
Spring 2022 CS 65 Natural Language Processing Prof. Caplan

Project 6: Spam Filter

Due: Tuesday April. 19th, 10:59am (Eastern Time)

Deliverables

• writeup.tex and the corresponding compiled writeup.pdf with answers to all questions.

• A completed hamspam.py with all required functions filled in.

1 Naive Bayes

In this assignment, you implement a basic spam
filter using naive Bayes classification.

You may import definitions from any standard Python library, and are encouraged to do so in case
you find yourself reinventing the wheel. If you are unsure where to start, consider taking a look at
the data structures and functions defined in the collections, email, math, and os modules.

In this lab, you will implement a minimal system for spam filtering. You will begin by processing
the raw training data (in /data/train-ham/1 and /data/train-spam/). Next, you will proceed by
estimating the conditional probability distributions of the words in the vocabulary determined
by each document class. Lastly, you will use a Naive Bayes model to make predictions on the
publicly available test set located in /data/dev-ham/ and /data/dev-spam/.

All of the data you’ll need for this project is outlined below and already included in the asso-
ciated GitHub repo or in the source directory (/data/cs65-S22/hamspam/) on the department
machines:

Data

• A skeleton file is available in the hamspam.py Python file of the Lab6 GitHub repo.
• /data/cs65-S22/hamspam/ contains the the training and dev files categorized as either

ham or spam.

1Yes, it’s actually called ham!
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1.1 load_tokens()

Questions

1. Making use of the email module, write a function load_tokens(email_path) that
reads the email at the specified path, extracts the tokens from its message, and returns
them as a list. Give a couple sentence description of your approach in writeup.tex.

Specifically, you should use the email.message_from_file(file_obj) function to create a message
object from the contents of the file, and the email.iterators.body_line_iterator(message)
function to iterate over the lines in the message. Here, tokens are considered to be contiguous
substrings of non-whitespace characters.

>>> ham_dir = "/data/train -ham/"
>>> load_tokens(ham_dir+"ham1")[200:204]
[’of’, ’my’, ’outstanding ’, ’mail’]
>>> load_tokens(ham_dir+"ham2")[110:114]
[’for’, ’Preferences ’, ’-’, "didn’t"]

>>> spam_dir = "/data/train -spam/"
>>> load_tokens(spam_dir+"spam1")[1:5]
[’You’, ’are’, ’receiving ’, ’this’]
>>> load_tokens(spam_dir+"spam2")[:4]
[’<html >’, ’<body >’, ’<center >’, ’<h3 >’]

1.2 log_probs()

Questions

2. Write a function log_probs(email_paths, smoothing) that returns a dictionary from
the words contained in the given emails to their Laplace-smoothed log-probabilities.
Provide a one/two sentence description of your implementation in writeup.tex and
point me to the relevant line numbers in your code.

Specifically, if the set V denote the vocabulary of words in the emails, then the probabilities should
be computed by taking the logarithms of:

P(w) =
count(w) + α

∑
w′∈V

count(w′) + α|V|
(1)

where w is a word in the vocabulary V and α is the smoothing constant2. Be sure to add an
<UNK> token (whose count in the training data is 0) to the vocabulary to handle novel items in
the development and test data.

2it’s up to you to figure out a reasonable value!
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>>> paths = ["/data/train -ham/ham%d" % i
... for i in range(1, 11)]
>>> p = log_probs(paths , 1e-5)
>>> p["the"]
-3.6080194731874062
>>> p["line"]
-4.272995709320345

>>> paths = ["/data/train -spam/spam%d" %
i

... for i in range(1, 11)]
>>> p = log_probs(paths , 1e-5)
>>> p["Credit"]
-5.837004641921745
>>> p["<UNK >"]
-20.34566288044584

1.3 __init__

Questions

3. Write an initialization method __init__(self, spam_dir, ham_dir, smoothing) in
the SpamFilter class that:

(a) creates two log-probability dictionaries corresponding to the emails in the pro-
vided spam and ham directories, then stores them internally for future use.

(b) computes the class probabilities P(spam) and P(¬spam) based on the number of
files in the input directories

Describe your approach in one/two sentences in writeup.tex and provide a pointer
to the relevant line numbers for the corresponding implementation.

1.4 is_spam()

Questions

4. Write a method is_spam(self, email_path) in the SpamFilter class that returns a
Boolean value indicating whether the email at the given file path is predicted to be
spam. Again, provide a brief description in writeup.tex and a pointer to the relevant
line numbers.

Tokens which were not encountered during the training process should be converted into the
special word <UNK> in order to avoid zero probabilities.

Recall from class that for a given class c ∈ {spam,¬spam}:

P(c|document) ≈ P(c) ∏
w∈V

P(w|c)count(w) (2)

(In principle we should be dividing by the normalization constant P(document) but since it’s the
same for both classes it can safely be ignored). Here the count of a word is computed over the
input document to be classified (not the count in the training data).

Remember: these computations should be done in log-space to avoid underflow.
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>>> sf = SpamFilter("/data/train -spam",
... "/data/train/ham", 1e-5)
>>> sf.is_spam("/data/train -spam/spam1")
True
>>> sf.is_spam("/data/train -spam/spam2")
True

>>> sf = SpamFilter("/data/train -spam",
... "/data/train/ham", 1e-5)
>>> sf.is_spam("/data/train -ham/ham1")
False
>>> sf.is_spam("/data/train -ham/ham2")
False

1.5 most_indicative{spam,ham}()

Suppose we define the spam indication value of a word w to be the quantity:

log(
P(w|spam)

P(w)
) (3)

Similarly, we define the ham indication value of a word w to be:

log(
P(w|¬spam)

P(w)
) (4)

Questions

5. Write a pair of methods most_indicative_spam(self, n) and
most_indicative_ham(self, n) in the SpamFilter class which return the n
most indicative words for each category, sorted in descending order based on their
indication values. You should restrict the set of words considered for each method
to those which appear in both at least one spam email and at least one ham email.
As with the other questions, provide a very brief description in writeup.tex and a
pointer to the relevant line numbers.

Hint: The probabilities computed within the __init__(self, spam_dir, ham_dir, smoothing) method
are sufficient to calculate these quantities.

>>> sf = SpamFilter("/data/train -spam",
... "/data/train -ham", 1e-5)
>>> sf.most_indicative_spam (5)
[’<a’, ’<input ’, ’<html >’, ’<meta’,
’</head >’]

>>> sf = SpamFilter("/data/train -spam",
... "/data/train -ham", 1e-5)
>>> sf.most_indicative_ham (5)
[’Aug’, ’ilug@linux.ie’, ’install ’,
’spam.’, ’Group:’]
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2 Feedback

Please provide answers to these in writeup.tex just like the rest of the questions. There are no
right or wrong answers here of course :)

Questions

6. Approximately how many hours did you spend on this assignment?

7. Which aspects of this assignment did you find most challenging? Were there any
significant stumbling blocks?

8. Which aspects of this assignment did you like? Is there anything you would have
changed?
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3 Optional Extra credit: Extending the Spam Filter with Feature Engi-
neering

Let me know if you complete this extra credit
assignment by adding an additional section at
the end of the writeup file with the relevant
answers.

So far you have already implemented a baseline system for spam detection using simple single-
token features in a Naive Bayes framework. Your task for this extra credit is to modify and extend
that system in order to improve its performance. Since the baseline classifier achieved accuracies
in excess of 97% on the development set, here we’ll aim to achieve an accuracy of 99% or higher
on the dev set.

The only interface your code will be required to support is as follows, provided in the skeleton
file:

1. I should be able to initialize your spam filter using the statement SpamFilter(spam_dir,
ham_dir), where spam_dir and ham_dir are strings pointing to the directories containing
the training spam and non-spam emails. If your classifier takes any additional parameters,
such as smoothing constants, they should be hard-coded in.

2. If spam_filter is an instance of your original SpamFilter class, I should be able to classify
an email using the statement spam_filter.is_spam(email_path), where a return value of
True indicates that the email is spam, and a return value of False indicates that the email is
not spam.

You are encouraged to borrow liberally from the code you wrote for the main assignment, though
some non-trivial changes will have to be made. In particular, while I required that you maintain
a Naive Bayes framework, you will want to make use of features beyond single tokens. To get
you started, a few ideas are listed below, but you will also want to consider features of your own
creation in order to maximize performance and robustness.

Additional features might include:

• Bigram features formed from pairs of consecutive words.

• Capitalization features, such as all-lowercase, all-uppercase, first-letter-capitalized, etc.

• Punctuation features, indicating whether a token consists of only punctuation.

• Number features, indicating whether a token is a number.
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• Features related to the length of a token.

• Features derived from the email headers.

Moreover, you might also consider using tokenization methods that are more sophisticated
than simply splitting on whitespace, or introducing multiple smoothing constants for different
components of your system. Finally, you may want to play around with the value of the smoothing
constant, to find a value that better optimizes spam detection.

To help ensure that you have a comprehensive understanding of the techniques you are applying,
you will need to limit your use of external code to built-in Python modules (just like with the
main assignment). This excludes, for example, the NLTK platform. Before you begin writing
your system extensions, think carefully about how this should be integrated into the Naive Bayes
model, and what additional infrastructure they may require.

In order to get credit for this Bonus Assignment, you will need to add an additional section to
your writeup report. A bonus section with appropriate detail will be approximately one page in
length and include at least the following information:

• The general design of your system.

• The features you experimented with.

• How you handled pre-processing and tokenization.

• The experiments you performed and the results you obtained, including charts or plots as
needed.

• An analysis of the specific errors made by your system on the development data.

Have fun!
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