CS 43: Computer Networks

Routing Algorithms & Routing on the Internet November 24, 2025

The Network Layer!

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1's and 0's/bits across a medium (copper, the air, fiber)

Routing Algorithm Classes

Link State (Global)

- Routers maintain cost of each link in the network.
- Connectivity/cost changes flooded to all routers.
- Converges quickly (less inconsistency, looping, etc.).
- Limited network sizes.

Distance Vector (Decentralized)

- Routers maintain next hop & cost of each destination.
- Connectivity/cost changes iteratively propagate from neighbor to neighbor.

Requires multiple rounds to converge.

Scales to large networks.

Bellman-Ford Equation

```
let
 d_x(y) := cost of least-cost path from x to y
then
 d_{x}(y) = min_{x}\{c(x,v) + d_{y}(y)\}
                             cost from neighbor v to destination y
                    cost to neighbor v
            min taken over all neighbors v of x
```

Distance Vectors

• Let $D_x(y)$ = least known cost from x to y (by router x)

- Node x:
 - Knows cost to each neighbor v: c(x,v)
 - Maintains its neighbors' distance vectors. For each neighbor v, x maintains: $\mathbf{D}_{v} = [\mathbf{D}_{v}(y): y \in \mathbf{N}]$
- As opposed to link state:
 - Only keeps state for yourself and direct neighbors

Distance Vector Algorithm

- Periodically, each node sends its own distance vector to neighbors
- Upon receiving new DV from neighbor, update its local DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\} \text{ for each node } y \in N$$

• Under typical conditions, $D_x(y)$ will converge to the least cost $d_x(y)$

Distance Vector Algorithm

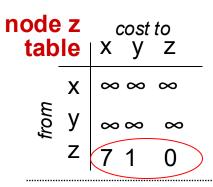
Iterative, asynchronous:

Iteration when:

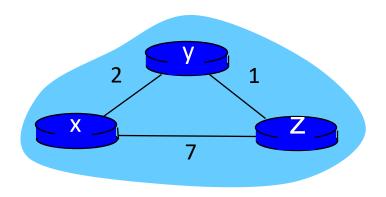
- Local link cost change
- DV update from neighbor
- Periodic timer

Distributed:

 Each node knows only a portion of global link info

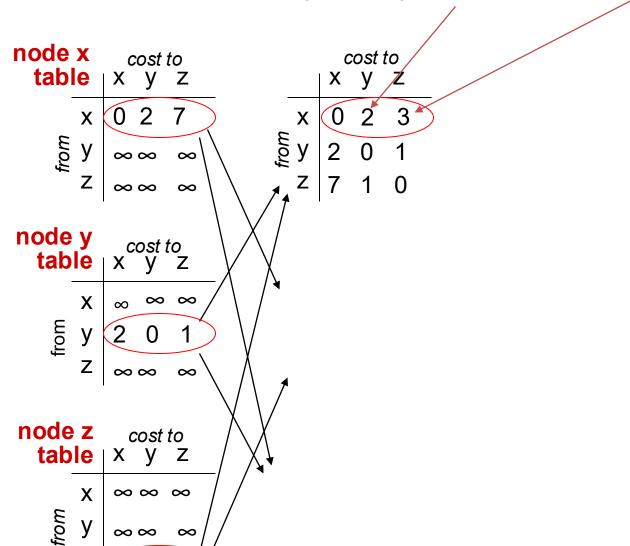

each node:

wait for (change in local link cost or msg from neighbor) *recompute* estimates if DV to any dest has changed, *notify* neighbors


Distance Vector Algorithm Example

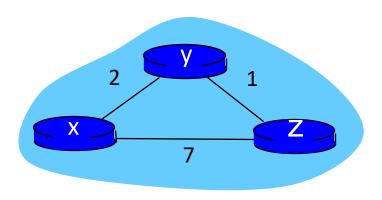
node tab		X	ost y	to Z	
	X	0	2	7	$\overline{)}$
from	У	∞	∞	∞	
	Z	∞	∞	∞	

node tab	y le	X	ost t Y	o Z	
	Χ	8	∞	∞	
rom	У	2	0	1)
4	Z	∞	∞	∞	

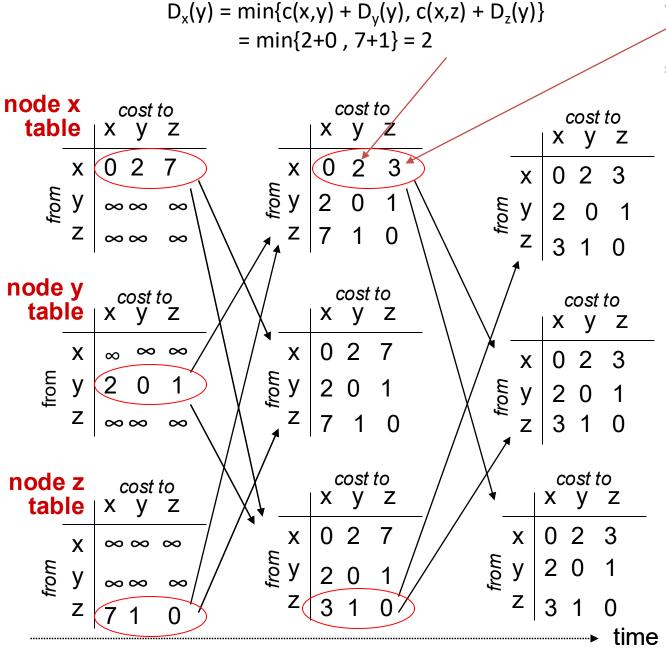


Every node starts with the distance to its neighbors and every other distance is

time


$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

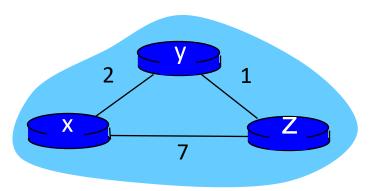
= $min\{2+0, 7+1\} = 2$


$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$$

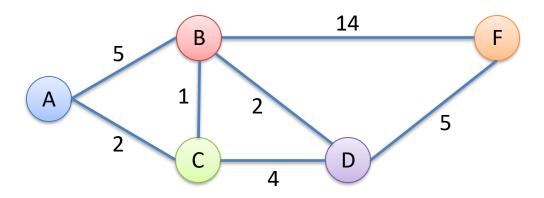
= $\min\{2+1, 7+0\} = 3$

Every node sends its distance vector: the smallest distance it is has for every node.

Then each node computes its new minimal distances.

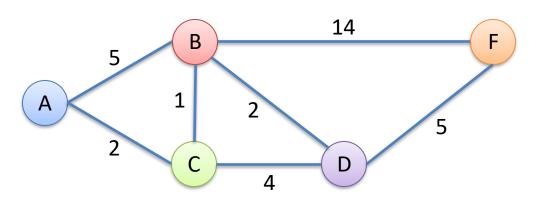


▶ time



$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$$

= $\min\{2+1, 7+0\} = 3$


Each time a node has a new distance vector (found a shorter path) it will send that update to its neighbors.

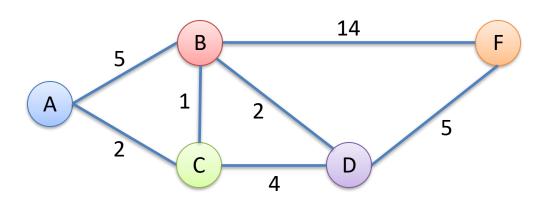
Distance Vector Example

- Same network as Dijkstra's example, without node E.
- What I'll show you next is routing table (of distance vectors) at each router.

Routers populate their forwarding table by taking the row minimum.

Router F						
Via→ ↓ To	В	D				
Α						
В	14					
С						
D		5				

Noutel A						
Via→ ↓ To	В	С				
В	5					
С		2				
D						
F						


Router A

Router B					
Via→ ↓ To	A	С	D	F	
А	5				
С		1			
D			2		
F				14	

Via→ ↓ To	A	В	D
А	2		
В		1	
D			4
F			

Router C

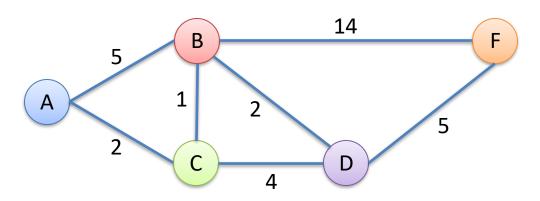
Router D				
Via→	В	С	F	
↓ To				
Α				
В	2			
С		4		
F			5	

Router exchange their local vectors with direct neighbors. We'll assume they all exchange at once (synchronous). (Not realistic)

Douter D

Nouter						
Via→	В	D				
↓ To						
А						
В	14					
С						
D		5				

Router F


Router A					
Via→ ↓ To	В	С			
В	5				
С		2			
D					
F					

Router B					
Via→ ↓ To	A	С	D	F	
Α	5				
С		1			
D			2		
F				14	

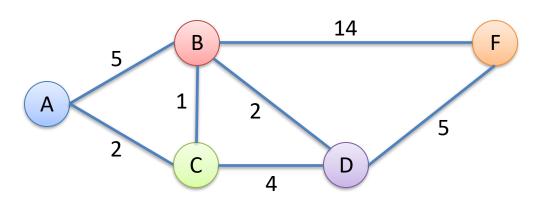
Router C				
Via→ ↓ To	A	В	D	
А	2			
В		1		
D			4	
F				

Modter D					
Via→ ↓ To	В	С	F		
А					
В	2				
С		4			
F			5		

Router D

A will send to neighbors (B & C): I can get to B in 5 and C in 2.

Router F			
Via→ ↓ To	В	D	
А			
В	14		
С			
D		5	


Router A			
Via→ ↓ To	В	С	
В	5		
С		2	
D			
F			

Router B				
Via→ ↓ To	A	С	D	F
А	5			
С	?	1		
D			2	
F				14

Router C			
Via→ ↓ To	A	В	D
А	2		
В	?	1	
D			4
F			

Router C

Router D			
Via→	В	С	F
↓ To			
А			
В	2		
С		4	
F			5

A will send to neighbors (B & C): I can get to B in 5 and C in 2.

Via→ ↓ To	В	D
А		
В	14	
С		

5

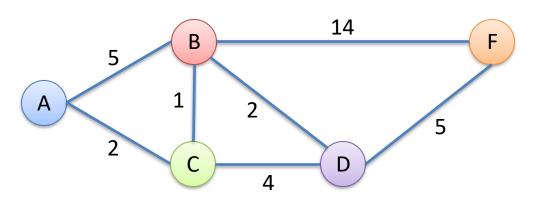
Router F

Router A

Via→ ↓ To	В	С
В	5	
С		2
D		
F		

Router B

Via→ ↓ To	A	С	D	F
Α	5			
С	7	1		
D			2	
F				14


Router C

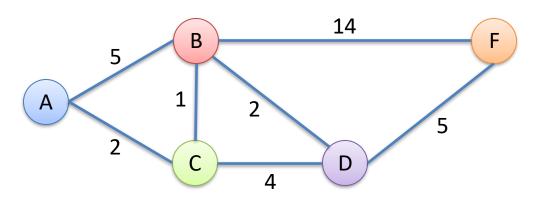
Via→ ↓ To	A	В	D
А	2		
В	7	1	
D			4
F			

Router D

D

Via→ ↓ To	В	С	F
А			
В	2		
С		4	
F			5

B will send to neighbors (A, C, D, F): I can get to A in 5, C in 1, D in 2, and F in 14.


Router F		
Via→ ↓ To	В	D
А	19	
В	14	
С	15	
D	16	5

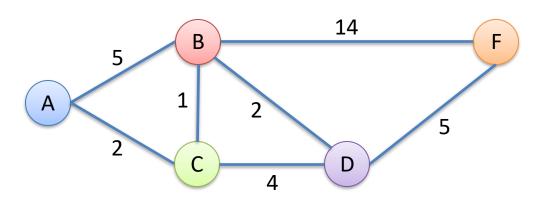
Router A			
Via→ ↓ To	В	С	
В	5		
С	6	2	
D	7		
Г	10		

Router B				
Via→ ↓ To	A	С	D	F
А	5			
С	7	1		
D			2	
F				14

Router C				
Via→ ↓ To	A	В	D	
А	2	6		
В	7	1		
D		3	4	
F		15		

Router D				
Via→	В	C	F	
↓ To				
Α	7			
В	2			
С	3	4		
F	16		5	

C will send to neighbors (A, B, D): I can get to A in 2, B in 1, and D in 4.


Router F			
Via→ ↓ To	В	D	
Α	19		
В	14		
С	15		
D	16	5	

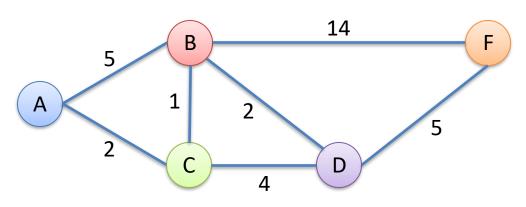
Router A			
Via→ ↓ To	В	С	
В	5	3	
С	6	2	
D	7	6	
F	19		

Router B				
Via→ ↓ To	A	С	D	F
А	5	3		
С	7	1		
D		5	2	
F				14

Router C				
Via→ ↓ To	A	В	D	
А	2	6		
В	7	1		
D		3	4	
F		15		

Router D				
Via→	В	С	F	
↓ To				
Α	7	6		
В	2	5		
С	3	4		
F	16		5	

D will send to neighbors (B, C, F): I can get to B in 2, C in 4, and F in 5.


Router F			
Via→ ↓ To	В	D	
А	19		
В	14	7	
С	15	9	
D	16	5	

Router A			
Via→ ↓ To	В	С	
В	5	3	
С	6	2	
D	7	6	
F	19		

Router B				
Via→ ↓ To	A	С	D	F
А	5	3		
С	7	1	6	
D		5	2	
F			7	14

Router C				
Via→ ↓ To	A	В	D	
А	2	6		
В	7	1	6	
D		3	4	
F		15	9	

Router D				
Via→	В	С	F	
↓ To				
А	7	6		
В	2	5		
С	3	4		
F	16		5	

Router F

Via→ ↓ To	В	D
Α	19	
В	14	7
С	15	9
D	16	5

F will send to neighbors (B, D):

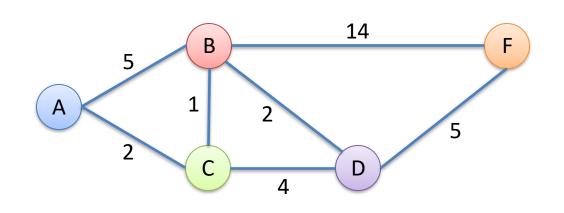
I can get to B in 14, D in 5.

R	\cap	П	te	_	r	Δ
	v		L			_

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	19	

Router B

Via→ ↓ To	A	С	D	F
А	5	3		
С	7	1	6	
D		5	2	19
F			7	14


Router C

Via→ ↓ To	A	В	D
А	2	6	
В	7	1	6
D		3	4
F		15	9

Router D

riodice. D					
Via→ ↓ To	В	С	F		
А	7	6			
В	2	5	19		
С	3	4			
F	16		5		

At the end of round 1, how many routers need to update their forwarding tables?

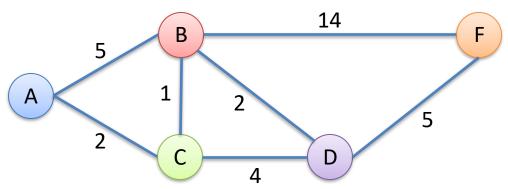
Router F			
Via→ ↓ To	В	D	
А	19		
В	14	7	
С	15	9	
D	16	5	

Router	Α
NOGICI	, ,

A-1, B-2, C-3, D-4, E-5

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	19	

Router B


Via→ ↓ To	A	С	D	F
А	5	3		
С	7	1	6	
D		5	2	19
F			7	14

Router C

Via→ ↓ To	A	В	D
А	2	6	
В	7	1	6
D		3	4
F		15	9

Router D

Via→ ↓ To	В	С	F
А	7	6	
В	2	5	19
С	3	4	
F	16		5

Each router advertises the best cost it has to each destination.

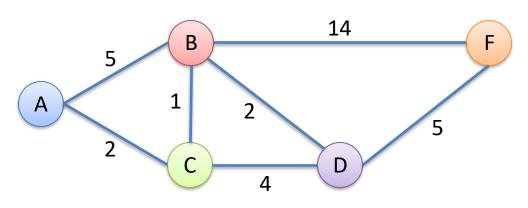
Nothing new to learn from A or F, so we'll skip their announcements.

Router F					
Via→ ↓ To	В	D			
А	19				
В	14	7			
С	15	9			
D	16	5			

R	റ	u	t	6	r	Α
11	v	u	ι	L		$\boldsymbol{\sqcap}$

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	19	

Router B


Via→ ↓ To	A	С	D	F
А	5	3		
С	7	1	6	
D		5	2	19
F			7	14

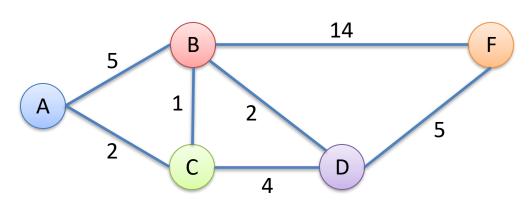
Router C

Via→ ↓ To	A	В	D
А	2	6	
В	7	1	6
D		3	4
F		15	9

Router D

Via→ ↓ To	В	С	F
Α	7	6	
В	2	5	19
С	3	4	
F	16		5

B will send to neighbors (A, C, D, F): I can get to <u>A in 3</u>, C in 1, D in 2, and <u>F in 7</u>.

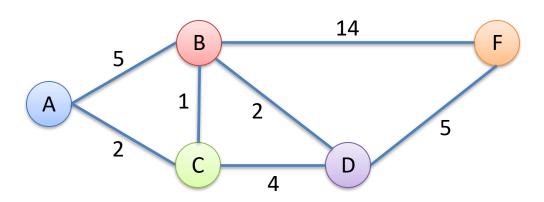

Router F					
Via→	В	D			
↓ To					
Α	17				
В	14	7			
С	15	9			
D	16	5			

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6

Router A

Router B							
Via→ ↓ To	A	С	D	F			
Α	5	3					
С	7	1	6				
D		5	2	19			
F			7	14			

Router C				Router [
Via→ ↓ To	A	В	D	Via→ ↓ To	В	C	F
А	2	4?		Α	5	6	
В	7	1	6	В	2	5	19
D		3	4	С	3	4	
F		8	9	F	9?		5

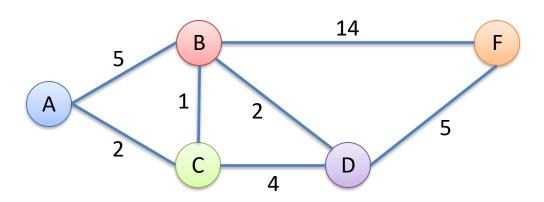

Router F

Via→ ↓ To	В	D
А	17	
В	14	7
С	15	9
D	16	5

C will send to neighbors (A, B, D):

I can get to A in 2, B in 1, D in 3, and F in 9.

Route	r A		Ro	oute	er B			Router C				Rout			
Via→ ↓ To	В	С	Via→ ↓ To	A	С	D	F	Via→ ↓ To	A	В	D	Via→ ↓ To	В	С	F
В	5	3	Α	5	3			А	2	4?		А	5	6	
С	6	2	С	7	1	6		В	7	1	6	В	2	5	19
D	7	5	D		4?	2	19	D		3	4	С	3	4	
F	12	11	F		10	7	14	F		8	9	F	9?	13?	5

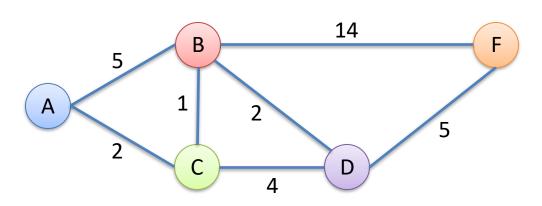


This process repeats for a while...

Route	er F	
Via→ ↓ To	В	D
А	17	
В	14	7
С	15	9
D	16	5

Route	rA		Ro	Router B Router C					Router D						
Via→ ↓ To	В	С	Via→ ↓ To	A	С	D	F	Via→ ↓ To	A	В	D	Via→ ↓ To	В	С	F
В	5	3	А	5	3			Α	2	4?		Α	5	6	
С	6	2	С	7	1	6		В	7	1	6	В	2	5	19
D	7	5	D		4?	2	19	D		3	4	С	3	4	
F	12	11	F		10	7	14	F		8	9	F	9?	13?	5

Distance Vector – Convergence

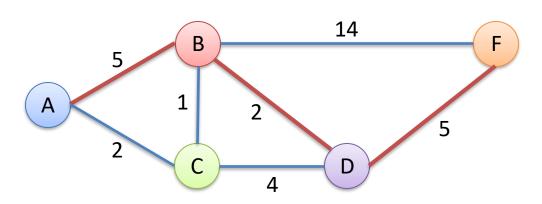


Eventually, we reach a converged state.

Route	er F	
Via→ ↓ To	В	D
А	17	10
В	14	7
С	15	8
D	16	5

Router A				R	loute	r B			Router C Rou				Rout	iter D		
	Via→ ↓ To	В	С	Via→ ↓ To	A	С	D	F	Via→ ↓ To	Α	В	D	Via→ ↓ To	В	С	F
	В	5	3	А	5	3	7	24	А	2	4	9	Α	5	6	15
	С	6	2	С	7	1	4	22	В	7	1	6	В	2	5	12
	D	7	5	D	10	4	2	19	D	7	3	4	С	3	4	13
	F	12	10	F	15	9	7	14	F	12	8	9	F	9	12	5

Distance Vector – Convergence

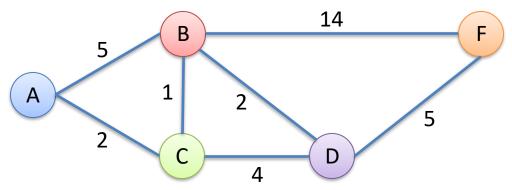


Final forwarding tables:

Route	er F	
Via→	В	D
↓ To		\wedge
А	17	10
В	14	7
С	15	8
D	16	5

Route	R	Router B				Route	Router C				Router D				
Via→ ↓ To	В	C	Via→ ↓ To	A	С	D	F	Via→ ↓ To	A	В	D	Via→ ↓ To	В	С	F
В	5	3	А	5	3	7	24	А	2	4	9	А	5	6	15
С	6	2	С	7	1	4	22	В	7	1	6	В	2	5	12
D	7	5	D	10	4	2	19	D	7	3	4	С	3	4	13
F	12	10	F	15	9	7	14	F	12	8	9	F	9	12	5

Of the links in red below, for how many would a failure cause a loop?


A - 0, B - 1, C - 2, D - 3

Consider the failures independently (not all at the same time).

Route	er F	
Via→	В	D
↓ To		\wedge
Α	17	10
В	14	7
С	15	8
D	16	5

Router A				Router B				Router C			Router D				
Via→ ↓ To	В	C	Via→ ↓ To	Α	С	D	F	Via→ ↓ To	A	В	D	Via→ ↓ To	В	С	F
В	5	3	Α	5	3	7	24	А	2	4	9	А	5	6	15
С	6	2	С	7	1	4	22	В	7	1	6	В	2	5	12
D	7	5	D	10	4	2	19	D	7	3	4	С	3	4	13
F	12	10	F	15	9	7	14	F	12	8	9	F	9	12	5

Rewind: Distance Vector – Round 2

B will send to neighbors (A, C, D, F): I can get to A in 3, C in 1, D in 2, and F in 7.

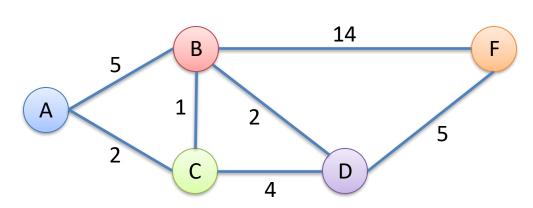
Route	er F	
Via→	В	D
↓ To		
А	17	
В	14	7
С	15	9
D	16	5

Route	r A	
Via→	В	

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	12	

Router B

Via→ ↓ To	A	С	D	F
А	5	3		
С	7	1	6	
D		5	2	19
F			7	14


Router C

Via→ ↓ To	A	В	D
А	2	4?	
В	7	1	6
D		3	4
F		8	9

Router D

Model B					
Via→ ↓ To	В	С	F		
А	5	6			
В	2	5	19		
С	3	4			
F	9?		5		

Rewind: Distance Vector – Round 2

Poisoned reverse: Don't advertise a lower value to a neighbor if you go through that neighbor to get there!

R	\cap		+	Δ	r	Α
П	()	u		_		$\boldsymbol{\vdash}$

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	12	

Router B

Modeel B					
Via→ ↓ To	A	С	D	F	
А	5	3			
С	7	1	6		
D		5	2	19	
F			7	14	

Router C

No!

 ∞

Via→ ↓ To	A	B D		
А	2	4?		
В	7	1	6	
D		3	4	
F		8	9	

Router F

\downarrow	Via→ To	В	D
	Α	17	
	В	14	7
	С	15	9
	D	16	5

Router D

11001001 2						
D	Via→ ↓ To	В	С	F		
	А	5	6			
6	В	2	5	19		
4	С	3	4			
9	F	9?		5		

Loop-prevention

Route poisoning helps prevent loops, but doesn't guarantee loop free.

Other mechanisms help too

There will always be a window of vulnerability

Real Protocols

Link State

- Open Shortest Path First (OSPF)
- Intermediate system to intermediate system (IS-IS)

Distance Vector

- Routing Information Protocol (RIP)
- Interior Gateway Routing Protocol (IGRP – Cisco)
- Border Gateway Protocol (BGP) (sort of, we'll look at this next)

Summary

Link State

- Fast convergence (reacts to events quickly)
- Small window of inconsistency

- Large number of messages sent on events
- Large routing tables as network size grows

Distance Vector

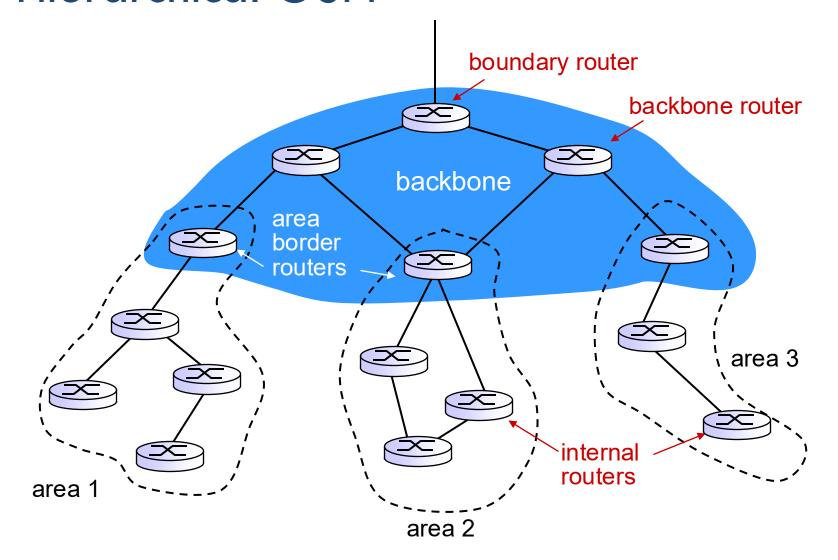
- Distributed (small tables)
- No flooding (fewer messages)

- Slower convergence
- Larger window of inconsistency

Intra-AS Routing

Also known as interior gateway protocols (IGP)

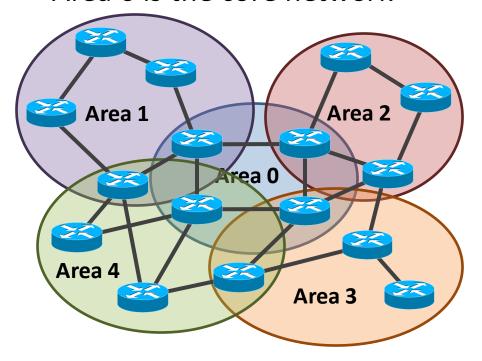
Goal:


Get traffic that is already in an AS to a destination inside that same AS.

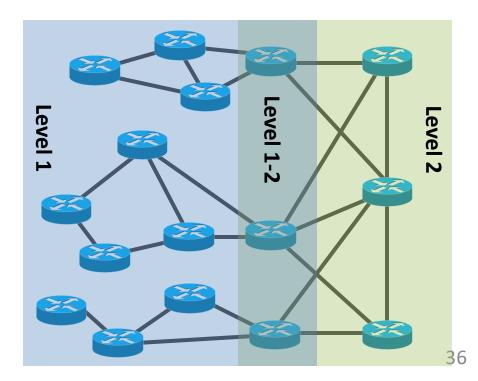
OSPF and IS-IS are deployed most commonly today

OSPF (Open Shortest Path First)

- Link state protocol (reliable flooding of LSAs)
- "Open": standardized, publicly available implementations
- Multiple equal-cost paths allowed (load balancing)
- Additional features:
 - OSPF messages authenticated (to prevent malicious intrusion)
 - Hierarchical OSPF for large autonomous systems.


Hierarchical OSPF

Different Organizational Structure


OSPF

- Organized around overlapping areas
- Area 0 is the core network

IS-IS

- Organized as a 2-level hierarchy
- Level 2 is the backbone

Real Protocols: OSPF vs. IS-IS

Two different implementations of link-state routing

- OSPF
- Favored by companies, datacenters
- More optional features

- Built on top of IPv4
 - LSAs are sent via IPv4
 - OSPFv3 needed for IPv6

- IS-IS
- Favored by ISPs
- Less "chatty"
 - Less network overhead
 - Supports more devices
- Not tied to IP
 - Works with IPv4 or IPv6

Internet/inter-AS Routing

Goal:

Get traffic from one AS to another.

Why do we need different Intra and Interdomain AS routing?

- A. Scalability
- B. Performance
- C. A and B
- D. More than just A and B

Why do we need different Intra and Interdomain AS routing?

Policy:

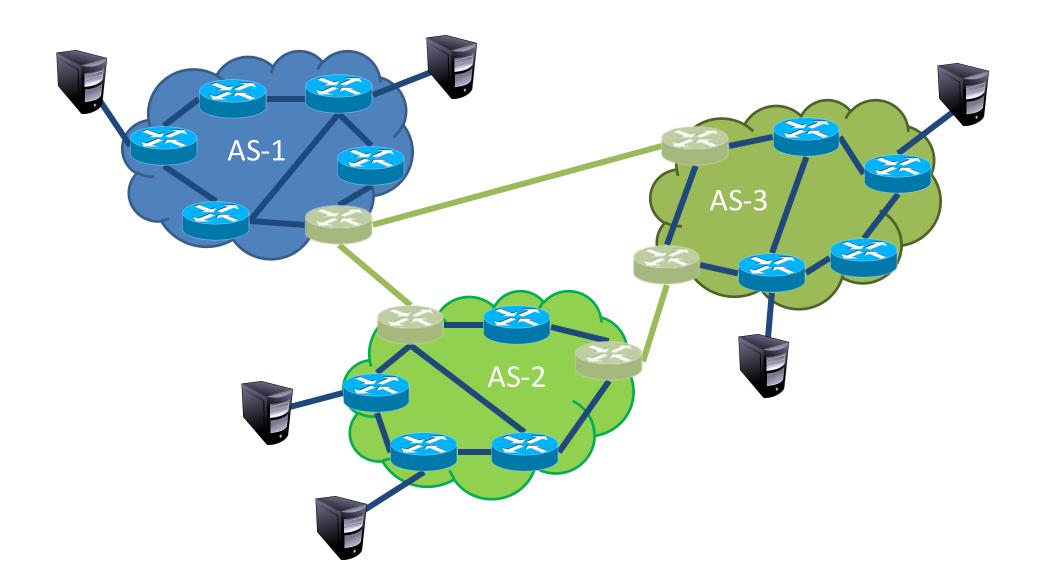
- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed

Scale:

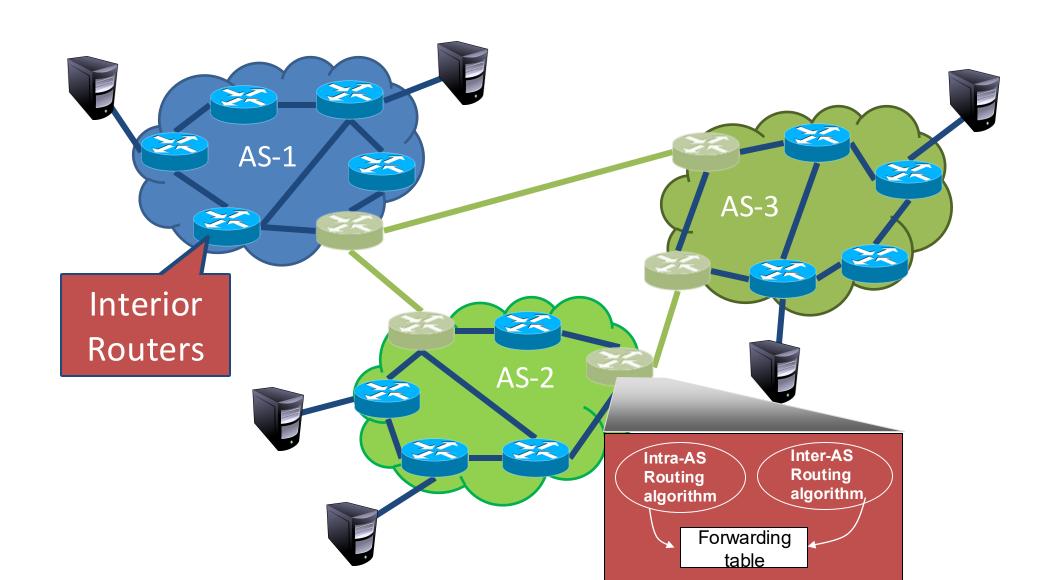
 hierarchical routing saves table size, reduced update traffic

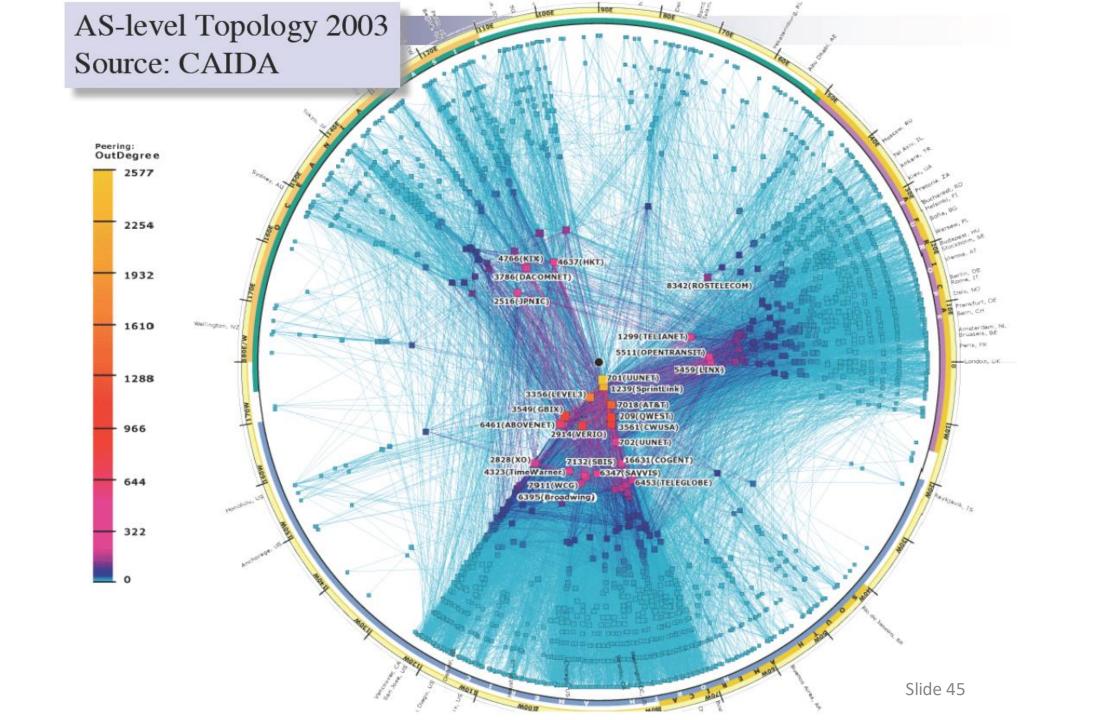
Performance:

- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance

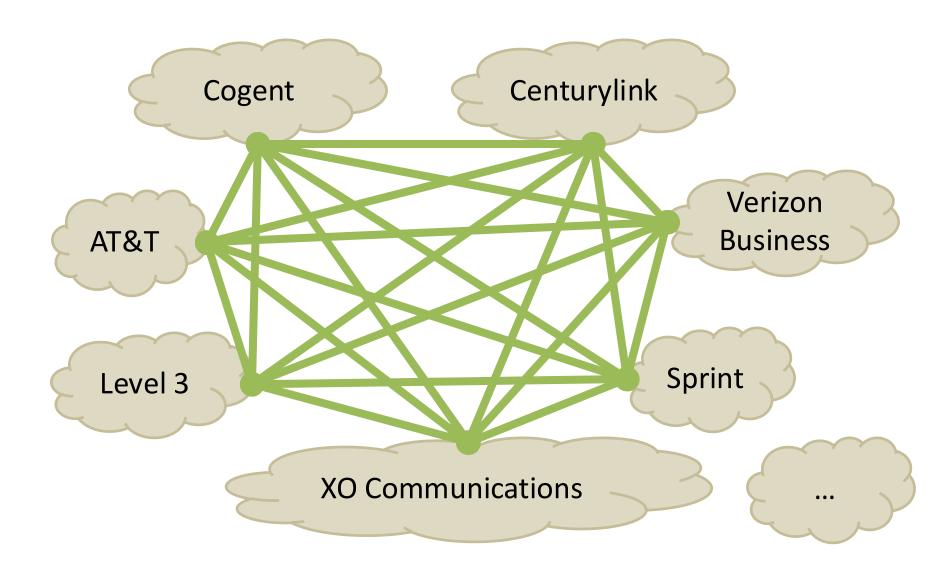

The Inter-domain routing protocol, needs to be an agreed upon protocol across all Autonomous Systems

- A. Yes, for interoperability
- B. Not necessarily, but reduces overhead
- C. No, each AS can have its own inter-domain routing protocol of choice.

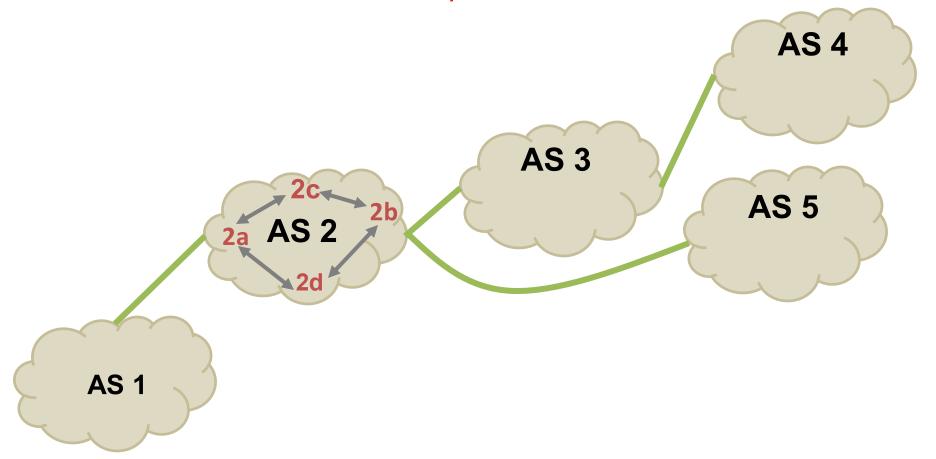

The Inter-domain routing protocol, needs to be an agreed upon protocol across all Autonomous Systems


- Global connectivity is at stake!
 - Thus, all ASs must use the same protocol
 - Contrast with intra-domain routing
- What are the requirements?
 - Scalability
 - Flexibility in choosing routes
- Question: link state or distance vector?
 - Trick question: BGP is a path vector protocol

Hierarchical routing: Autonomous Systems



Hierarchical routing: Interconnected ASes

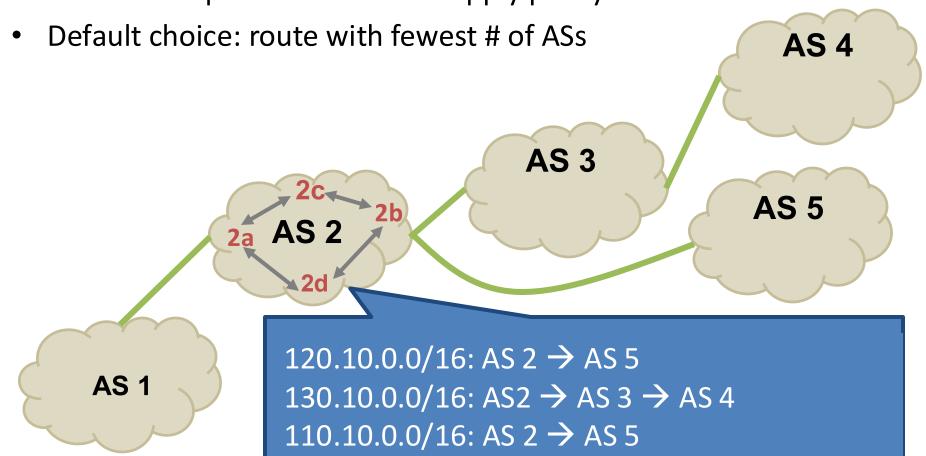

Tier-1 ISP Peering

Path Vector Protocol

- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d

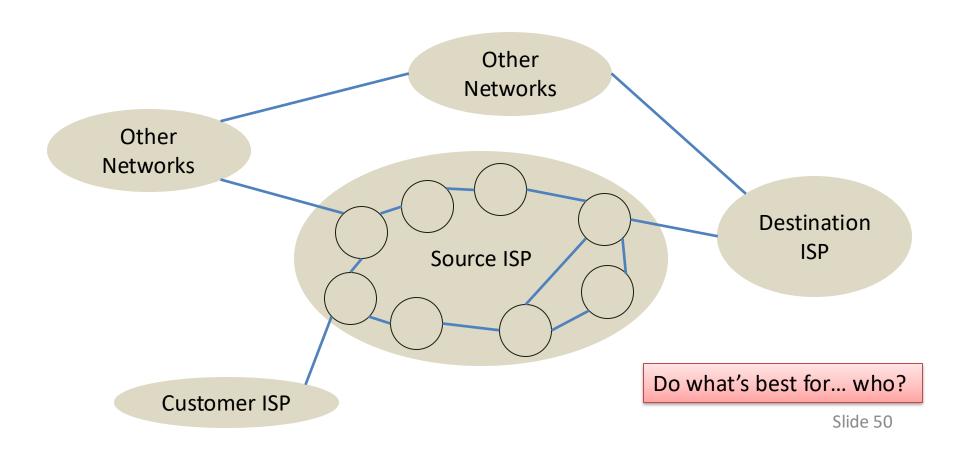
Path vector: send the entire path for each dest d

Inter-domain (Inter-ISP) Routing


AS2 must:

1. Learn destinations reachable through AS2

2. Propagate this reachability info to all routers in AS2 **AS 4** AS 3 **AS 5** 2a AS 2 AS₁


Path Vector Protocol

- AS-path: sequence of ASs a route traverses
 - Like distance vector, plus additional information
- Used for loop detection and to apply policy

Routing Policy

 How should the ISP route the customer's traffic to the destination?

Which routes a BGP router <u>advertises</u> will depend on...

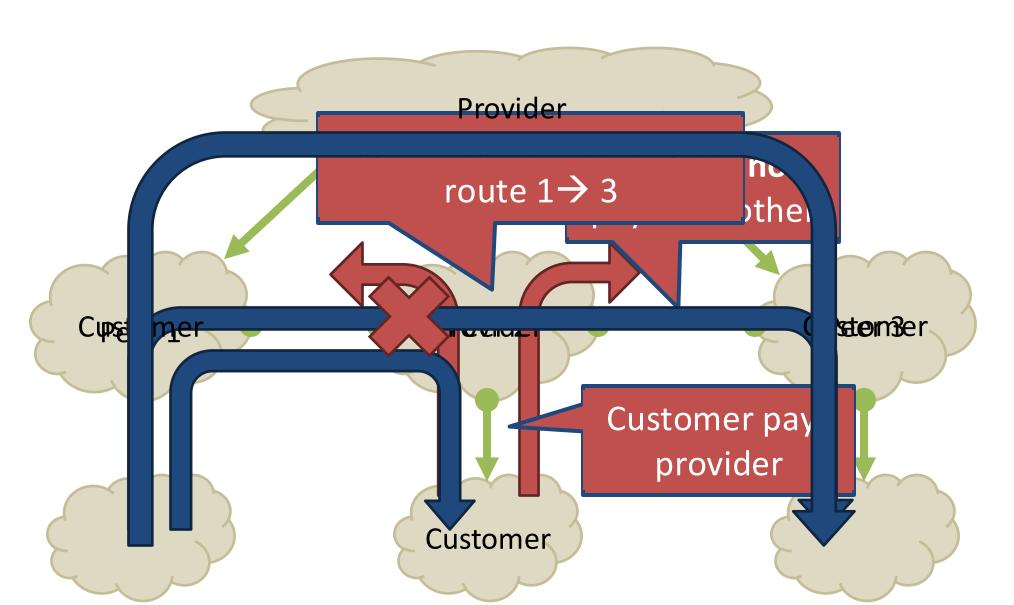
A. which ISPs have contractual agreements.

B. the shortest path to a subnet/prefix.

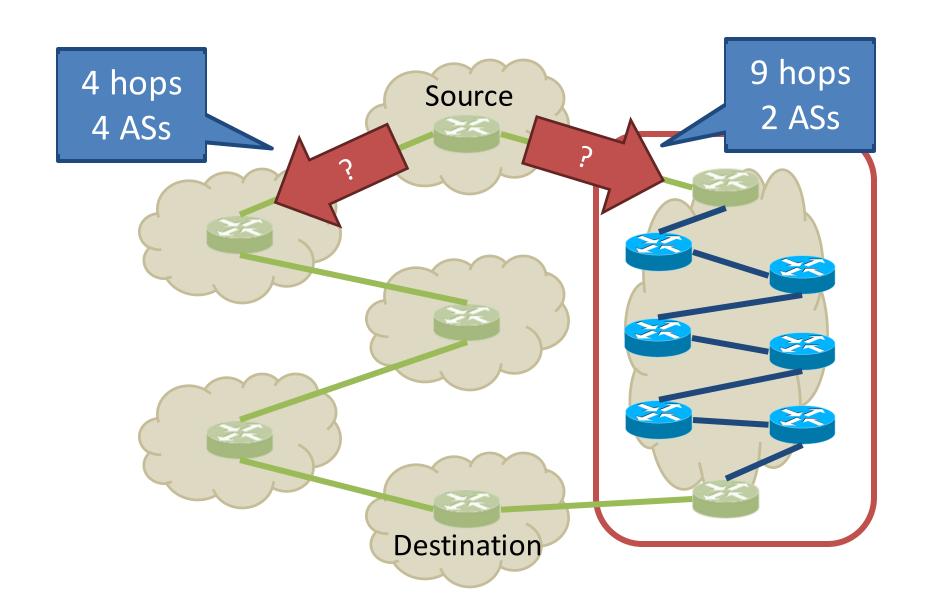
C. which subnets are customers of an ISP.

D. More than one of the above. (which?)

Which routes a BGP router advertises will depend on...

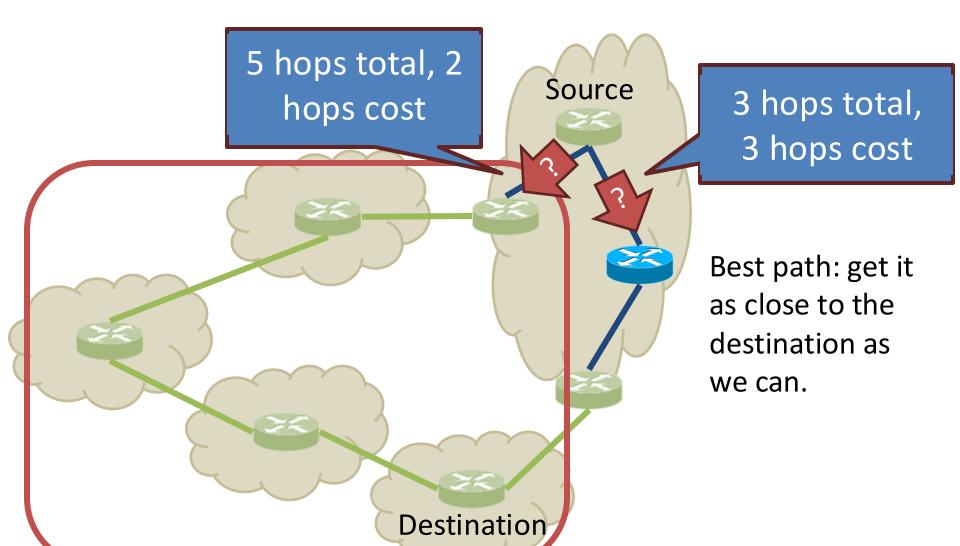

A. which ISPs have contractual agreements.

B. the shortest path to a subnet/prefix.


C. which subnets are customers of an ISP.

D. More than one of the above. (which?)

BGP Relationships

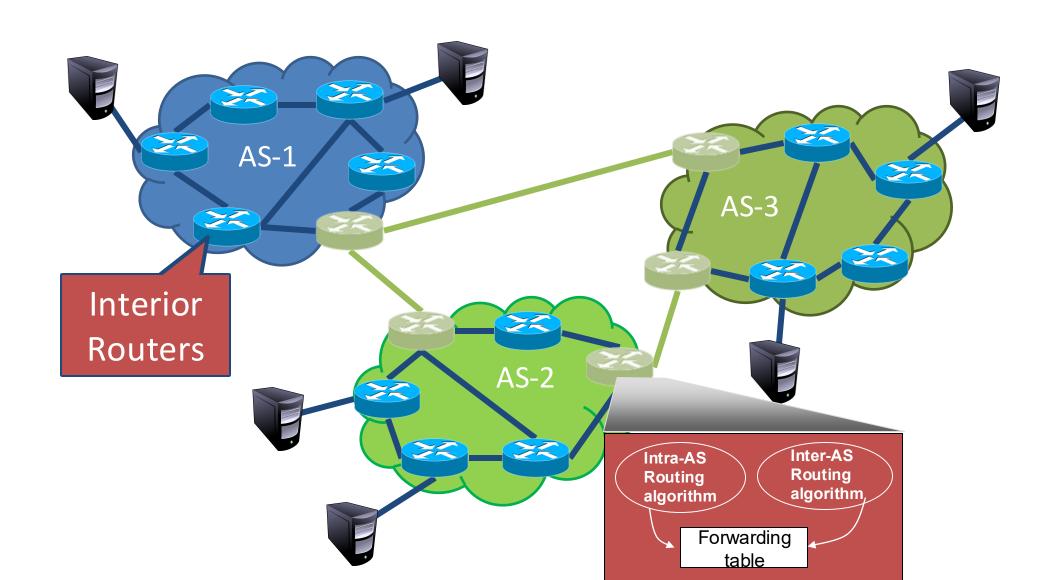


Shortest AS Path != Shortest Path

Hot Potato Routing: get rid of packets ASAP!

Route Selection Summary

Highest Local Preference Enforce relationships Shortest AS Path Lowest Multi-Exit Discriminator Traffic engineering Lowest IGP Cost to BGP Egress When all else fails, **Lowest Router ID** break ties


Peering/Interconnection Wars

- Peer
- Reduce upstream costs
- Improve end-to-end performance
- May be the only way to connect to parts of the Internet

- Don't Peer
- You would rather have customers
- Peers are often competitors
- Peering agreements require periodic renegotiation

Peering struggles in the ISP world are extremely contentious, agreements are usually confidential

Hierarchical routing: Interconnected ASes

