
Spring 2022 CS 65 Natural Language Processing Prof. Caplan

Project 2: Language Modeling

Due: Tuesday Feb. 15th, 11:00am (Eastern Time)

Deliverables

• Two python files: unigram.py and bigram.py (plus a third file, crypto.py, if you chose to
complete the bonus section)

• writeup.tex and a corresponding writeup.pdf with answers to the Lab questions and
which briefly lists the relevant output generated by the program.

A note on external libraries

In general you are free to use external python libraries. For instance, you will probably find
NumPy1 to be helpful for dealing with the math associated with probabilities. However you
cannot use NLTK for this assignment, since the whole point is to implement these models yourself
in order to understand how they work.

1 Unigram Models

In this assignment you’ll write a program that
can, at least to some degree, distinguish between
real English and the output of a (very bad)
French-to-English machine translation system.

The basic idea is that you create a language model (LM) for English, and then run it on both the
good and bad versions of sentences. The one that is assigned the higher probability is declared to
be the real sentence.

1After 10 years I still think it should rhyme with “lumpy” rather than “plum pie.”

Page 1

https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/reference/generated/numpy.log.html
https://www.nltk.org/


Spring 2022 CS 65 Natural Language Processing Prof. Caplan

All the data you’ll need for this is in /data/cs65-S22/langmod/hansard/. This data comes from
the Canadian Hansard’s, which are parliamentary proceedings and are legally mandated to
appear in both English and French. Here we just use the English.

These files have one sentence per line and have already been tokenized for you. As you saw
during the first Lab, there are always design decisions and tradeoffs to be made when doing
text normalization (including tokenization), but here you can treat the provided data as Gold
standard and not worry about it. If you do find any potential errors or interesting tid-bits about
the tokenization, feel free to post about it under the “Social/Miscellaneous” tab on — there might
be an interesting reason why it’s been done that way, or there might not!

The main training data is english-senate-0.txt. You’ll also need held-out development data to
set the smoothing parameters, that’s in english-senate-1.txt. You will need to implement a
search algorithm to optimize α and β. I recommend Golden-section search as it’s quite elegant,
although you are not required to use that particular algorithm, e.g. you may find Backtracking
line search to be simpler. Any implementation that properly finds the optimum smoothing
parameters within a reasonable time is fair-game. A note about online resources here: since the
Wikipedia page I link to above includes code, and this is a standard algorithm not specific to
NLP, it is considered acceptable here to adapt the code for that function for your needs on the
Lab. As always though, be sure to attribute any sources you find in a comment in the submitted
code.

Your language model model will assign a probability to each sentence which you will evaluate
over the test data in english-senate-2.txt.

Lastly, you will use your trained language model to differentiate good from bad English. In
good-bad-split.txt we have pairs of sentences, first the good one, then the bad. Each sentence
is one its own line, and each pair is separated from the next with a blank line.

1.1 Deriving the unigram model for document probabilities

You may have noticed that in class I defined a unigram language model as a distribution over
documents as follows in Eq.1:

P(W) = P(N)
N

∏
i=1

P(Wi) (1)

where P(N) is a distribution over document lengths and P(Wi) is the probability of word Wi.
You can read this formula as an instruction for generating a document W: first pick its length
N from the distribution P(N) and then independently generate each of its words Wi from the
distribution P(Wi). Two important factors simplify this equation when we instead want to model
the probability of an existing document with a unigram model rather than generate it.
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1. A unigram model assumes that the probability of a word P(Wi) does not depend on its
position i in the document, i.e., P(Wi = w) = P(Wj = w) for all i, j in 1,...,N. This lets us
model only a single distribution over word generation. This is: P(Wi = w) = θw

2. For our purposes we can assume that P(N) is the same for all languages, so we can safely
ignore it. (A note for the reader: Why can we ignore it if it’s the same for all languages?)

This leaves us with the likelihood function for our unigram model in Eq. 2, where nw(d) is the
number of times word w appears in d.

Ld(θ) = ∏
w∈W

θ
nw(d)
w (2)

We are using add-α smoothing for our unigram model. This means that we’re adding a ‘pseudo-
count’ of α to each word’s empirical frequency from our training corpus. We then just need to
readjust the denominator so that our estimates of θ still sum to 1. Thus our smoothed maximum
likelihood estimator for unigram probabilities is given in Eq. 3.

θ̃w =
nw(d) + α

n◦(d) + α|W| (3)

The ◦ notation means ‘any word’, so thus n◦(d) is just the total token count of d. And |W| is the
cardinality of our vocabulary, which is just the number of types appears in d.

The estimate of α that maximizes the likelihood of the held-out development data is defined
by the Argmax in Eq. 4. Where the likelihood of the some corpus ‘x’ given a particular α

is defined in Eq. 5. This simply says that the likelihood of the data is the product of the
probability of each word token in that data. For the development set we take ‘x’ to be the held-out
corpus ‘h’ (english-senate-1.txt) whereas for the test data we take ‘x’ to be the test corpus ‘t’
(english-senate-2.txt)

α̂ = argmaxαLh(α) (4)

Lx(α) = ∏
w∈W

θ
nw(x)
w (5)
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1.2 Separating the good from the bad: Unigrams

Questions

1. Create a smoothed unigram language model with the smoothing parameter α = 1.
Compute the log probability of your language-model test data english-senate-2.txt.

2. Now set the unigram smoothing parameter α to optimize the likelihood of the
held-out data. What value of α do you find? Repeat the evaluation described in
the previous step using your new unigram model. (The log probability of the
language-specific test data should increase.)

3. Try accurately differentiating the good and bad sentences in good-bad-split.txt
using your language model from Q.2 and report your accuracy. This should work
only moderately well (ballpark of about 70%); pick out a couple pairs of sentences
that get categorized incorrectly by the model and provide your intuition as to why
this is happening.

1.3 Implementation notes

You do not need particularly high precision when optimizing for α, a single decimal place will
suffice.

Several of your CS65 predecessors have asked me what to set as your upper and lower bounds
when optimizing α. The lower bound for any smoothing parameter is of course that it needs to be
positive. As for what a good upper-bound might be, I will leave to you to figure out yourself: in
real-world NLP work parameter selection is often a big aspect of performance! A tell-tale sign
that your bounds are too small would be if the ‘best’ value found is exactly your upper or lower
bound.

Lastly, a note about run-time. You are not being graded on quickly your program runs2. However,
a reasonable implementation of the unigram model here should complete this whole section on a
modern machine in less than 10 seconds; if your program is taking substantially longer then that,
you likely have a bug somewhere or poor choice of data structures.

2within reason that is. If your program runs hundreds of times slower than it should then I will be forced to deduct
points
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2 Bigrams

Now you’ll solve exactly the same problem as
from Section 1 but with a much more effective
bigram language model.

2.1 Deriving the bigram model for document probabilities

When working with any N-gram model larger than unigrams we need to apply padding tokens to
each sentence to indicate where it starts and stops. We can write this out as *START* and *STOP*
but any unique symbols you like will do fine. Treat the padding tokens just like any other normal
tokens even though they never appear in the sequences we can generate (or you can think that
they always appear).

A bigram language model is defined in Eq. 6

P(W) =
n+1

∏
i=1

P(Wi|Wi−1) (6)

where P(Wi = w′|Wi−1 = w) = Θw,w′ for all indices i in 1,2,...,n + 1 (and n is the number of words
in the sentence).

Θ is a matrix of values specifying the conditional probability of w′ given that it is immediately
preceded by w. Just as in the unigram case, we assume that these conditional probabilities are
time-invariant, i.e., they do not depend on i directly. Because probabilities must sum to one, it is
necessary that ∑w′∈W Θw,w′ = 1 for all w ∈W.

At its core we want our estimates of Θ to reflect the relative frequency of a word conditioned on
the preceding context as in Eq. 7.

Θ̂w,w′ =
nw,w′(d)
nw,◦(d)

(7)

where nw,w′(d) is the number of times that the bigram w, w′ appears anywhere in our training
corpus d (including the padding tokens), and nw,◦(d) is the number of bigram tokens that begin
with w. But note that this is equivalent to simply the number of times w appears in d.

Like in the unigram case though, we need to apply some smoothing to the Θ’s in order to handle
bigrams that we never saw in our training corpus. We again accomplish this by adding a ‘pseudo-
count’ to each bigram’s empirical frequency, but here indicated with the bigram-smoothing
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parameter β. We keep this simple by setting the β’s to be the same regardless of the bigram under
consideration (i.e. we set βw,w′ = βθ̃w′). This gives us a single adjustable constant β with can be
applied to Eq. 7 to produce our smoothed maximum likelihood estimator for bigram probabilities
in Eq. 8.

Θ̃w,w′ =
nw,w′(d) + βθ̃w′

nw,◦(d) + β
(8)

where θw′ is computed exactly the same as it was for our unigram language model.

The likelihood of our held-out data under the bigram model is given in Eq. 9

Lh(β) = ∏
w,w′∈W

Θ̃
nw,w′ (h)
w,w′ (9)

where Θ̃w,w′ is defined in Eq. 8 and the product we multiply together need only range over the
bigrams (w, w′) that actually occur in h. (Note: make sure you understand why this is!) Just like
in the unigram case, a simple line search can be used to find the value β̂ of β that optimizes the
likelihood of our held-out data.

2.2 Separating the good from the bad: Bigrams

Questions

4. Write a smoothed bigram model, setting β = 1. Keep the same α value that
you found for your Unigram LM. Compute the log probability of your test data
english-senate-2.txt according to the bigram LM.

5. Now optimize the bigram smoothing parameter β over the development data. What
value of β maximizes the likelihood of the held-out data?

6. Lastly, use the smoothed bigram model to determine good/bad sentences and report
your accuracy. You’ll find this works far better than the unigram model (ballpark of
about 90%). Nonetheless pick out a couple pairs of sentences that the model still gets
wrong and provide your intuition as to why.

A few implementation notes. Remember: you need to pad every sentence with START and STOP
tokens, whether reading in training data or estimating the likelihood of our held-out and test
data.

The precision when optimizing β does not need to be any greater than when optimizing α in your
unigram model; a single decimal place is sufficient.
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To keep things simple for optimization you can just plug in the best value of α that you computed
in the first part, and just optimize for the best β assuming that (In real-world applications you
would need to optimize both simultaneously since they are not actually independent. But you
don’t need to worry about that here.)

Lastly the same note about run-time applies here as before. The bigram model necessarily runs
more slowly than the unigram model, but the program should still complete within a couple
minutes. If your implementation is taking substantially longer then that, you likely have a bug or
a poor choice of implementation.

3 Feedback

Please provide answers to these in writeup.tex just like the rest of the questions. There are no
right or wrong answers here of course :)

Questions

7. Approximately how long did you spend on this assignment?

8. Which aspects of this assignment did you find most challenging? Were there any
significant stumbling blocks?

9. Which aspects of this assignment did you like? Is there anything you would have
changed?

4 Extra Credit: Language modeling for cryptography

We can combine our language model from Parts 1
and 2 with a new LM over letter sequences to
automatically break a simple encryption scheme,
the substitution cipher. This is optional (but
quite fun I think!) and you’ll receive up to 15%
extra credit on the assignment if you complete it.

Up to now we built n-gram language models over sequences of words. But the approach to
learning probabilistic transitions between linguistic units is very general, and could be applied to
morphemes, sentences or individual letters.
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The trick for breaking a substitution cipher is that, since the replacement of original letters by
replacement codes is a fixed system, the probability distribution of their occurrence remains the
same — just the labels are different. This means that since ‘t’ is the most frequent letter in English,
then in our encrypted data whatever the most frequent letter is must correspond to ‘t’. Similarly,
since only some letters are likely to occur in repeated sequence (‘ll’ or ‘ss’ we can use that fact
to map encrypted double-letters back to their original counter-parts. The same holds for both
unigram and bigram frequencies at the word level as well.

If you learned the key that mapped from encrypted letter to original English letters then you can
use that to translate the text back to the original.

We have also learned a method for evaluating our potential translations automatically: A language
model that’s trained on actual English will assign extremely low probability to encrypted text, but
high probability to properly decoded text.

Your task in this bonus section (if you chose to do it) is to break a substitution cipher using
language models. This involves figuring out the cipher-key, and outputting the unencrypted text.
The data for this section is in /data/cs65-S22/langmod/crypto/. The file train.txt is text from
the Gutenberg corpus that I have lower-cased for you (this way there are only 26 letter pairs to
learn rather than 52). You can use this file to train LMs over both word and letter occurrence. The
test files test1shuffled.txt and test2shuffled.txt are also files from the Gutenberg corpus
which have been encrypted with different substitution ciphers. The cipher applied is straight-
forward: it only translates the 26 English letters [a-z], leaving all other characters (space, numbers,
punctuation, etc.) unchanged.

You are free to implement this however you want, but I’d suggest something like the following
design with three sets of functions:

• proposing a decryption key (and storing partial answers)

• applying a decryption key to translate from input to output text

• evaluating how good the output text looks

You can of course look at the output by hand while you’re debugging, and to test individual
functions one-by-one, but the final program needs to run automatically without hard-coding in
the cipher key.

This is open-ended and there are many possible strategies that will work, so have fun!
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