
CS 43: Computer Networks

P2P, BitTorrent

October 06, 2025

Slides adapted from Kurose & Ross, Vasanta Chaganti, Kevin Webb

• P2P vs Client-Server applications

• P2P examples

• Napster

• BitTorrent

• Cooperative file transfers

Today

Where we are

Application: the application (So far: HTTP, Email, DNS)
Today: BitTorrent, Skype, P2P systems

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 3

Designating roles to an endpoint

Peer-to-peer architecture

Slide 4

Client
Server

(always on)
Internet Peer Peer

Client-server architecture

• no always-on server

• A peer talks directly with another peer

• Symmetric responsibility (unlike
client/server)

• peers request service from other
peers, provide service in return to
other peers

• self scalability – new peers bring
new service capacity, as well as
new service demands

• peers are intermittently connected
and change IP addresses

• complex management

peer-peer

Peer-to-Peer Architecture

Slide 5

File Transfer Problem

• You want to distribute a file to a large number of people as quickly as
possible.

Slide 6

Traditional Client/Server

• Many clients, 1 (or more) server(s)

• Web servers, DNS, file downloads, video streaming

Slide 7

Traditional Client/Server

Slide 8

What is the biggest problem you run into with the traditional
C/S model?

A. Scalability (how many end-hosts can you support?)

B. Reliability (what happens on failure?)

C. Efficiency (fast response time)

Slide 9

Traditional Client/Server

Heavy Congestion

Free Capacity

Slide 10

P2P Solution

Slide 11

Client-server vs. P2P: example

Slide 12

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

M
in

im
u

m
 D

is
tr

ib
u

ti
o

n
 T

im
e

N

P2P

Client-Server

Number of clients/peers

M
in

im
u

m
 D

is
tr

ib
ut

io
n

 T
im

e
(h

o
u

rs
)

In a peer-to-peer architecture, are there clients and servers?

A. Yes

B. No

Slide 13

Slide 14

us

u

d

server

network (with abundant

 bandwidth)

us: server upload capacity

u: peer upload capacity

d: peer download
capacityu d

u d

d

u

File size = 6 Gbits = 6000 Mb (megabits)
Number of peers = 10
Server upload rate of us = 100 Mbps (megabits per second)
Peer upload rate of u = 20Mbps
Peer download rate of d = 50Mbps Worksheet

Question

C/S Model

• Minimum time to distribute the file = max(time to upload the file, time
to download the file)

• Time to upload the file = NF/u_s = 6000*10/100 = 600s

• Time to download the file = 6000/50 = 120s

• Min time = 600s.

Slide 15

P2P Model

• Minimum time to distribute the file = max(time to upload the file, time
to download the file)

• Time to upload the file from the server = F/u_s = 6000/100 = 60s

• Time to upload from peers to every other peer

6000*10/(100+20*10) = 200s

• Time to download the file = 6000/50 = 120s

• Min time = 200s

Slide 16

Napster Architecture

Napster
Central Server

Log-in, upload
list of filesSearch for Star

Wars

A

B

C

D

E

F

G

B and C have
the file

Slide 18

File Search via Flooding in Gnutella

Slide 19

Peer Lifetimes: Highly available?

Sessions are short ~60
minutes

Hosts are frequently
offline

Host Uptime (out of 100%)

Pe
rc

en
ta

ge
 o

f
H

o
st

s

Slide 20

“only 20% of the peers in each system had an IP-level uptime
of 93% or more.”

Host Uptime (out of 100%)

Pe
rc

en
ta

ge
 o

f
H

o
st

s

Study of host uptime and application uptime (MMCN 2002)

Resilience to Failures and Attacks

• Previous studies (Barabasi) show interesting dichotomy
of resilience for “scale-free networks”

• Resilient to random failures, but not attacks

• Here’s what it looks like for Gnutella

1771 Peers in Feb, 2001 After random 30% of peers removed

After top 4% of peers are removed

Slide 21

Hierarchical P2P Networks

• FastTrack network (Kazaa, Grokster, Morpheus, Gnutella++)

supernode

Slide 22

Skype: P2P VoIP

• P2P client supporting VoIP, video, and
text based conversation, buddy lists, etc.

• Overlay P2P network consisting of ordinary and Super Nodes (SN)

• Each user registers with a central server

• User information propagated in a decentralized fashion

Slide 23

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a
file

Alice arrives …

• File divided into chunks (commonly 256 KB)
• Peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent Slide 24

.torrent files

• Contains address of tracker for the file

• Where can I find other peers?

• Contain a list of file chunks and their cryptographic hashes

• This ensures pieces are not modified

Slide 25

• has no chunks, but will accumulate
them over time from other peers

• registers with tracker to get list of
peers, connects to subset of peers
(“neighbors”)

BitTorrent : Peer Joining

Slide 26

• While downloading, peer uploads
chunks to other peers

• Churn: peers may come and go
• Peer may change peers with whom

it exchanges chunks

P2P file distribution: BitTorrent

Requesting Chunks

• At any given time, peers have different subsets of file chunks.

• Periodically, ask peers for list of chunks that they have.

• Once peer has entire file, it may (selfishly) leave or (altruistically)
remain in torrent

Sharing Pieces

Initial Seeder

1 2 3 4 5 6 7 8

Leecher

1 2 3

Leecher

54 76 8 1 2 3 54 76 8

Seeder Seeder

If you’re trying to receive a file, which chunk should you request
next?

A. Random chunk.
B. Most common chunk.
C. Least common chunk.
D. Some other chunk.
E. It doesn’t matter.

Slide 30

Requesting Chunks

• Bootstrap: random selection

• Initially, you have no pieces to trade

• Essentially, beg for free pieces at random

• Steady-state: rarest piece first

• Ensures that common pieces are saved for last

• Endgame

• Simultaneously request final pieces from multiple
peers

• Cancel connections to slow peers

• Ensures that final pieces arrive quickly

0%

100%

%
 D

o
w

n
lo

ad
ed

Slide 31

Sending Chunks: tit-for-tat

• A node sends chunks to those four peers currently sending it

chunks at highest rate

- other peers are choked (do not receive chunks)

- re-evaluate top 4 every ~10 secs

• Every 30 seconds: randomly select another peer, start sending

chunks

- “optimistically unchoke” this peer

- newly chosen peer may join top 4

Academic Interest in BitTorrent

• BitTorrent was enormously successful

• Large user base

• Lots of aggregate traffic

• Invented relatively recently

• Research

• Modifications to improve performance

• Modeling peer communications (auctions)

• Gaming the system (BitTyrant)

Incentives to Upload

• Every round, a BitTorrent client calculates the number of pieces
received from each peer

• The peers who gave the most will receive pieces in the next round

• These decisions are made by the unchoker

• Assumption

• Peers will give as many pieces as possible each round

• Based on bandwidth constraints, etc.

• Can an attacker abuse this assumption?

Slide 34

Unchoker Example

Round t Round t + 1

13

10

4

12

7

9

15

10

10

10

10

Slide 35

Abusing the Unchoker

Slide 36

• What if you really want to download from someone?

A. Send more data than the top 1 peer
B. Send more data than the top 4 peer
C. Send less data than the top 3 peers
D. Send some other combination

Round t Round t + 1

Abusing the Unchocker

• What if you really want to download from someone?

Round t Round t + 1

13

10

4

12

7

9

15

10

10

10

1020

Send a lot of
data, get 1st

place

11

Send just
enough data,
 get 4th place

10
Slide 37

BitTyrant

• Piatek et al. 2007

• Implements the “come in last strategy”

• Essentially, an unfair unchoker

• Faster than stock BitTorrent (For the Tyrant user!)

Slide 38

Sybil Attack

Round t Round t + 1

Total Capacity = 42

13

10

12

15

10

10

10

1042

Only receive
10 pieces

14 10

14

14

10

10

Divide
resources

across 3 fake
peers

Receive 30
pieces

Slide 39

Summary

• Application Layer: P2P

• Symmetric responsibility

• Self-scalability

• No central authority

• Different flavors:
• hybrid, hierarchical, completely decentralized

• Incentivize peers using game theory
• choice of chunk to download

• tit-for-tat model

• other optimizations possible

Slide 40

	Slide 1: CS 43: Computer Networks
	Slide 2: Today
	Slide 3: Where we are
	Slide 4: Designating roles to an endpoint
	Slide 5: Peer-to-Peer Architecture
	Slide 6: File Transfer Problem
	Slide 7: Traditional Client/Server
	Slide 8: Traditional Client/Server
	Slide 9: What is the biggest problem you run into with the traditional C/S model?
	Slide 10: Traditional Client/Server
	Slide 11: P2P Solution
	Slide 12: Client-server vs. P2P: example
	Slide 13: In a peer-to-peer architecture, are there clients and servers?
	Slide 14: Worksheet Question
	Slide 15: C/S Model
	Slide 16: P2P Model
	Slide 18: Napster Architecture
	Slide 19: File Search via Flooding in Gnutella
	Slide 20: Peer Lifetimes: Highly available?
	Slide 21: Resilience to Failures and Attacks
	Slide 22: Hierarchical P2P Networks
	Slide 23: Skype: P2P VoIP
	Slide 24: P2P file distribution: BitTorrent
	Slide 25: .torrent files
	Slide 26: BitTorrent : Peer Joining
	Slide 27: P2P file distribution: BitTorrent
	Slide 28: Requesting Chunks
	Slide 29: Sharing Pieces
	Slide 30: If you’re trying to receive a file, which chunk should you request next?
	Slide 31: Requesting Chunks
	Slide 32: Sending Chunks: tit-for-tat
	Slide 33: Academic Interest in BitTorrent
	Slide 34: Incentives to Upload
	Slide 35: Unchoker Example
	Slide 36: Abusing the Unchoker
	Slide 37: Abusing the Unchocker
	Slide 38: BitTyrant
	Slide 39: Sybil Attack
	Slide 40: Summary

