
Spring 2022 CS 65 Natural Language Processing Prof. Caplan

Project 5: Part of Speech Tagging

Due: Tuesday Apr. 12th, 10:59am (Eastern Time)

Deliverables

• writeup.tex and the corresponding compiled writeup.pdf with answers to all questions.

• A completed hmm.py with all required functions filled in.

1 HMM Exercises

The following tagging model has the two words ‘boxes’ and ‘books’, and the two POS tags ‘noun’
and ‘verb’ plus the end-of-sentence delimiters . and /.

p(noun|.) = 1/2 p(verb|.) = 1/2 p(boxes|noun) = 1/2
p(noun|noun) = 1/2 p(verb|noun) = 1/6 p(boxes|verb) = 3/4
p(noun|verb) = 1/2 p(verb|verb) = 1/6 p(books|noun) = 1/2
p(/|noun) = 1/3 p(/|verb) = 1/3 p(books|verb) = 1/4

Questions

1. What is the total probability of the output sequence ‘boxes books’? i.e. what probability
does our HMM assign to the string given any possible tag sequence. Show your work.

2. What is the probability of the most likely tag sequence for ‘boxes books’? Show your
work.

If you’re unsure how to approach the total probability take a look at section A.3 in the text-
book.

Questions

3. Now suppose for some HMM (not the one described above) that when applied to the
sequence x, P(x|y) = 0 for all y =< ..., yi = a, ... >. That is, any sequence of states
that goes through state a at position i assigns zero probability to the string x. Does it
follow that τa,xi = 0? Why or why not?
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2 HMM Programming

In this assignment, you will gain experience
working with hidden Markov models for
part-of-speech tagging.

I have provided a skeleton file (hmm.py) containing empty definitions for each programming
question. Do not modify the names or signatures of those existing functions, but feel free to
introduce additional variables and/or functions as needed.

You may import definitions from any standard Python library, and are encouraged to do so in
case you find yourself reinventing the wheel. However for this assignment, your use of external
code should be limited to built-in Python modules, which excludes packages such as NumPy and
NLTK.

All of the data you’ll need for this project is outlined below and already included in the associated
GitHub repo or in the source directory (/data/cs65-S22/pos/) on the department machines:

Data

• Starter code is available in the hmm.py Python file of the Lab5 GitHub repo.
• brown_corpus.txt is a txt file with a POS-tagged version of the Brown corpus.

In this section, you will develop a hidden Markov model for part-of-speech (POS) tagging, using
the Brown corpus as training data. The tag set we will use is the universal POS tag set, which
is composed of the twelve POS tags Noun (noun), Verb (verb), Adj (adjective), Adv (adverb), Pron
(pronoun), Det (determiner or article), Adp (preposition or postposition), Num (numeral), Conj
(conjunction), Prt (particle), ‘.’ (punctuation mark), and X (other).

I encourage you to develop some unit tests to verify that your implementations of the required
methods are functioning correctly, but you don’t need to directly report the output of any particular
test in the writeup.

2.1 load_corpus()

Questions

4. Write a function load_corpus(path) that loads the corpus at the given path and
returns it as a list of POS-tagged sentences. Describe the logic of your implementation
(rough pseudo-code or prose) in the writeup.
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Each line in the file should be treated as a separate sentence, where sentences consist of sequences
of whitespace-separated strings of the form “token=POS”. Your function should return a list of
lists, with individual entries being 2-tuples of the form (token, POS).

>>> c = load_corpus("brown_corpus.txt")
>>> c[1402]
[(’It’, ’PRON’), (’made’, ’VERB’),
(’him’, ’PRON’), (’human’, ’NOUN’),
(’.’, ’.’)]

>>> c = load_corpus("brown_corpus.txt")
>>> c[1799]
[(’The’, ’DET’), (’prospects ’, ’NOUN’),
(’look’, ’VERB’), (’great’, ’ADJ’),
(’.’, ’.’)]

2.2 Tagger initialization

Questions

5. In the Tagger class, write an initialization method __init__(self, sentences) which
takes a list of sentences in the form produced by load_corpus(path) as input and
initializes the internal variables needed for the POS tagger. Describe the logic of your
approach in the writeup. In particular, if {s1, s2, ..., sn} denotes the set of states (tags)
and {w1, w2, ..., wm} denotes the set of words found in the input sentences, you should
at minimum compute:
• The initial tag probabilities π(si) for 1 ≤ i ≤ n, where π(s1) is the probability

that a sentence begins with state s1. (On the lecture slides I had assumed every
sentence starts with ..)
• The transition probabilities a(si → sj) for 1 ≤ i ≤ n, where a(si → sj) is the

probability that state sj occurs after state si. (This is the same as the state-to-state
σi,j estimates on the lecture slides.)

• The emission probabilities b(si → tj) for 1 ≤ i ≤ n and 1 ≤ j ≤ m, where
b(si → tj) is the probability that token tj is generated given state si. (This is the
same as the state-to-tag τ estimates on the lecture slides.)

It is imperative that you use Laplace (add-α) smoothing where appropriate to ensure that your
system can handle novel inputs, but the exact manner in which this is done is left up to you as a
design decision. Your initialization method should take no more than a few seconds to complete
when given the full Brown corpus as input.

2.3 most_probable_tags()

Questions

6. In the Tagger class, write a method most_probable_tags(self, tokens) which re-
turns the list of the most probable tag states corresponding to each input token.
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Note that this is the “stupid baseline” that I noted in lecture. In particular, the most probable tag y
for a token tj is defined to be the tag with largest value τy,tj (using the formalism from the slides).
This could also be written as arg maxy b(y→ tj) following the Jurafsky & Martin formalism.

>>> c = load_corpus("brown_corpus.txt")
>>> t = Tagger(c)
>>> t.most_probable_tags(
... ["The", "man", "walks", "."])
[’DET’, ’NOUN’, ’VERB’, ’.’]

>>> c = load_corpus("brown_corpus.txt")
>>> t = Tagger(c)
>>> t.most_probable_tags(
... ["The", "blue", "bird", "sings"])
[’DET’, ’ADJ’, ’NOUN’, ’VERB’]

2.4 Viterbi

Questions

7. In the Tagger class, write a method viterbi_tags(self, tokens) which returns the
most probable tag sequence as found by Viterbi decoding. Describe your implementa-
tion in the writeup.

Recall from lecture that Viterbi decoding is a modification of the Forward algorithm, adapted to
find the path of highest probability through the trellis graph containing all possible tag sequences.
You can also find a description of the Viterbi algorithm in the textbook section 8.4.5. Computation
will likely proceed in two stages: you will first compute the probability of the most likely tag
sequence, and will then reconstruct the sequence which achieves that probability from end to
beginning by tracing backpointers.

>>> c = load_corpus("brown_corpus.txt")
>>> t = Tagger(c)
>>> s = "I am waiting to reply".split()
>>> t.most_probable_tags(s)
[’PRON’, ’VERB’, ’VERB’, ’PRT’, ’NOUN’]
>>> t.viterbi_tags(s)
[’PRON’, ’VERB’, ’VERB’, ’PRT’, ’VERB’]

>>> c = load_corpus("brown_corpus.txt")
>>> t = Tagger(c)
>>> s = "I saw the play".split ()
>>> t.most_probable_tags(s)
[’PRON’, ’VERB’, ’DET’, ’VERB’]
>>> t.viterbi_tags(s)
[’PRON’, ’VERB’, ’DET’, ’NOUN’]

3 Feedback

Please provide answers to these in Writeup.tex just like the rest of the questions. There are no
right or wrong answers here of course :)
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Questions

8. Approximately how many hours did you spend on this assignment?

9. Which aspects of this assignment did you find most challenging? Were there any
significant stumbling blocks?

10. Which aspects of this assignment did you like? Is there anything you would have
changed?

4 Optional Extra credit

Describe any extra credit questions you chose to implement / answer in an additional section at
the end of the writeup file. Write an evaluation script that executes your completed hmm.py and
reports the accuracy for the following:

• How well does the model perform if you ‘cheat’ by training and then testing on the whole
brown_corpus.txt file?

• Now implement a k-fold cross validation scheme (k = 10) and report the mean accuracy.

• Finally explore the effect of limiting the training set size. Pick a random 10% of the
total brown_corpus to serve as the test data. Then generate a plot showing the outcome
accuracy that results from training are various proportions of the remaining training data
(the maximum possible training data is the set theoretic difference between brown_corpus
and your designated test subset.
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