
Spring 2022 CS 65 Natural Language Processing Prof. Caplan

Project 4: Vector Space Models

Due: Tuesday Mar. 29th, 11:00am (Eastern Time)

Deliverables

• A completed vectors.py file. This includes filling in 8 functions:

– Four for creating matrices: create_term_document_matrix, create_term_context_matrix,
create_PPMI_matrix, and compute_tf_idf_matrix

– Two for computing similarities: compute_cosine_similarity and
compute_jaccard_similarity

– Two for ranking outputs: rank_plays and rank_words

• writeup.tex and a corresponding writeup.pdf with answers to the 16 Lab questions.

Be sure that your final submission code runs on the department machines and when executed
from an arbitrary directly (not just the one that contains your code). Include your names at the
top of your writeup file.

Introduction

In this assignment you will implement many of
the things you learned in Chapter 6 of the
textbook. If you haven’t read it yet, now would
be a good time to do that.

I’ll wait.

Done? Great, now we can begin!

I have provided a corpus of Shakespeare plays available at (/data/cs65-S22/vectors), which you
will use to create a term-document matrix and a term-context matrix. You’ll implement a selection
of the weighting methods and similarity metrics defined in the textbook. Ultimately, your goal
is to use the resulting vectors to measure how similar Shakespeare plays are to each other, and
to find words that are used in a similar fashion. All (or almost all) of the code you write will be
direct implementations of concepts and equations described in Chapter 6, sections 6.3-6.7.

Page 1

https://drive.google.com/file/d/1hCpX_DB90MBYQ0CQy9TQ1og_x4lqsZlR/view?usp=sharing
https://drive.google.com/file/d/1hCpX_DB90MBYQ0CQy9TQ1og_x4lqsZlR/view?usp=sharing
https://drive.google.com/file/d/1hCpX_DB90MBYQ0CQy9TQ1og_x4lqsZlR/view?usp=sharing

Spring 2022 CS 65 Natural Language Processing Prof. Caplan

All of the data you’ll need for this project is outlined below and already included in the as-
sociated GitHub repo or in the source directory (/data/cs65-S22/vectors) on the department
machines:

Data

• Starter code is available in the vectors.py Python file of the Lab4 GitHub repo.
• will_play_text.csv is a csv with the complete works of Shakespeare.
• vocab.txt is a text file with the vocabulary we’ll be using for the project.
• play_names.txt is a text file with the list of all the plays in the Shakespeare dataset.

1 Term document matrix

You will write code to compile a term-document matrix for Shakespeare’s plays, following the
description in the textbook.

In a term-document matrix, each row represents a word in the vocabulary and each
column represents a document from some collection of documents. The table below
shows a small sample from a term-document matrix showing the occurrence of four
words in four plays by Shakespeare. Each cell in this matrix represents the number
of times a particular word (defined by the row) occurs in a particular document
(defined by the column). Thus fool appeared 58 times in Twelfth Night.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

The dimensions of your term-document matrix will be the number of documents D (in this case,
the number of Shakespeare’s plays that I provided in the corpus by the number of unique word
types |V| in that collection. The columns represent the documents, and the rows represent the
words, and each cell represents the frequency of that word in that document.

Questions

1. Write the create_term_document_matrix function and describe your approach in the
writeup.

This lets us answer questions like how many words did Shakespeare use?1

1The table will also tell you how many words Shakespeare used only once. Did you know that there’s a technical
term for that? In corpus linguistics they are called hapax legomena, but I prefer the term singleton, because there’s no

Page 2

https://github.swarthmore.edu/CS65-S22

Spring 2022 CS 65 Natural Language Processing Prof. Caplan

1.1 Comparing plays

The term-document matrix will also let us do cool things like figure out which plays are most
similar to each other, by comparing the column vectors. We could even look for outliers to see
if some plays are so dissimilar from the rest of the canon that maybe they weren’t authored by
Shakespeare after all.

Let’s begin by considering the column representing each play. Each column is a |V|-dimensional
vector. By far the most common similarity metric is the cosine of the angle between the vectors.
The cosine similarity metric is defined in Section 6.4 of the textbook:

The cosine — like most measures for vector similarity used in NLP — is based on
the dot product operator from linear algebra, also called the inner product:

dot product(~v, ~w) = ~v · ~w =
N

∑
i=1

viwi = v1w1 + v2w2 + ... + vNwN

The dot product acts as a similarity metric because it will tend to be high just when
the two vectors have large values in the same dimensions. Alternatively, vectors that
have zeros in different dimensions — orthogonal vectors—will have a dot product
of 0, representing their strong dissimilarity.

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot
product thus will be higher for frequent words. But this is a problem; we’d like a
similarity metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the dot
product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors~a and~b:

~a ·~b = |~a||~b| cos θ

~a ·~b
|~a||~b|

= cos θ

The cosine similarity metric between two vectors ~v and ~w thus can be computed as:

cosine(~v, ~w) =
~v · ~w
|~v||~w| =

N

∑
i=1

viwi√√√√ N

∑
i=1

v2
i

√√√√ N

∑
i=1

w2
i

(1)

need to make this sound more technical than it really is.

Page 3

https://en.wikipedia.org/wiki/Shakespeare_authorship_question
https://en.wikipedia.org/wiki/Shakespeare_authorship_question

Spring 2022 CS 65 Natural Language Processing Prof. Caplan

The cosine value ranges from 1 for vectors pointing in the same direction, through 0
for orthogonal vectors, to -1 for vectors pointing in opposite directions. But since
raw frequency values are non-negative, the cosine for these vectors ranges from 0–1.

Questions

2. Write the compute_cosine_similarity function and describe your approach in the
writeup.

3. For each play in the corpus, score how similar each other play is to it.
(a) Which plays are the closest to each other in vector space (ignoring self similarity)?
(b) Which plays are the most distant from each other?

You might be wondering: “But how do I know if my rankings are good or not?” If you’ve read a
subset of the plays, you can simply use your intuition. Alternatively, you might take a look at
this grouping of Shakespeare’s plays into Tragedies, Comedies and Histories. Do plays that are
thematically similar to the one that you’re ranking appear among its most similar plays, according
to cosine similarity? Another clue that you’re doing the right thing is if a play has a cosine of 1
with itself. If that’s not the case, then you’ve messed something up. Another good hint, is that
there are a ton of plays about Henry. They’ll probably be similar to each other.

2 Measuring word similarity

Next, we’re going to see how we can represent words as vectors in vector space. This will give us
a way of representing some aspects of the meaning of words, by measuring the similarity of their
vectors.

Questions

4. In our term-document matrix, the rows are word vectors. Instead of a |V|-dimensional
vector, these row vectors only have D dimensions. Do you think that’s enough to
represent the meaning of words? Try it out. In the same way that you computed the
similarity of the plays, you can compute the similarity of the words in the matrix.

(a) Pick some words and compute 10 words with the highest cosine similarity
between their row vector representations.

(b) Are those 10 words good synonyms?

2.1 Term-context matrix

Instead of using a term-document matrix, a more common way of computing word similarity
is by constructing a term-context matrix (also called a word-word matrix), where columns are
labeled by words rather than documents. The dimensionality of this kind of a matrix is |V|-by-|V|.

Page 4

https://en.wikipedia.org/wiki/Shakespeare%27s_plays#Canonical_plays

Spring 2022 CS 65 Natural Language Processing Prof. Caplan

Each cell represents how often the word in the row (the target word) co-occurs with the word in
the column (the context) in a training corpus.

For this part of the assignment, you’ll write the create_term_context_matrix function. This
function specifies the size word window around the target word that you will use to gather its
contexts. For instance, if you set that variable to be 4, then you will use 4 words to the left of the
target word, and 4 words to its right for the context. In this case, the cell represents the number
of times in Shakespeare’s plays the column word occurs in +/-4 word window around the row
word.

Questions

5. Implement the create_term_context_matrix function and describe your approach
in the writeup.

6. Re-compute the most similar words for your test words that you chose above in
Question 4a but now using the row vectors in your term-context matrix instead of
your term-document matrix.

(a) What is the dimensionality of your word vectors now?
(b) Do the most similar words make more sense than before (i.e. does this approach

perform better)?

3 Weighting terms

Your term-context matrix contains the raw frequency of the co-occurrence of two words in each
cell. Raw frequency turns out not to be the best way of measuring the association between
words2. There are several methods for weighting words that get better results. You’ll implement
two different weighting schemes: Positive pointwise mutual information (PPMI) — see Section 6.7
of the textbook — and Term frequency inverse document frequency (tf-idf) — see Section 6.5 of the
textbook.

3.1 tf-idf

For a word t in a document d, then term-frequencies is just the log-transformed count of its
occurrences (plus a pseudo-count parameter, here just 1, in order to prevent us trying to get the
log of zero).

tft, d = log(count(t, d) + 1) (2)

The inverse document frequency (idf) is defined using the fraction N
d ft

, where N is the total
number of documents in the collection, and d ft is the number of documents in which the term t

2To be less generous, it’s a terrible way of doing so.

Page 5

Spring 2022 CS 65 Natural Language Processing Prof. Caplan

occurs.

idft = log
(

N
d f t

)
(3)

The tf-idf is simply a weighted value that combines our tf and idf terms.

wt, d = t f t, d × id f t (4)

3.2 PPMI

Pointwise mutual information (PMI) is a measure of how often two events (in our case a word
and a context) occur P(w, c), compared with what we would expect if they were independent
P(w)P(c). While PMI values can range from negative to positive infinity, for our purposes we
want to ignore the negative values (see Section 6.7 in the textbook). Thus in Positive PMI (PPMI)
we simply replace any negative PMI value with zero.

Formally, if we have a co-occurrence matrix F with W rows (words) and C columns (contexts),
where fij gives the number of times word wi occurs in context cj. Then the frequency values fij

are converted to PPMIij values as follows:

pij =
fij

∑W
i=1 ∑C

j=1 fij
(5)

pi∗ =
∑C

j=1 fij

∑W
i=1 ∑C

j=1 fij
(6)

p∗j =
∑W

i=1 fij

∑W
i=1 ∑C

j=1 fij
(7)

PPMIij = arg max(log2
pij

pi∗p∗j
, 0) (8)

Questions

7. Implement the create_PPMI_matrix function and describe your approach in the
writeup.

8. Implement the compute_tf_idf_matrix function and describe your approach in the
writeup.

Page 6

Spring 2022 CS 65 Natural Language Processing Prof. Caplan

A word of warning about runtimes here: calculating PPMI for your whole |V|-by-|V| matrix
might be slow. My implementation for PPMI takes about 10 minutes to compute all values. But
you can assume that I always write perfectly optimized code on my first try. You may improve
performance by using matrix operations in NumPy.3

4 Other similarity functions

There are several ways of computing the similarity between two vectors. In addition to writing
a function to compute cosine similarity, you should also write functions to compute Jaccard
similarity. The Jaccard similarity between two vectors ~v and ~w can be computed as:

Jaccard(~v, ~w) =
∑N

i=1 min(vi, wi)

∑N
i=1 max(vi, wi)

(9)

Questions

9. Implement the compute_jaccard_similarity function.

5 Ranking

Questions

10. Implement the rank_plays function.
11. Experiment: pick a couple plays to ranks the others with respect to it. Try running

different vector space models and report the results. Each possible model uses either
(a) cosine or Jaccard similarity, (b) PPMI or tf-idf, and (c) chose two different window
sizes so you should run a total of eight different models all together. Provide a couple
sentences intuition about your findings.

12. Implement the rank_words function.
13. Repeat the above experiment but with words rather than plays. Again you should

be running and reporting the outputs of eight different vector space models and
providing some brief intuitions about the comparative outcomes.

3This is why a bunch of engineering tools use MATLAB by the way.

Page 7

https://en.wikipedia.org/wiki/Jaccard_index#Weighted_Jaccard_similarity_and_distance
https://en.wikipedia.org/wiki/Jaccard_index#Weighted_Jaccard_similarity_and_distance

Spring 2022 CS 65 Natural Language Processing Prof. Caplan

6 Feedback

Please provide answers to these in the writeup just like the rest of the questions. There are no
right or wrong answers here of course :)

Questions

14. Approximately how long did you spend on this assignment?

15. Which aspects of this assignment did you find most challenging? Were there any
significant stumbling blocks?

16. Which aspects of this assignment did you like? Is there anything you would have
changed?

7 Extra credit: Comparing vector spaces

Quantifying the goodness of one vector space representation over another can be very difficult
to do. It might ultimately require testing how the different vector representations change the
performance when used in a downstream task like question answering (this is a form of extrinsic
evaluation). A common way of quantifying the goodness of word vectors is to use them to compare
the similarity of words with human similarity judgments, and then calculate the correlation of the
two rankings.

If you would like extra credit on this assignment, you can quantify the goodness of each of
the eight different vector space models that you produced. You can calculate their scores on
the SimLex999 data set, and compute their correlation with human judgments using Kendall’s
Tau.

Add a section to your writeup explaining what experiments you ran, and which setting had the
highest correlation with human judgments.

Page 8

https://fh295.github.io//simlex.html
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient

Spring 2022 CS 65 Natural Language Processing Prof. Caplan

FAQs

• When finding the top 10 similar items for a given target element, should I count the target
element?

No, do not count the target element.

• How can I improve the performance and efficiency of my code?

Try to use vectorized code wherever possible instead of using loops. You can refer to this resource
on vectorized code.

• How many documents should I consider for reporting similarity scores in the writeup?

You need not report similarity scores for every pair of documents. A subset of similarity scores
should be sufficient. For instance, you can include the top 10 of one or two documents.

• How can I compute the similarity scores on the SimLex999 data set, and compute their
correlation with human judgments using Kendall’s Tau?

You can use simlex data to get a ranking list with your model and calculate the number of
concordant and discordant pairs.

Page 9

https://drive.google.com/file/d/1KAEYQZDKpSx6uR3w5nZHTa3anVHhJogA/view?usp=sharing

	Term document matrix
	Comparing plays

	Measuring word similarity
	Term-context matrix

	Weighting terms
	tf-idf
	PPMI

	Other similarity functions
	Ranking
	Feedback
	Extra credit: Comparing vector spaces

