CS 43: Computer Networks

12: Transport Layer & UDP
October 24, 2024

af I o R e if]
SWARTHMORE COLLEGE

Slide 2

Application Layer

Does whatever an application does!

Root DNS Servers
com DNS servers org DNS servers edu DNS servers
\ bs.org swarthmore.edu umass.edu
yahoo.com amaz pl
DNS servers DI DNS servers DNS servers DNS servers

NS servers |

cs.swarthmore.edu
DNS servers

DNS Chrome Thunderbird Skype

Slide 3

Application Layer

Root DNS Servers

servers |
/ \ swarthm du umass.ed
yah m amazon.col m pbs.org DNS se DNS
DNS serv DNS servers DNS |
cs.swarthm d
DNS server:

Client-server architecture

Server
(always on)

=&

Thunderbird Skype

Peer-to-peer architecture

network
data link
D

Application Layer

Application
Transport:
TCP data
Network: IP data

network

Link: Ethernet data data link
transport
network
data link
physical

Encapsulation:
Higher layer within lower layer
Slide 4

Transport Layer!

Slide 5

Moving down a layer!

Application Layer

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Message Encapsulation

Application

Transport: TCP

data

Network: IP

data

Link: Ethernet

data

* Higher layer within lower layer

* Each layer has different concerns, provides abstract
services to those above

Slide 7

Recall: Addressing and Encapsulation

Human-readable strings: www.example.com |Application: HTTP
Assigning ports to socket ID Transport: TCP data
IP addresses (IPv4, IPv6) Network: IP data
Link: Ethernet data

(Network dependent) Ethernet:
48-bit MAC address

Slide 8

Transport Layer perspective

Application is the
boss

T

Transport: executing within the OS kernel

|

Network: ours to command!

Slide 9

Transport Layer perspective

Looked at
Application Layer

T

Transport: executing within the OS kernel

|

What commands can we send to the network layer?

Slide 10

What services does the network layer provide
to the transport layer?

A. Find paths through the
N etWO rk Looked at Application Layer

T

Transport: executing within the OS kernel

i

What commands can we send to the
network layer?

B. Guaranteed delivery rates

C. Best-effort delivery

D. Reliable Data Transfer

Slide 11

Transport Layer API

. . . . application
Provides logical communication between ; p
processes.

send_data_to_application (data, port, socket)

transport

Slide 13

Transport Layer: Runs on end systems

host

\4

Ethernet
interface € ’

Ethernet
interface

Logical communication
between processes

router router

N g

SONET

interface interface

SONET Ethernet :
H interface ‘: ’

host

Ethernet
interface

Slide 14

How many of these services might we provide at the transport
layer? Which?

e Reliable transfers * Encryption

* Error detection Message ordering

* Error correction e Link sharing fairness
* Bandwidth guarantees with other end hosts

* Latency guarantees

A. 4 or fewer D.7
B.5 E. All 8
C.6

Slide 15

TCP sounds great! UDP...meh. Why do we need it?

A. It has good performance characteristics.
B. Sometimes all we need is error detection.
C. We still need to distinguish between applications.

D. It basically just fills a gap in our layering model.

Slide 17

Adding Features

* Nothing comes for free

e Data given by application

TCP/

UDP Payload Data

* Apply header

— Keeps transport state
— Attached by sender
— Decoded by receiver

Slide 19

Moving down a layer!

Application Layer

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Network mnemonics

“Big Freaking Deal, Sherlock!”
* Data pieces:
— Transport: Segments
— Network: Datagrams (or packets)
— Link: Frames
— Physical: Bits

Slide 21

Two Main Transport Layer Protocols

e User Datagram Protocol (UDP)

— Unreliable, unordered delivery

* Transmission Control Protocol (TCP)

— Reliable in-order delivery

Slide 22

TCP: Transport Control Protocol

Stream socket: reliable stream of bytes

TCP

| Network Layer

GET http://www.google.com HTTP/1.1
Host: www.google.com

N

3| google.c p://www. | 1 GET htt

application layer packet boundaries are not preserved
* multiple send() -> one recv()
* 1 send() -> multiple recv()

http://www.google.com/

Slide 24

TCP: Stream abstraction

send() and recv() need not have a 1-1 correspondence.

Application Application
process process

]
send() { [] recv() I
||
TCP TCP
Socket Socket

A

[TCP Segment| [TCP Segment}- - « [TCP Segment|

UDP: User Datagram Protocol

Message socket: unreliable message delivery

| Network Layer)

dig demo.cs.swarthmore.edu
Header

Question
Answer
Authority

Additional

application layer packet boundaries are preserved
* 1send()->1recv()
Slide 25

Sockets

Application processes communicate using
11 7 .
sockets /mailboxes

— Abstraction: sends/receives data to/from its socket

— T

application / socket \ controlled by

.@] app developer

° W PP p

controlled
& = = |4
=

t_)_/\)/ s

Slide 26

Recall TCP Sockets

Server
socket() socket()
\ 4
bind()
listen()

v v
accept() [€ > connect()
v !
recv() € send()
v !
send() > recv()
v)
close() close()

i

Client

Slide 27

UDP Sockets

Server
socket() socket()
A 4 no connection
bind() establishment phase
recvfrom() sendto()
recvfrom()
l many different clients l
over the same socket
sendto() recvfrom
A v
close() close()

‘1 Client

4

sendto()

many different
servers over
the same
socket

Slide 28

Multiplexing/demultiplexing: Transport Layer

@ e NETFLIX @ e NETFLIX
_____l_ _i/__a_pgh_cat@n ____v__l _7[__a_p£,n_c:1u_on

Q transport
transport

multiplexin : :
P 5 de-multiplexing
assign port # to
distinguish
between

use port # to
direct packets to

the correct
application layer
processes

applications on
the same end
hosts

Multiplexing/demultiplexing

multiplexing at sender:

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

application

application

demultiplexing at receiver:

use header info to deliver
received segments to correct
socket

application \ :l
socket
~CPaD
| = | Dprocess
trarqport
netyyork

link g
physical
— e

A

Recall: Connection-oriented: example

= TCP socket identified by 4-tuple:
e source IP address
e source port number
* dest IP address
e dest port number

= Receiver uses all four values to direct segment to appropriate
socket

Slide 32

Recall: Connection-oriented: HTTP example

source port: 9000

application

A TCP socket is uniquely identified by (source IP, source port, dest IP, dest port)

host: IP
address A

source IP,port: B,80
dest IP,port: A,9000

source IP,port: A,9000
dest IP, port: B,80

P2 source P3 source
port: port:
application 5000 5050
application
—I.D.._l._ED_.I_
transpor
network
link
server: IP physical I '! \
address B -
host: IP
source IP,port: C,5000 address C
dest IP,port: B,80
source 1P,port: C,5050

dest IP,port: B,80

Slide 33

Connectionless: example

= UDP socket identified by 2-
tuple:
e dest IP address UDP datagrams with
same dest. port #, but

* dest port number :
different source (IP/

= when receiving host receives
UDP segment:

port #) will be directed
to same socket at
receiving host

* checks destination port #
in segment

e directs UDP segment to
socket with that port #

Slide 34

Connectionless demultiplexing: an example
A UDP socket is uniquely identified by (dest IP, dest port)

DatagramSocket
serverSocket = new
DatagramSocket
DatagramSocket mySocket2 53) ; DatagramSocket mySocketl =
= new DatagramSocket (53) ; new DatagramSocket (5775);
(9157) ; application |
application application
P3
el 4y Jofd
trafggport tranpport
nefwork server: IP netwprk
T address B ma
g phydical phykital \ host: IP
ddress
- M — E— - ddress C
. dest IP: A dest IP: ?
host: IP dest port: 9157 dest port: ?
address A h > e
L 4 <+]
dest IP: B dest IP: ?

dest port: 53 dest port: ?

UDP — User Datagram Protocol

* Unreliable, unordered service

e Adds:
— multiplexing,
— checksum (error detection)

Slide 36

UDP: User Datagram Protocol [RFC 768]

“No frills,” “Bare bones’ Internet transport protocol
— RFC 768 (1980)

— Length of the document?
https://www.rfc-editor.org/rfc/rfc768.html

Slide 37

https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html
https://www.rfc-editor.org/rfc/rfc768.html

UDP: User Datagram Protocol [RFC 768]

“Best effort” service, __(“J)_/_

UDP segments may be:
— Lost
— Delivered out of order (same as underlying network layer)

Connectionless:
- No initial state transferred between
parties (no handshake)
- Each UDP segment is handled
independently

Slide 38

How many of the following steps does UDP
implement? (which ones?)

exchange an initiate handshake (connection setup)

break up packet into segments at the source and number
them

place segments in order at the destination
. error-checking with checksum

Slide 39

UDP Segment

32 bits |

16 31

SrcPort DstPort

Length Checksum

Slide 41

TCP Segment!

32 bits

source port # dest port #

sequence number

acknowledgement number

len

h t) :
eac Eied |UIAIP|RIS|F receive window

checksum Urg data pointer

options (variable length)

application
data
(variable length)

Slide 42

UDP Segment

32 bits |

16 31

SrcPort DstPort

Length Checksum

Slide 43

UDP Checksum

* Goal: Detect transmission errors (e.g. flipped bits)
— Router memory errors
— Driver bugs
— Electromagnetic interference

Slide 44

UDP Checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

1st number 2nd number sum

Transmitted: 5 6 11

h 4

Received: 4 6 11
' Y ' —
receiver-computed sender-computed
checksum checksum (as received)

O

Slide 45

UDP Checksum

RFC: “Checksum is the 16-bit one's complement of the
one's complement sum of a pseudo header of information
from the IP header, the UDP header, and the data, padded
with zero octets at the end (if necessary) to make a
multiple of two octets.”

UDP Checksum at the Sender

* Treat the entire segment as 16-bit integer values
* Add them all together (sum)

 Putthe 1’s complement in the checksum header field

Slide 47

One’s Compliment

* In bitwise compliment, all of the bits in a binary
number are flipped.

* S01111000011110000 ->0000111100001111

Slide 48

Checksum example

example: add two 16-bit integers

11
11

o O

1 0
1 1

R
o
-
o
=
o =
= O

10 1 0
01 0 0

wraparound (1)1 01 11 01110111011

sum 1011101110111100
checksum 01 00010001000011

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

Recelver

Add all the received data together as 16-bit integers
Add that to the checksum
If resultisnot1111 11111111 1111, there are errors!

If there are errors chuck the packet.

(V)/

If our checksum addition yields all ones,
are we guaranteed to be error-free?

A. Yes

B. No

Slide 51

UDP Applications

* Latency sensitive
— Quick request/response (DNS)
— Network management (SNMP, DHCP)
— Voice/video chat

e Communicating with lots of others

Slide 53

Recall: TCP send() blocking

With TCP, send() blocks if buffer full.

Slide 54

UDP sendto() blocking

With TCP, send() blocks if buffer full.
 Does UDP need to block? Should it?
A. Yes, if buffers are full, it should.

B. It doesn’t need to, but it might be useful.
C. No, it does not need to and shouldn’t do so.

Slide

Summary

Transport Layer:

* Provides a logical communication between
processes/ applications

* packets are called segments at the transport layer

* Transport layer protocol: responsible for adding port
numbers (mux/demux segments)

Summary

UDP:;

No “frills” protocol, No state maintained about the packet
Checksum (1’s complement) over IP + UDP + payload.

— can only correct for 1 bit errors.

adds port numbers over unreliable network (best effort)
applications:

— latency sensitive applications: real-time audio, video

— communicating with a lot of end-hosts (like DNS)

UDP Sockets:

— do not need to be implemented as blocking system calls for correctness since the only
guarantee UDP makes is best-effort delivery.

— however send/recv can be implemented as blocking system calls depending on the
application

