conclude that G(ui, x̃A,Xk)� G(ui, x̃B,Xk).

As the gain G(ui, x̃B,Xk) depends only of the sum of weighted datapoints up to xi, and this sequence
is the same as the corresponding sequence in x̃

0, we must have G(ui, x̃B,Xk) = G(ui, x̃0,Xk). Combining
all the conditions gives G(ui, x̃,Xk)� G(ui, x̃0,Xk), and thus Di � 0.

Next, we need to tackle the gains of the influence limit and attack datapoints. We define the unac-
counted regret URk(A) as the regret adjusted by the change in attackers’ gains:

URk(A) = Regk(A)+E{rik}E
x⇠Tk Â

i/2H
G(ai, x̃,Xk)

URk(A 0) is defined likewise. Intuitively, the unnacounted regret is of interest because the remainder
of the regret – the attackers’ gains – can be bounded in terms of the attackers’ initial budgets, as in
Theorem 3. We note that in general URk(A 0) 6= URk(A), because the gains attributed to each attack
identity are different in sequence x̃ and x̃

0.

Lemma 13

URk(A) =�E{rik}E
x⇠Tk Â

i2H
[G(ui, x̃,Xk)+Di]

Proof: Fix a particular value of the reputations {rik} and an honest data vector x.
Note that, as Regk(A) = Regk(A 0), and given the definition of Regk(A 0), we have:

Regk(A) = Regk(A 0) = �E{rik}E
x⇠Tk

"

Â
i2H

G(ui, x̃
0,Xk)+ Â

i/2H
G(ai, x̃

0,Xk)

#

From definition and the above,

URk(A) =

�E{rik} E
x⇠Tk

"

Â
i2H

G(ui, x̃
0,Xk)+ Â

i/2H
G(ai, x̃

0,Xk)� Â
i/2H

G(ai, x̃,Xk)

#
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Further, from the fact that the total expected gain is the same under A and A 0, we have:

E{rik} E
x⇠Tk

"

Â
i2H

G(ui, x̃
0,Xk)+ Â

i2H
G(ui, x̃

0,Xk)+ Â
i/2H

G(ai, x̃
0,Xk)

#

= E{rik}E
x⇠Tk

"

Â
i2H

G(ui, x̃,Xk)+ Â
i2H

G(ui, x̃,Xk)+ Â
i/2H

G(ai, x̃,Xk)

#

Rearranging, we have

E{rik}E
x⇠Tk

"

Â
i2H

G(ui, x̃
0,Xk)+ Â

i/2H
G(ai, x̃

0,Xk)� Â
i/2H

G(ai, x̃,Xk)

#

= E{rik}E
x⇠Tk Â

i2H
[G(ui, x̃,Xk)+Di]

The last equality follows from the definition of Di. The LHS as we have shown above is URk(A).

Next, we bound the total gain of the influence limiting identities xi by relating them to the gain of the
honest entities xi.

Lemma 14 Fix reputation values, and hence influence values yik. Then, for each i,

E
x⇠Tk G(ui, x̃,Xk)��yik

⇥
E

x⇠Tk G(ui, x̃
0,Xk)+Di

⇤

Proof: Consider the sequence x̃. Recall that the consecutive pair of “reports” xixi is a model for the
influence-limited report by agent i. By the concavity of the gain function, we have:

G(ui, x̃,Xk)+G(ui, x̃,Xk)� yikG(ui, x̃,Xk)

This implies that G(ui, x̃,Xk)��yikG(ui, x̃,Xk).
By definition of Di, we have E

x⇠Tk G(ui, x̃,Xk) = E
x⇠Tk G(ui, x̃0,Xk)+ Di, thus completing the proof.

Putting together Lemma 13 and Lemma 14, we get the following bound on URk(A):

Lemma 15

URk(A) E{rik} Â
i2H

yikE
x⇠Tk G(ui, x̃,Xk)

Proof: From Lemma 13 and Lemma 14, we get:

URk(A) E{rik} Â
i2H

yikE
x⇠Tk G(ui, x̃,Xk)+ Â

i2H
(yik�1)Di

By Lemma 6, each Di � 0. Further, yik is always between 0 and 1. Thus, the last sum is always  0 and
the lemma statement follows. By definition, we have Regk(A) = URk(A)�E

x⇠Tk Âi/2H G(ai, x̃,Xk).

To prove the final regret bound, we sum this up over all k.

Theorem 7 The regret of the conjugate-prior algorithm is bounded by:

D

(

Â
i2H


2+

8
a

+
8

3a
log(1+ e�ri1)

�
+ Â

i/2H

1
a

B(ri1)

)
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Proof: Consider any given attack A . By lemma 15, the regret in round k is bounded by:

Regk(A) E{rik} Â
i2H

yikE
x⇠Tk G(ui, x̃,Xk)+E

x⇠Tk Â
i/2H

(�G(ai, x̃,Xk))

Summing over k from 1 to M, we have:

Reg(A)Â
k

E{rik} Â
i2H

yikE
x⇠Tk G(ui, x̃,Xk)+Â

k
Â

i/2H
E

x⇠Tk(�G(ai, x̃,Xk))

By Theorem 4, and using un-scaled log loss, the first sum is bounded by

Â
i2H

D


2+
8
a

+
8

3a
log(1+ e�ri1)

�

By Theorem 3, and using un-scaled log loss, the second sum is bounded by Âi/2H
D
a B(ri1).

Thus, putting these two together, we have:

Reg(A) D

(

Â
i2H


2+

8
a

+
8

3a
log(1+ e�ri1)

�
+ Â

i/2H

1
a

B(ri1)

)

B Notation

For convenience, the following tables indicate notations for the key terms we use.
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Symbol Meaning

H set of honest agents
H set of dishonest/adversarial agents
N total number of agents: |H |+ |H | = N
n number of honest agents: |H | = n
M number of items
Xk realized value of each of the kth item
k item index
Pk distribution over X for item k 2 {1,2, . . . ,M}
F exponential family of distributions; Pk 2 F
F ⇤ set of possible hyperdistributions; this is also assumed to be exponential family
fff sufficient statistics that are a function of the input x 2 X ; |fff| = t
bbb natural parameters of the distribution on X ; |bbb| = t
P⇤0 prior distribution on bbb known as a hyperdistribution with parameter b0

P⇤
b

hyperdistribution with natural parameter b; P⇤
b

2 F ⇤ and
P⇤

b j
may be simply written as P⇤j

b natural parameter of hyperdistribution P⇤
b

bbb⇤ sufficient statistics of the hyperdistribution over bbb
y⇤ log partition function of the hyperdistribution
y log partition function of the distribution over X
x sequence of honest datapoints
Tk set of all possible honest sequences represented as a tree

x⇠ Tk shorthand for x, the eventual outcome XK , and true parameter bbbk

jointly distributed according to hyperdistribution P⇤0
A (and Ak) attack strategy (for item k)

b̂bb natural parameter of the forecast distribution Qk
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Symbol Meaning

i agent index
ui honest agent; ui 2H
ui the ’attack part’ of the honest agent where ui 2H
ai dishonest agent/attacker; ai 2H
x̃i attack datapoints corresponding to the ith attacker
x̃ the entire realized sequence of datapoints with honest data x and attack strategy Ak;

shorthand for x̃Ak(x)
Q prediction; a function of x̃, typically parametrized by Z and k

Z and ZO learning algorithms; ZO denotes an omniscient learning algorithm that is used a benchmark
L(Qk, ·) second parameter depends on whether revealed data/parameter

GZ(i, x̃,Xk) incremental gain for an agent i in sequence x̃, given an eventual true outcome Xk

when it is obvious from context, this may be written as Gik

yik influence of agent i on item k
Ĝik = (1/yik)Gik the scaled gain that is at least as high as the actual gain G(1, i, x̃,Xk)

hik informativeness of agent i on item k
a attack securities in the conjugate-prior market
P̃j posterior hyperdistribution conditioned on attack securities with prior P⇤j

in the conjugate-prior market
Reg(Z) regret of algorithm Z

Family Market State or Securities or Cost function
natural parameters sufficient statistics

F bbb fff(x) y(x)
F ⇤

b bbb⇤ = (bbb,�y(bbb)) y⇤(bbb)/D
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