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Abstract

We consider a new class of online classification problems motivated by Internet
recommendation and forecasting applications in which the learner receives advice
sequentially over time from experts who may be adversarial or genuine. We show
that, for this set of problems, the use of a market trading metaphor is useful in
constructing a learning algorithm. We illustrate this by considering the concrete
problem of learning prediction sequences under partial monitoring. We use a non-
traditional definition of regret under certain analytical assumptions. In a setting
with m items, we prove that a measure of regret with respect to the collective
information held by n experts is bounded by O(n

√
m logm).

1 Introduction

Many online ranking, recommendation, and personalization systems rely on input from multiple
forecasters or experts. Combining multiple forecasters’ inputs appropriately is the central goal of a
rich machine learning literature, and computational learning algorithms underpin many of these sys-
tems, but social media domains present a unique combination of challenges to effective aggregation.
In this paper, we introduce a new learning model that captures some of the characteristic features
of this forecast setting, and we present a technique to construct efficient learning algorithms for this
class of problems.

In particular, expert forecasts and recommendations in Internet settings present the following chal-
lenges: First, the identities and motives of the individual forecasters are not always known. Some
forecasters may provide best-effort forecasts, but in some cases the forecasters or their inputs may
have vested interests in manipulating the system. For such attackers, it is often easy to create a
sizeable number of shill or sybil accounts in order to manipulate the system. We argue that, for these
domains, the best formal model of the set of experts is neither purely adversarial, nor purely stochas-
tic, but a hybrid of the two. For forecasters with unknown motives, assuming that the forecasts are
governed by a stationary stochastic generative process would be unrealistic. On the other hand, for
genuine best-effort forecasters, a stochastic model of forecasts and forecast error is appropriate, and
may lead to stronger performance guarantees.

Second, for any given item, forecast inputs from different sources often arrive haphazardly over
time, and not all sources produce forecasts for each item. Critically, later forecasters may have ac-
cess to information from earlier forecasts about the same event or item. Such a setting is vulnerable
to cloning attacks, where a potentially harmful expert imitates the advice of a genuine, informative
one. Further, a prediction may need to be made before all of the experts have reported their advice.
In prior work, a partial availability of expert forecasts is typically handled by modeling so-called
“sleeping experts”, who may be inactive in certain rounds. However, these algorithms cannot distin-
guish between genuine forecasters and clones, even though the clones are forced to make forecasts
later than the genuine forecasters they copy.
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In this paper, we describe a technique to develop machine learning algorithms for forecast aggre-
gation systems based on the metaphor of a prediction market. Prediction markets are markets that
allow traders to bet on securities whose value depends on a future event; for example, the Iowa Elec-
tronic Market predicts the outcome of a presidential election. One form of prediction markets, which
is rapidly gaining in popularity, is the market scoring rule [1]. In a market scoring rule, traders earn
rewards proportional to the reduction in “loss” (measured using a proper scoring rule) caused by
their trades; in other words, the difference in the loss of forecasting based on market price after their
trade as compared to the market price after the previous trade. Our approach involves designing
a learning algorithm by tracking a budget for each trader, and simulating a prediction market: for
each input, the algorithm carries out a “trade” on the forecasters’ behalf, and then later updates the
budgets by treating received feedback as the prediction market outcomes.

Algorithms based on prediction markets are attractive for the particular features of the domains we
are interested in, because of the following reasons: First, traders’ budgets allow us to control the
total net impact of a single identity. By coupling traders’ payoffs to the effects of their actions,
and limiting their effect so that their budget is never negative, we can provide worst-case bounds
against adversarial forecasters. Second, in a setting with honest agents but stochastic outcomes, a
budget-proportional betting scheme (the Kelly criterion [2]) leads to exponential growth in traders’
budgets (in expectation), and thus the small initial budgets are not crippling to honest agents in the
long run. Third, betting protocols have been used before in machine learning algorithms, for the
reasons above (see, e.g., [3]). Prediction markets are a natural extension of betting protocols to
the sequential forecasting setting. Traders’ profits are based on the extent to which they change
forecasts, thus ensuring that merely cloning previous information is not profitable.

We illustrate this technique in the context of a specific recommendation problem: Consider a system
that has to predict how attractive each of a set of items will be to a target user (or group of users).
The system has access to forecasts from a set of experts, some of whom may actually be controlled
by an attacker. Not all experts provide forecasts on every item, and they need not provide forecasts
in a fixed order for every item. All experts are assumed to factor in previous information into their
forecasts. Importantly, the system has limited access to feedback on recommendations: items that
are not recommended highly might never be inspected by the target user. In section 2, we formally
model this problem, and develop a prediction market-based learning algorithm for it.

Related Work: Chen and Vaughan [4] explore the connection between prediction markets and
no-regret learning. In one direction, this can be used to develop efficient prediction markets, and
in the other, to develop a particular class of learning algorithms. In contrast, our work exploits
the sequential nature of a prediction market, and we argue by example that this feature of prediction
markets can be used to develop a new class of learning algorithms. Prediction under limited feedback
has been studied under different modeling assumptions in prior work [5, 6]. Our feedback model
differs from the previous models of partial information. In particular, the multi-armed bandit setting
differs from ours in that the loss of the actions are intrinsically independent of each other. The
most natural definition of an action in our case is the prediction. Receiving a feedback on any
prediction for an item label is tantamount to receiving feedback on all predictions for that item.
With the general forecaster algorithm [6], the problem can only be posed with strong assumptions to
yield weaker bounds than those we achieve here. Kleinberg et. al. [7] present the sleeping experts
problem. This is similar to our model in capturing the fact that not all experts provide feedback on
all items. Unlike our model, however, they assume that the expert advice is available simultaneously.
A hybrid analytical approach to the multi-armed bandit problem has been studied by Lazaric and
Munos [8]. They consider a model with stochastic input space and adversarial labels; in contrast, our
hybrid model features adversarial experts and stochastic experts. Resnick and Sami [9] consider a
full-feedback variant of the specific recommendation problem studied here. Although our algorithm
is similar to theirs, we have elaborated on the deeper connection between prediction markets and
learning algorithms. Additionally, as we study a limited feedback setting, our analysis and bounds
are somewhat different. Yu et. al. [10] specifically consider a system to thwart sybil attacks in
recommender systems. They do not consider a sequential ordering on the experts; further, unlike
our model, their model assumes a strong similarity between the actual labels and the forecasts of
some expert.
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2 Model and Results

For concreteness of analysis, we focus on a specific problem motivated by a recommender setting:
Suppose that every day, a single news article is created, that will potentially be assigned a binary
label li ∈ {0, 1} by the target, if inspected. Throughout the day, input forecasts on classification
come in one at a time from a set of experts, some subset of which are controlled by an attacker, while
the rest are honest. Each expert has access to all previous forecasts. We assume that genuine experts
can perfectly aggregate previous information and hence that the last genuine expert’s forecast is an
unbiased estimate of the true label based on information from all honest experts. The challenge is to
weed out the misleading forecasts by malicious experts while retaining the information provided by
genuine forecasters. We make no assumption about the number or fraction of adversarial experts in
the pool. The forecast output by the learning algorithm is a real value between 0 and 1. We assume
that articles for which the target got a forecast below a certain threshold qT will not be inspected, and
thus we will never find out the true label of these items. This feedback model seems most natural for
this class of problems, but it differs from the traditional partial-monitoring settings, necessitating a
new algorithm and analysis.

We will now describe our solution to this learning problem. We use the metaphor of a quadratic
market scoring rule to construct the algorithm. λ and ε are algorithm parameters that determine
different components of loss. We track reputations Rj for each expert j corresponding to budgets
of traders in a market. Initial reputations are fixed at e−λ where the algorithm parameter λ can be
used to control the compromise between the damage caused by attackers and loss of information
from genuine experts. ε helps control the feedback mechanism in our model. Expert forecasts
arrive sequentially, and each expert provides an aggregation of all previous expert forecasts. When
an expert with reputation Rj < 1/ε makes a forecast, we move the (market) probability by an
amount proportional to Rj , ensuring that the budgets will always remain positive. Thus, this expert
is influence-limited by his reputation. For Rj ≥ 1/ε, the expert has maximum reputation, and hence
his aggregation is used undiluted. The term εRj is known as his influence limit; those experts with
εRj ≥ 1 are not influence limited i.e., their influence limit is 1. In order to control for selection
bias in the feedback that is received, we randomly raise the forecast for a small fraction ε of items
to the threshold qT . We assume that all items that have predictions above this threshold receive
feedback. If and when feedback is received, the reputations of the experts are updated according to
a modified market scoring rule. For each expert who made a prediction, his reputation is increased in
expectation by his influence limit times the incremental decrease in prediction loss due to him. Note
that we score experts on their aggregations rather than their individual predictions. The algorithm is
similar in structure to the algorithm by Resnick and Sami [9], but modified for the particular partial
monitoring feedback model we consider.

Using the fact that budget changes are tied to the actual increase or decrease in loss due to an expert,
we immediately get the following result:

Theorem 1 (Limited Expected Damage) If an attacker controls η experts, the total expected in-
crease in prediction loss is at most ηe−λ on any one item where the expectation is over the random
coin flips of the algorithm. This result is with respect to an adversarial model of experts whose
forecasts may be arbitrarily chosen.

We will now define the model in which we analyze how much information is lost from truly in-
formative experts. In this model, the world is assumed to be divided into states with each state
corresponding to a {0, 1} prediction. The states of the world occur with some fixed and known
prior probability as used by our algorithm. Each expert sees the world as partitioned, based on his
private information. Thus, he has a prediction probability based on the partition he identifies. For
an honest expert, this corresponds exactly to the true probability in that partition. This hypothesis is
at the core of our hybrid analysis. Note that the states of the world could be rich enough to include
item features, historical data, and any other information the expert may use to come up with his
prediction. The cumulative information up to an honest expert j corresponds to a prediction denoted
by qj which corresponds exactly to a sequential partition refinement based on all honest experts’
information up to expert j. This assumption precludes a situation in which no stochastic state space
describes the pattern of predictions by honest experts. One such instance can occur when honest
experts condition their information on predictions made by attacker identities, which may be chosen
according to a dynamic strategy rather than a stationary distribution.This admittedly strong assump-
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tion comes from our myopic definitions of damage and information loss: since these are defined
incrementally, loss due to imperfect aggregation of information (or the effects of attackers on honest
raters’ aggregate predictions) are not accounted for.

In the algorithm, the movement of predictions due to an expert’s advice (corresponding to a trade)
is proportional to his current reputation (or budget), when he is influence-(or budget-) limited. This
allows us to prove a result on the expected growth of reputation among honest experts, thereby
bounding the information lost from these experts:

Theorem 2 (Limited Expected Information Loss) Suppose expert j has made predictions for m
items. Let hj denote the expected reduction in prediction loss due to j’s prediction. Then, for all
sufficiently large m, expert j’s expected reputation (with MSE loss) is bounded below by

E(Rj) ≥ mhj − (2λ/ε) + (2/ε) log ε− (2/ε) log[mhjε− 2λ+ 2 log ε]

Here the expectation is with respect to a stationary distribution on the forecasts of honest experts.

From the definition of hj we see that ideally, we would like to be able to extract
∑n
j=1mhj infor-

mation in its entirety from the total number, n, of experts. However, even if every honest expert
performed a loss-less aggregation of the previous honest experts’ information, we would still lose
some of the information due to influence limiting. Theorem 2 bounds this loss. We can combine the
two bounds above in a metric of regret: we define the regret of an algorithm as the difference be-
tween the actual loss and the ideal loss achievable if the algorithm knew which subset of experts was
honest. Intuitively, this definition of regret captures the fact that, in hindsight, we would be able to
pinpoint the truly informative experts and not influence-limit them, while not suffering any damage
due to the other experts. We provide an upper bound on regret that is sublinear in m, the number of
items. Under this definition, the Partial Feedback Influence Limiter achieves an asymptotic regret
bound of O(n

√
m logm) for an appropriate choice of algorithm parameters ε and λ where regret is

measured with respect to the expected reduction in prediction loss due to n experts across m items.

3 Conclusions and Future Work

In this work, we presented a model and an algorithm that uses sequentially arriving expert advice
to make predictions on the class label of an item under partial monitoring conditions. Our model
for partial feedback assumes availability of feedback as a function of the predicted probability. The
main technique for algorithm construction involves a reputation system that implements a market
scoring rule. We treat every expert as responsible for aggregating the predictions received so far,
and thus score them based on this reported aggregation. It is with respect to these reports that we
measure the regret of the algorithm. We showed that for particular choices of algorithm parameters,
we are able to achieve O(n

√
m logm) regret.

We also proved separate information loss and damage bounds. Different choices of the algorithm
parameter allow us to shrink one bound at the expense of the other. This can be exploited with spe-
cific domain knowledge to thwart attacks from malicious entities. Although this sequential analysis
is useful, we do not claim it to be universally applicable: one negative consequence of using the
sequence information is that, as the first contributor of a piece of information is disproportionately
rewarded, it could create incentives to race if information is public and freely accessible.

One strong assumption in our model is on the aggregation process: our analysis treats each honest
expert’s prediction as if it ideally aggregated all prior information. It would be useful to relax this as-
sumption and take into account the actual process by which the experts aggregate prior information
(from attackers as well as honest raters) into their forecast. We are currently exploring a model in
which expert aggregates are derived by Maximum Likelihood Estimates (MLE) of sufficient statis-
tics of a probability distribution. In this case, preliminary results show that MLE is in fact equivalent
to a prediction market of traders with infinite budgets whose beliefs are reflected by the means of
the reported sufficient statistics. It would be interesting to ask whether in this case, in addition to a
hybrid bound, we can also recover a bound for the traditional definition of regret.
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