
CS 43: Computer Networks

UDP and Reliable Transport

October 27, 2025

▪ UDP socket identified by 2-
tuple:

• dest IP address

• dest port number

▪ when receiving host receives
UDP segment:

• checks destination port #
in segment

• directs UDP segment to
socket with that port #

Connectionless: example

Slide 3

UDP datagrams with
same dest. port #, but
different source (IP/

port #) will be directed
to same socket at

receiving host

Connectionless demultiplexing: an example
A UDP socket is uniquely identified by (dest IP, dest port)

DatagramSocket
serverSocket = new
DatagramSocket

 (53);

transport

application

physical

link

network

P3

transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket mySocket1 =

new DatagramSocket (5775);

DatagramSocket mySocket2

= new DatagramSocket

 (9157);

dest IP: B
dest port: 53

dest IP: A
dest port: 9157

dest IP: ?
dest port: ?

dest IP: ?
dest port: ?

host: IP
address A

host: IP
address C

server: IP
address B

UDP – User Datagram Protocol

• Unreliable, unordered service

• Adds:

– multiplexing,

– checksum (error detection)

Slide 5

UDP: User Datagram Protocol [RFC 768]

“No frills,” “Bare bones” Internet transport protocol

– RFC 768 (1980)

– Length of the document?
https://www.rfc-editor.org/rfc/rfc768.html

Slide 6

https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html

UDP: User Datagram Protocol [RFC 768]

“Best effort” service,

UDP segments may be:

– Lost

– Delivered out of order (same as underlying network layer)

¯_(ツ)_/¯

Slide 7

Connectionless:
- No initial state transferred between

parties (no handshake)
- Each UDP segment is handled

independently

How many of the following steps does UDP

implement? (which ones?)

A. exchange an initiate handshake (connection setup)

B. break up packet into segments at the source and number
them

C. place segments in order at the destination

D. error-checking with checksum

Slide 8

Wireshark Example

10

UDP Segment

Slide 11

32 bits

source port # dest port #

application

data

(variable length)

Urg data pointer

FSRPAU
head

len

not
used

checksum

receive window

sequence number

acknowledgement number

options (variable length)

32 bits

TCP Segment!

Slide 12

UDP Segment

Slide 13

32 bits

UDP Checksum

• Goal: Detect transmission errors (e.g. flipped bits)

– Router memory errors

– Driver bugs

– Electromagnetic interference

Slide 14

UDP Checksum

Slide 15

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 10

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)

=

UDP Checksum

RFC: “Checksum is the 16-bit one's complement of the
one's complement sum of a pseudo header of information
from the IP header, the UDP header, and the data, padded
with zero octets at the end (if necessary) to make a
multiple of two octets.”

Slide 16

(? _ ?)

• Treat the entire segment as 16-bit integer values

• Add them all together (sum)

• Put the 1’s complement in the checksum header field

UDP Checksum at the Sender

Slide 17

• In bitwise compliment, all of the bits in a binary
number are flipped.

• So 1111000011110000 -> 0000111100001111

One’s Compliment

Slide 18

Checksum example

Slide 19

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

• Add all the received data together as 16-bit integers

• Add that to the checksum

• If result is not 1111 1111 1111 1111, there are errors!

• If there are errors chuck the packet.

Receiver

Slide 20

¯_(ツ)_/¯

If our checksum addition yields all ones, are

we guaranteed to be error-free?

A. Yes

B. No

Slide 21

Checksum example : weak protection!

Slide 23

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1

1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

• Latency sensitive

– Quick request/response (DNS)

– Network management (SNMP, DHCP)

– Voice/video chat

• Communicating with lots of others

UDP Applications

Slide 24

With TCP, send() blocks if buffer full.

Recall: TCP send() blocking

Slide 25

With TCP, send() blocks if buffer full.

• Does UDP need to block? Should it?

A. Yes, if buffers are full, it should.

B. It doesn’t need to, but it might be useful.

C. No, it does not need to and shouldn’t do so.

UDP sendto() blocking

Slide 26

Transport Layer:

• Provides a logical communication between
processes/ applications

• packets are called segments at the transport layer

• Transport layer protocol: responsible for adding port
numbers (mux/demux segments)

Slide 28

Summary

UDP:

• No “frills” protocol, No state maintained about the packet

• Checksum (1’s complement) over IP + UDP + payload.
– can only correct for 1 bit errors.

• adds port numbers over unreliable network (best effort)

• applications:
– latency sensitive applications: real-time audio, video

– communicating with a lot of end-hosts (like DNS)

• UDP Sockets:
– do not need to be implemented as blocking system calls for correctness since the only

guarantee UDP makes is best-effort delivery.

– however send/recv can be implemented as blocking system calls depending on the
application

Summary

Slide 29

Today

• Principles of reliability

– The Two Generals Problem

• Automatic Repeat Requests

– Stop and Wait

– Timeouts and Losses

– Pipelined Transmission

Slide 30

The Two Generals Problem

• Two army divisions (blue) surround enemy (red)

– Each division led by a general

– Both must agree when to simultaneously attack

– If either side attacks alone, defeat

• Generals can only communicate via messengers
– Messengers may get captured (unreliable channel)

Slide 31

A B

The Two Generals Problem

• How to coordinate?

– Send messenger: “Attack at dawn”

– What if messenger doesn’t make it?

Slide 32

A B

The Two Generals Problem

• How to be sure messenger made it?

– Send acknowledgment: “I delivered message”

Slide 33

A B

In the “two generals problem”, can the two armies reliably coordinate

their attack? (using what we just discussed)

• A. Yes (explain how)

• B. No (explain why not)

Slide 34

The Two Generals Problem

• Result

– Can’t create perfect channel out of faulty one

– Can only increase probability of success

Slide 35

A B

Give up? No way!

As humans, we like to face
difficult problems.

• We can’t control oceans, but
we can build canals

• We can’t fly, but we’ve
landed on the moon

• We just need engineering!

Slide 36
What can possibly go wrong....

Engineering

• Concerns

– Message corruption

– Message duplication

– Message loss

– Message reordering

– Performance

• Our toolbox

– Checksums

– Timeouts

– Acks & Nacks

– Sequence numbering

– Pipelining

Slide 37

Engineering

• Concerns

– Message corruption

– Message duplication

– Message loss

– Message reordering

– Performance

• Our toolbox

– Checksums

– Timeouts

– Acks & Nacks

– Sequence numbering

– Pipelining

We use these to build Automatic Repeat Request (ARQ) protocols.

(We’ll briefly talk about alternatives at the end.)
Slide 38

Automatic Repeat Request (ARQ)

• Intuitively, ARQ protocols act like you would when using a cell phone

with bad reception.

– Receiver: Message garbled? Ask to repeat.

– Sender: Didn’t hear a response? Speak again.

• Refer to book for building state machines.

– We’ll look at TCP’s states soon

Slide 39

ARQ Broad Classifications

1. Stop-and-wait

Slide 40

Stop and Wait

Time

Sender Receiver

Slide 41

We have:
• a sender
• a receiver
• time: represented by

downwards arrow

Stop and Wait

Time

Sender Receiver

…

Slide 42

Sender sends data and waits till
they get the response message
from the receiver.

Buffer data, and don’t send till response received

Stop and Wait

Time

Sender Receiver

…

Slide 43

• Up next: concrete
problems and mechanisms
to solve them.

• These mechanisms will
build upon each other

• Questions?

Corruption?

Time

Sender Receiver

…

Slide 44

• Error detection mechanism:
checksum

– Data good – receiver sends
back ACK

– Data corrupt – receiver sends
back NACK

Could we do this with just ACKs or just NACKs?

Time

Sender Receiver

…

Slide 45

Error detection mechanism:
checksum

• Data good – receiver sends back
ACK

• Data corrupt – receiver sends
back NACK

A. No, we need them both.

B. Yes, we could do without one

of them, but we’d need some

other mechanism.

C. Yes, we could get by without

one of them.

Timeouts and Losses

Slide 47

Time

Sender Receiver

Ti
m

eo
u

t

• Sender starts a clock. If no
response, retry.

Timeouts and Losses

Slide 48

Time

Sender Receiver

Ti
m

eo
u

t

Time

Sender Receiver

Ti
m

eo
u

t

• Sender starts a clock. If no
response, retry.

Corruption?
Send no
response

Timeouts and Losses

Slide 49

Time

Sender Receiver

Ti
m

eo
u

t

Time

Sender Receiver

Ti
m

eo
u

t
Ti

m
eo

u
t

• Sender starts a clock. If no
response, retry.

• Probably not a great idea for
handling corruption, but it
works.

Corruption?
Send no
response

Timeouts and Losses

Slide 50

Time

Sender Receiver

Ti
m

eo
u

t

• Timeouts help us handle
message losses too!

Timeouts and Losses

Slide 51

Time

Sender Receiver

Ti
m

eo
u

t

Ti
m

eo
u

t

Time

Sender Receiver

Ti
m

eo
u

t

• Timeouts help us handle
message losses too!

Adding timeouts might create new problems for us to worry about. How

many? Examples?

Slide 52

Time

Sender Receiver

Ti
m

eo
u

t

A. No new problems (why not?)

B. One new problem (which is..)

C. Two new problems (which are..)

D. More than two new problems (which are..)

Sequence Numbering

Sender

• Add a monotonically increasing label to
each msg

Receiver

• Ignore messages with numbers we’ve
seen before

• When pipelining (a few slides from
now)

– Detect gaps in the sequence (e.g., 1,2,4,5)

123

Sender Receiver
Slide 54

What is our link utilization with a stop-and-wait protocol?

A. < 0.1 %

B. ≈ 0.1 %

C. ≈ 1 %

D. 1-10 %

E. > 10 %

Slide 55

System parameters:

Link rate: 8 Mbps (one megabyte per second)

RTT: 100 milliseconds

Segment size: 1000 bytes

Pipelined Transmission

Slide 57

Keep multiple segments “in flight”

– Allows sender to make efficient use of the link

– Sequence numbers ensure receiver can distinguish
segments

Time

Sender Receiver

Pipelined Transmission

Slide 58

Time

Sender Receiver

Now what?

Keep multiple segments “in flight”

– Allows sender to make efficient use of the link

– Sequence numbers ensure receiver can distinguish
segments

Time

Sender Receiver

What should the sender do here?

Slide 59

Time

Sender Receiver

Now what?

What information does the sender need
to make that decision?

What is required by either party to keep
track?

A. Start sending all data again from 0.

B. Start sending all data again from 2.

C. Resend just 2, then continue with 4 afterwards.

ARQ Broad Classifications

1. Stop-and-wait

2. Go-back-N

Slide 60

Go-Back-N

Slide 61

Time

Sender Receiver

…

• Retransmit from point of loss

– Segments between loss
event and retransmission are
ignored

– “Go-back-N” if a timeout
event occurs

Go-Back-N

Slide 62

Time

Sender Receiver

…

Go-Back-N

Slide 63

Time

Sender Receiver

…

Go-Back-N

Slide 64

Time

Sender Receiver

…

Go-Back-N

Slide 65

Time

Sender Receiver

…

Go-Back-N

Slide 66

Time

Sender Receiver

…

Go-Back-N

Slide 67

Time

Sender Receiver

…

Ti
m

eo
u

t

Go-Back-N

Slide 68

Time

Sender Receiver

…

Ti
m

eo
u

t

Go-Back-N

Slide 69

Time

Sender Receiver

…

Ti
m

eo
u

t

• Retransmit from point of loss

– Segments between loss
event and retransmission are
ignored

– “Go-back-N” if a timeout
event occurs

Go-Back-N Performance Optimization

Slide 70

Time

Sender Receiver

…

Ti
m

eo
u

t

• Can we optimize the
performance? Yes!

Go-Back-N: Performance Optimization

Slide 71

Time

Sender Receiver

…

Ti
m

eo
u

t

Animation

• https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/c
w/content/interactiveanimations/go-back-n-protocol/index.html

Slide 72

https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html

Selective Repeat

Slide 73

Time

Sender Receiver

…

• Receiver ACKs each segment
individually (not cumulative)

• Sender only resends those not
ACKed

Selective Repeat

Slide 74

Time

Sender Receiver

…

Selective Repeat

Slide 75

Time

Sender Receiver

…

Selective Repeat

Slide 76

Time

Sender Receiver

…

Selective Repeat

Slide 77

Time

Sender Receiver

…

Ti
m

eo
u

t

• Receiver ACKs each segment
individually (not cumulative)

• Sender only resends those not
ACKed

Animation

• https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/c
w/content/interactiveanimations/selective-repeat-protocol/index.html

Slide 78

https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html

ARQ Alternatives

• Can’t afford the RTT’s or timeouts?

• When?

– Broadcasting, with lots of receivers

– Very lossy or long-delay channels (e.g., space)

• Use redundancy – send more data

– Simple form: send the same message N times

– More efficient: use “erasure coding”

– For example, encode your data in 10 pieces such that the receiver can piece it
together with any subset of size 8.

Slide 79

Practical Reliability Questions

• What does connection establishment look like?

• How do we choose sequence numbers?

• How do the sender and receiver keep track of
outstanding pipelined segments?

• How should we choose timeout values?

• How many segments should be pipelined?

Slide 80

	Default Section
	Slide 1: CS 43: Computer Networks
	Slide 3: Connectionless: example
	Slide 4: Connectionless demultiplexing: an example A UDP socket is uniquely identified by (dest IP, dest port)
	Slide 5: UDP – User Datagram Protocol
	Slide 6: UDP: User Datagram Protocol [RFC 768]
	Slide 7: UDP: User Datagram Protocol [RFC 768]
	Slide 8: How many of the following steps does UDP implement? (which ones?)
	Slide 10: Wireshark Example
	Slide 11: UDP Segment
	Slide 12: TCP Segment!
	Slide 13: UDP Segment
	Slide 14: UDP Checksum
	Slide 15: UDP Checksum
	Slide 16: UDP Checksum
	Slide 17: UDP Checksum at the Sender
	Slide 18: One’s Compliment
	Slide 19: Checksum example
	Slide 20: Receiver
	Slide 21: If our checksum addition yields all ones, are we guaranteed to be error-free?
	Slide 23: Checksum example : weak protection!
	Slide 24: UDP Applications
	Slide 25: Recall: TCP send() blocking
	Slide 26: UDP sendto() blocking
	Slide 28: Summary
	Slide 29: Summary
	Slide 30: Today

	Reliable Transport
	Slide 31: The Two Generals Problem
	Slide 32: The Two Generals Problem
	Slide 33: The Two Generals Problem
	Slide 34: In the “two generals problem”, can the two armies reliably coordinate their attack? (using what we just discussed)
	Slide 35: The Two Generals Problem
	Slide 36: Give up? No way!
	Slide 37: Engineering
	Slide 38: Engineering
	Slide 39: Automatic Repeat Request (ARQ)
	Slide 40: ARQ Broad Classifications
	Slide 41: Stop and Wait
	Slide 42: Stop and Wait
	Slide 43: Stop and Wait
	Slide 44: Corruption?
	Slide 45: Could we do this with just ACKs or just NACKs?
	Slide 47: Timeouts and Losses
	Slide 48: Timeouts and Losses
	Slide 49: Timeouts and Losses
	Slide 50: Timeouts and Losses
	Slide 51: Timeouts and Losses
	Slide 52: Adding timeouts might create new problems for us to worry about. How many? Examples?
	Slide 54: Sequence Numbering
	Slide 55: What is our link utilization with a stop-and-wait protocol?

	Pipelining
	Slide 57: Pipelined Transmission
	Slide 58: Pipelined Transmission
	Slide 59: What should the sender do here?

	Go-Back-N
	Slide 60: ARQ Broad Classifications
	Slide 61: Go-Back-N
	Slide 62: Go-Back-N
	Slide 63: Go-Back-N
	Slide 64: Go-Back-N
	Slide 65: Go-Back-N
	Slide 66: Go-Back-N
	Slide 67: Go-Back-N
	Slide 68: Go-Back-N
	Slide 69: Go-Back-N
	Slide 70: Go-Back-N Performance Optimization
	Slide 71: Go-Back-N: Performance Optimization
	Slide 72: Animation

	Selective Repeat
	Slide 73: Selective Repeat
	Slide 74: Selective Repeat
	Slide 75: Selective Repeat
	Slide 76: Selective Repeat
	Slide 77: Selective Repeat
	Slide 78: Animation
	Slide 79: ARQ Alternatives
	Slide 80: Practical Reliability Questions

