CS 43: Computer Networks

UDP and Reliable Transport
October 27, 2025

SWARTHMORE COLLEGE

Connectionless: example

= UDP socket identified by 2-
tuple:
e dest IP address UDP datagrams with
same dest. port #, but

* dest port number _
different source (IP/

= when receiving host receives
UDP segment:

* checks destination port #
In segment

port #) will be directed
to same socket at
receiving host

* directs UDP segment to
socket with that port #

Slide 3

Connectionless demultiplexing: an example
A UDP socket is uniquely identified by (dest IP, dest port)

DatagramSocket
serverSocket = new
DatagramSocket
DatagramSocket mySocket2 53) - DatagramSocket mySocketl =
= new DatagramSocket (53); new DatagramSocket (5775) ;
(9157) ; application
application application
—al 4 l—
transport
s server: [P "y Ny
:i address B i
— phykical \ host: IP
N — — & address C
. dest IP: A dest IP: ?
host: IP < dest port: 9157 dest port: ?
address A N ol | >
> «+]
dest IP: B dest IP: ?

dest port: 53 dest port: ?

UDP — User Datagram Protocol

 Unreliable, unordered service

e Adds:
— multiplexing,
— checksum (error detection)

Slide 5

UDP: User Datagram Protocol [RFC 768]

“No frills,” “Bare bones” Internet transport protocol
— RFC 768 (1980)

— Length of the document?
https://www.rfc-editor.org/rfc/rfc768.html

Slide 6

https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html

UDP: User Datagram Protocol [RFC 768]

“Best effort” service, __(\‘J)_/ B

UDP segments may be:
— Lost
— Delivered out of order (same as underlying network layer)

Connectionless:
- Noinitial state transferred between
parties (no handshake)
- Each UDP segment is handled
independently

Slide 7

How many of the following steps does UDP
implement? (which ones?)

exchange an initiate handshake (connection setup)

break up packet into segments at the source and number
them

place segments in order at the destination
error-checking with checksum

Slide 8

Wireshark Example

UDP Segment

32 bits |

16 31

SrcPort DstPort

Length Checksum

Slide 11

TCP Segment!

| 32 bits
| |

source port# | dest port #
segquence number

acknowledgement number
|_2;enad E:ted MAIPlRHF receive window

checksum Urg data pointer

options (variable length)

application
data
(variable length)

Slide 12

UDP Segment

32 bits |

16 31

SrcPort DstPort

Length Checksum

Slide 13

UDP Checksum

e Goal: Detect transmission errors (e.g. flipped bits)

— Router memory errors
— Driver bugs
— Electromagnetic interference

Slide 14

UDP Checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

15t number 2" number sum

Transmitted: 5 6 11

D 4

Received: 4 6 10
\ ' J —
receiver-computed sender-computed
checksum checksum (as received)

O

Slide 15

UDP Checksum

RFC: “Checksum is the 16-bit one's complement of the
one's complement sum of a pseudo header of information
from the IP header, the UDP header, and the data, padded
with zero octets at the end (if necessary) to make a
multiple of two octets.”

UDP Checksum at the Sender

* Treat the entire segment as 16-bit integer values
 Add them all together (sum)
 Putthe 1's complement in the checksum header field

Slide 17

One’s Compliment

* In bitwise compliment, all of the bits in a binary
number are flipped.

* 501111000011110000 ->0000111100001111

Slide 18

Checksum example

example: add two 16-bit integers

111001100

1100110
11 01010101010101

wraparound@1011101110111011

sum 10111011101 11100
checksum 01 00010001 00O0O011

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

Slide 19

Receiver

Add all the received data together as 16-bit integers
Add that to the checksum

If resultisnot 1111 11111111 1111, there are errors!

If there are errors chuck the packet.

\ ("V)_/

If our checksum addition yields all ones, are
we guaranteed to be error-free?

A. Yes

B. No

Slide 21

Checksum example : weak protection!

example: add two 16-bit integers

= O
o

1110011001100 110
1101010101010 10 1

wraparound 1)1 0011 101110111011 Even though
> numbers have

ssam 1 011101110111100 [changed(bit

flips), no change
checksum 0100010001000011_inchecksum!

Slide 23

UDP Applications

* Latency sensitive

— Quick request/response (DNS)
— Network management (SNMP, DHCP)
— Voice/video chat

e Communicating with /lots of others

Slide 24

Recall: TCP send() blocking

With TCP, send() blocks if buffer full.

Slide 25

UDP sendto() blocking

With TCP, send() blocks if buffer full.
* Does UDP need to block? Should it?
A. Yes, if buffers are full, it should.

B. It doesn’t need to, but it might be useful.
C. No, it does not need to and shouldn’t do so.

Slide

Summary

Transport Layer:

* Provides a logical communication between
processes/ applications

* packets are called segments at the transport layer

* Transport layer protocol: responsible for adding port
numbers (mux/demux segments)

Summary

UDP:
* No “frills” protocol, No state maintained about the packet
 Checksum (1’s complement) over IP + UDP + payload.
— can only correct for 1 bit errors.
e adds port numbers over unreliable network (best effort)
* applications:
— latency sensitive applications: real-time audio, video
— communicating with a lot of end-hosts (like DNS)
 UDP Sockets:

— do not need to be implemented as blocking system calls for correctness since the only
guarantee UDP makes is best-effort delivery.

— however send/recv can be implemented as blocking system calls depending on the
application

Today

* Principles of reliability
— The Two Generals Problem
* Automatic Repeat Requests
— Stop and Wait
— Timeouts and Losses
— Pipelined Transmission

The Two Generals Problem

A B

 Two army divisions (blue) surround enemy (red)
— Each division led by a general

— Both must agree when to simultaneously attack
— If either side attacks alone, defeat

* Generals can only communicate via messengers
— Messengers may get captured (unreliable channel)

Slide 31

The Two Generals Problem

A B

e How to coordinate?

— Send messenger: “Attack at dawn”
— What if messenger doesn’t make it?

Slide 32

The Two Generals Problem

%

A B

e How to be sure messenger made it?
— Send acknowledgment: “| delivered message”

Slide 33

In the “two generals problem”, can the two armies reliably coordinate
their attack? (using what we just discussed)

* A. Yes (explain how)

* B. No (explain why not)

Slide 34

The Two Generals Problem

%

A B

e Result

— Can’t create perfect channel out of faulty one
— Can only increase probability of success

Slide 35

Give up? No way!

As humans, we like to face
difficult problem:s.

e We can’t control oceans, but
we can build canals

 We can’t fly, but we've
landed on the moon

* We just need engineering!

What can possibly go wrong.... Slide 36
ae

Engineering

* Concerns * Our toolbox
— Message corruption — Checksums
— Message duplication — Timeouts
— Message loss — Acks & Nacks
— Message reordering — Sequence numbering

— Performance — Pipelining

Engineering

* Concerns * Our toolbox
— Message corruption — Checksums
— Message duplication — Timeouts
— Message loss — Acks & Nacks
— Message reordering — Sequence numbering
— Performance — Pipelining

We use these to build Automatic Repeat Request (ARQ) protocols.

(We'll briefly talk about alternatives at the end.)

Slide 38

Automatic Repeat Request (ARQ)

* Intuitively, ARQ protocols act like you would when using a cell phone
with bad reception.

— Receiver: Message garbled? Ask to repeat.
— Sender: Didn’t hear a response? Speak again.
e Refer to book for building state machines.

— We'll look at TCP’s states soon

Slide 39

ARQ Broad Classifications

1. Stop-and-wait

Slide 40

Stop and Wait

Sender Receiver
We have:
* asender
* areceiver Time

* time: represented by
downwards arrow

Slide 41

Stop and Wait

Sender Receiver

Sender sends data and waits till
they get the response message
from the receiver. Time

Buffer data, and don’t send till response received

Da\
ReSPO“Se

! /

v v

Slide 42

Stop and Wait

Sender Receiver
* Up next: concrete
problems and mechanisms
to solve them. _
Time

* These mechanisms will Dat,
build upon each other

* Questions? y
v

Slide 43

Corruption?

* Error detection mechanism: Sender Receiver
checksum

— Data good — receiver sends

D
back ACK Time x
— Data corrupt — receiver sends
back NACK P\C\(INp\C\(
v

Slide 44

Could we do this with just ACKs or just NACKSs?

Error detection mechanism: Sender Receiver
checksum

* Data good —receiver sends back

D
ACK Time *
e Data corrupt —receiver sends
back NACK AckNAE
v

A. No, we need them both.

B. Yes, we could do without one
of them, but we’d need some
other mechanism. v v

C. Yes, we could get by without
one of them.

Slide 45

Timeouts and Losses

Sender Receiver
Time Dal‘a
=
o
J) cX
£ /
¢ —
v v

e Sender starts a clock. If no
response, retry.

Slide 47

Sender

Time

Timeout

v

Timeouts and Losses

Dat,

/C\(

Receiver

v

e Sender starts a clock. If no
response, retry.

Time

Sender Receiver
Dat, Corruption?
N \ Send no
o
v P\C\(response
£
|_
v v

Slide 48

Timeouts and Losses

Sender Receiver
Time Data Time

=

8

J) cX

£ /

P "

v v

e Sender starts a clock. If no
response, retry.

* Probably not a great idea for
handling corruption, but it
works.

Timeout

Timeout

Sender

K

Receiver

Corruption?
Send no
response

Slide 49

Timeouts and Losses

Sender Receiver
Time Dal‘a
=
o
J) cX
£ /
¢ —
v v

 Timeouts help us handle
message losses too!

Slide 50

Timeouts and Losses

Sender Receiver Sender Receiver
: D
Time Dat, Time | \at"”"
E S
= /C\(=
£ =
¢ i— v
Data
v v §
£ /C\(
=
* Timeouts help us handle

I 4 v
message losses too!

Slide 51

Adding timeouts might create new problems for us to worry about. How
many?¢ Examples?

Sender Receiver

Time Dal‘a

y

v v
No new problems (why not?)

Timeout

One new problem (which is..)
Two new problems (which are..)

o 0O W P

More than two new problems (which are..)

Slide 52

Sequence Numbering

Sender Receiver

 Add a monotonically increasing label to ¢ Ignore messages with numbers we’ve
each msg seen before

 When pipelining (a few slides from
now)

— Detect gaps in the sequence (e.g., 1,2,4,5)

d (O HacC IR

Sender > Receiver

Slide 54

What is our link utilization with a stop-and-wait protocol?

A <0.1% System parameters:
B. =0.1% Link rate: 8 Mbps (one megabyte per second)
C =~1% RTT: 100 milliseconds
CoeP Segment size: 1000 bytes
D. 1-10 %

E. >10%

Slide 55

Pipelined Transmission

Sender Receiver

Time

Keep multiple segments “in flight”
— Allows sender to make efficient use of the link

— Sequence numbers ensure receiver can distinguish
segments

Slide 57

Pipelined Transmission

Sender Receiver Sender Receiver

Time Time

Now what?

Keep multiple segments “in flight”
— Allows sender to make efficient use of the link

— Sequence numbers ensure receiver can distinguish
segments

Slide 58

What should the sender do here?

Sender Receiver

Time

A. Start sending al
B. Start sending al
C. Resendjust 2,t

What information does the sender need
to make that decision?

What is required by either party to keep
track?

Now what?

\4

data again from O.
data again from 2.

nen continue with 4 afterwards.

Slide 59

ARQ Broad Classifications

1. Stop-and-wait

2. Go-back-N

Slide 60

Go-Back-N

Sender Receiver
Dag e Retransmit from point of loss
3a-0
%\ — Segments between loss
Time %\ event and retransmission are
ignored
— “Go-back-N" if a timeout
! event occurs

Slide 61

Go-Back-N

Sender Receiver

Time y

Slide 62

Go-Back-N

Sender Receiver

. dtq.
Time &a, N

Slide 63

Go-Back-N

Sender Receiver
Dag,.
Daty
Dat
Time & N
/\&
Dat_,
I o
\ 4 v

Slide 64

Go-Back-N

Sender Receiver
Dag,.
Daty
Dat
Time ﬁ, N
po>
D
D3
dta.
po>
\ 4 v

Slide 65

Time

Go-Back-N

Receiver

Slide 66

Go-Back-N

Sender Receiver
Dag,.
Dty
Dat
Time — & N
po>
+ D
o D “a-3
-
A
= pX
Gl
v v

Slide 67

Go-Back-N

Sender Receiver

Time — &, Nooa

47
Timeout
2?
Q
A

Slide 68

Time

Sender
Daty.,
D3¢ a7
Day
& P\C\k’o
po>
-'5 Da ¥ a- 3
A
= o

Go-Back-N

Receiver

e Retransmit from point of loss

— Segments between loss
event and retransmission are
ignored

— “Go-back-N" if a timeout
event occurs

Slide 69

Go-Back-N Performance Optimization

Sender Receiver
Daty, * Can we optimize the
D
Dol performance? Yes!
Time — 2Ry ped
& P\C\LA'
5 Day,.
8 Dal‘a~43
£ P\C\QA
— pc\k'&

Slide 70

Go-Back-N: Performance Optimization

Sender Receiver

Time

<4—
Timeout

Slide 71

Animation

* https://media.pearsoncmg.com/ph/esm/ecs kurose compnetwork 8/c
w/content/interactiveanimations/go-back-n-protocol/index.htm]

Slide 72

https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html

Selective Repeat

Sender Receiver
Da * Receiver ACKs each segment
3-0

Daty; individually (not cumulative)

Dat
Time & N

* Sender only resends those not
ACKed

Slide 73

Selective Repeat

Sender Receiver
Data~0
Daty
Dat
Time & N
po>
Dt
I 23
v v

Slide 74

Time

Selective Repeat

Receiver

Slide 75

Time

Sender

Dag,.
Data~1

Selective Repeat

Receiver

Slide 76

Time

<4—

Timeout

Selective Repeat

Receiver

e Receiver ACKs each segment
individually (not cumulative)

* Sender only resends those not

ACKed

Slide 77

Animation

* https://media.pearsoncmg.com/ph/esm/ecs kurose compnetwork 8/c
w/content/interactiveanimations/selective-repeat-protocol/index.html

Slide 78

https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html
https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html

ARQ Alternatives

* (Can’t afford the RTT’s or timeouts?
* When?
— Broadcasting, with lots of receivers
— Very lossy or long-delay channels (e.g., space)
 Use redundancy — send more data
— Simple form: send the same message N times
— More efficient: use “erasure coding”

— For example, encode your data in 10 pieces such that the receiver can piece it
together with any subset of size 8.

Practical Reliability Questions

What does connection establishment look like?
How do we choose sequence numbers?

How do the sender and receiver keep track of
outstanding pipelined segments?

How should we choose timeout values?

How many segments should be pipelined?

	Default Section
	Slide 1: CS 43: Computer Networks
	Slide 3: Connectionless: example
	Slide 4: Connectionless demultiplexing: an example A UDP socket is uniquely identified by (dest IP, dest port)
	Slide 5: UDP – User Datagram Protocol
	Slide 6: UDP: User Datagram Protocol [RFC 768]
	Slide 7: UDP: User Datagram Protocol [RFC 768]
	Slide 8: How many of the following steps does UDP implement? (which ones?)
	Slide 10: Wireshark Example
	Slide 11: UDP Segment
	Slide 12: TCP Segment!
	Slide 13: UDP Segment
	Slide 14: UDP Checksum
	Slide 15: UDP Checksum
	Slide 16: UDP Checksum
	Slide 17: UDP Checksum at the Sender
	Slide 18: One’s Compliment
	Slide 19: Checksum example
	Slide 20: Receiver
	Slide 21: If our checksum addition yields all ones, are we guaranteed to be error-free?
	Slide 23: Checksum example : weak protection!
	Slide 24: UDP Applications
	Slide 25: Recall: TCP send() blocking
	Slide 26: UDP sendto() blocking
	Slide 28: Summary
	Slide 29: Summary
	Slide 30: Today

	Reliable Transport
	Slide 31: The Two Generals Problem
	Slide 32: The Two Generals Problem
	Slide 33: The Two Generals Problem
	Slide 34: In the “two generals problem”, can the two armies reliably coordinate their attack? (using what we just discussed)
	Slide 35: The Two Generals Problem
	Slide 36: Give up? No way!
	Slide 37: Engineering
	Slide 38: Engineering
	Slide 39: Automatic Repeat Request (ARQ)
	Slide 40: ARQ Broad Classifications
	Slide 41: Stop and Wait
	Slide 42: Stop and Wait
	Slide 43: Stop and Wait
	Slide 44: Corruption?
	Slide 45: Could we do this with just ACKs or just NACKs?
	Slide 47: Timeouts and Losses
	Slide 48: Timeouts and Losses
	Slide 49: Timeouts and Losses
	Slide 50: Timeouts and Losses
	Slide 51: Timeouts and Losses
	Slide 52: Adding timeouts might create new problems for us to worry about. How many? Examples?
	Slide 54: Sequence Numbering
	Slide 55: What is our link utilization with a stop-and-wait protocol?

	Pipelining
	Slide 57: Pipelined Transmission
	Slide 58: Pipelined Transmission
	Slide 59: What should the sender do here?

	Go-Back-N
	Slide 60: ARQ Broad Classifications
	Slide 61: Go-Back-N
	Slide 62: Go-Back-N
	Slide 63: Go-Back-N
	Slide 64: Go-Back-N
	Slide 65: Go-Back-N
	Slide 66: Go-Back-N
	Slide 67: Go-Back-N
	Slide 68: Go-Back-N
	Slide 69: Go-Back-N
	Slide 70: Go-Back-N Performance Optimization
	Slide 71: Go-Back-N: Performance Optimization
	Slide 72: Animation

	Selective Repeat
	Slide 73: Selective Repeat
	Slide 74: Selective Repeat
	Slide 75: Selective Repeat
	Slide 76: Selective Repeat
	Slide 77: Selective Repeat
	Slide 78: Animation
	Slide 79: ARQ Alternatives
	Slide 80: Practical Reliability Questions

