CS 43: Computer Networks

DNS and Email September 29, 2025

Let's talk about the quiz

• See <u>Gradescope</u> for your grade

Where we are

Application: the application (e.g., HTTP, DNS)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1's and 0's/bits across a medium (copper, the air, fiber)

Today

- Wrapping up DNS
 - DNS as indirection
 - DNS security
- SMTP Protocol

everything inside a DNS packet

9

I literally mean everything, I copied this verbatim from a real DNS request using Wireshark. (DNS packets are binary but we're showing a human-readable representation here)

DNS Caching

- Why cache?
 - apprx. 1 sec latency before starting a download
 - Popular sites visited often

- Where to cache?
 - Local DNS server
 - Browser

DNS Caching

- When to cache?
 - learn a mapping? cache!
 - any name server can cache

- For how long?
 - until Time To Live (expires)
- What to cache?
 - TLD servers cached almost never change
 - Root name servers usually, not visited legitimately

The TTL value should be...

A. Short, to make sure that changes are accurately reflected

B. Long, to avoid re-queries of higher-level DNS servers

C. Something else

DNS as Indirection Service

- DNS gives us very powerful capabilities
 - Not only easier for humans to reference machines!
- Changing the IPs of machines becomes trivial
 - e.g. you want to move your web server to a new host
 - Just change the DNS record!

Aliasing and Load Balancing

One machine can have many aliases

One domain can map to multiple machines

Content Delivery Networks

- Step 1: Register networkuptopia.com at DNS registrar
 - provide names, IP addresses of authoritative name server (primary and secondary)

- Step 2: Registrar inserts two RRs into .com TLD server
 - (networkutopia.com, dns1.networkutopia.com, NS)
 - (dns1.networkutopia.com, 212.212.212.1, A)

- Step 3: Set up authoritative server at that name/address
 - Create records for the services:

- Step 3: Set up authoritative server at that name/address
 - Create records for the services:
 - type A record for www.networkuptopia.com
 - type MX record for @networkutopia.com email

- Example: new startup "Network Utopia"
- Register networkuptopia.com at DNS registrar
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server
 - (networkutopia.com, dns1.networkutopia.com, NS)
 - (dns1.networkutopia.com, 212.212.212.1, A)
- Set up authoritative server at that name/address
 - Create records for the services:
 - type A record for www.networkuptopia.com
 - type MX record for @networkutopia.com email

Worksheet: Inserting (or changing) records

Adding a new DNS Entry: You've just received venture capital funding for a fancy new Internet service named fancy.rocks with the brand new ".rocks" top-level domain name. You have a webserver with the host name "server.fancy.rocks" and an authoritative DNS server "dns.fancy.rocks".

What new DNS entries need to be added? What servers do they need to be added to?

- . → nameless root
- .rocks → top-level domain
 - Register fancy.rocks' authoritative DNS server with .rocks domain
 - Step 1: NS record (which says .fancy.rocks can be resolved by dns.fancy.rocks)
 - (fancy.rocks 1-day dns.fancy.rocks NS)
 - Step 2: A record (dns.fancy.rocks has the IP address 1.2.3.4 (you can come up with any IP address)).
 - (dns.fancy.rocks 1-day 1.2.3.4 A)

- .fancy.rocks → (server.fancy.rocks)
 - When we reach the authoritative name domain (fancy.rocks) we need to first associate the domain name with the server's name. This is a CNAME record.
 - (fancy.rocks 1day server.fancy.rocks CNAME)
 - Next, we need to provide the IP address of the server.
 - (server.fancy.rocks 12hours 4.5.6.7 A)
 - Here, I have set the A record TTL to be smaller (compared to the other records), in case I plan to migrate the server to a different IP address.

Tools

- dig
 - \$ dig cs.swarthmore.edu
 - \$ dig cs.swarthmore.edu ns
 - + dig @dns.cs.swarthmore.edu cs.swarthmore.edu mx
 - \$ man dig
- host
 - \$ host cs.swarthmore.edu
 - + \$ host -t ns cs.swarthmore.edu
 - + host -t mx cs.swarthmore.edu dns.cs.swarthmore.edu
 - \$ man host

Tools (cont)

- nslookup
 - \$ nslookup cs.swarthmore.edu
 - \$ nslookup cs.swarthmore.edu dns.cs.swarthmore.edu
- whois
 - \$ whois google.com
 - \$ whois swarthmore.edu

DNS security

DNS Vulnerabilities:

- No authentication
- Connectionless transport layer protocol (UDP)

DNS Attacks:

- Amplification Attack
- Cache Poisoning
- Man-in-the-middle
- DNS Redirection
- DDoS
- DNS Injection

Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, bypassing root
- Bombard TLD servers
 - Potentially more dangerous

Redirect attacks

- Man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus replies to DNS server that caches

Exploit DNS for DDoS

- Send queries with spoofed source address: target IP
- Requires amplification

DNS Query Process and Cache

Attack Surface Overview

Denial Of Service

- Flood DNS servers with requests until they fail
- October 2002: massive DDoS against the root name servers
 - What was the effect?
 - ... users didn't even notice
 - Root zone file is cached almost everywhere
- More targeted attacks can be effective
 - Local DNS server → cannot access DNS
 - Authoritative server \rightarrow cannot access domain

DNS Hijacking

- Infect their OS or browser with a virus/trojan
 - e.g. Many trojans change entries in /etc/hosts
 - *.bankofamerica.com → evilbank.com
- Man-in-the-middle

- Response Spoofing
 - Eavesdrop on requests
 - Outrace the servers response

Worksheet: Attacking DNS

Consider the following legitimate DNS response for eecs.mit.edu followed by a poisoned response. What are the consequences to www.swarthmore.edu with the poisoned DNS response?

```
Legitimate Response:
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901</pre>
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3
;; QUESTION SECTION:
;eecs.mit.edu. IN A
;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6
;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.
;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160
```

Poisoned DNS Response:

```
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901</pre>
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3
;; QUESTION SECTION:
;eecs.mit.edu.
                                    IN
                                             Α
;; ANSWER SECTION:
eecs.mit.edu.
                 21600
                          ΙN
                                   Α
                                            18.62.1.6
;; AUTHORITY SECTION:
                                            BITSY.mit.edu.
mit.edu.
                 11088
                          ΙN
                                   NS
mit.edu.
                                            W20NS.mit.edu.
                                   NS
                 11088
mit.edu.
                                            www.swarthmore.edu
                 30000
                          IN
                                    NS
;; ADDITIONAL SECTION:
www.swarthmore.edu.
                                                     18.6.6.6
                          30000
                                   IN
                                            18.72.0.3
BITSY.mit.edu. 166408
W20NS.mit.edu. 126738
                                            18.70.0.160
```


DNSSEC Hierarchy of Trust

Solution: DNSSEC

- Cryptographically sign critical resource records
 - Resolver can verify the cryptographic signature
- Two new resource types
 - Type = DNSKEY
 - Name = Zone domain name
 - Value = Public key for the zone
 - Type = RRSIG
 - Name = (type, name) tuple, i.e. the quer
 - Value = Cryptographic signature of the query results

Creates a hierarchy of trust within each zone

Prevents hijacking and spoofing Let's talk a little bit about SMTP....

Try SMTP interaction for yourself:

- telnet allspice.cs.swarthmore.edu 25
- You should see a 220 reply from the server.
- enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands

(lets you send email without using email client (MUA))

Demo

Sample SMTP interaction

\$ telnet allspice.cs.swarthmore.edu 25

Trying 130.58.68.9...

Connected to all spice.cs.swarthmore.edu

220 allspice.cs.swarthmore.edu ESMTP Postfix

HELO cs.swarthmore.edu

250 allspice.cs.swarthmore.edu

MAIL FROM:<rware@cs.swarthmore.edu>

250 2.1.0 OK

RCPT TO:<rware@cs.swarthmore.edu>

250 2.1.5 OK

DATA

354 End data with <CR><LF>.<CR><LF>

To: Ranysha Ware < rware@cs.swarthmore.edu>

From: Ranysha Ware <rware@cs.swarthmore.edu>

Subject: Telnet test message

This is a test message, via telnet, to myself.

Lecture 12 - Slide 51

Sample SMTP interaction

\$ telnet allspice.cs.swarthmore.edu 25

Trying 130.58.68.9...

Connected to all spice.cs.swarthmore.edu

220 allspice.cs.swarthmore.edu ESMTP Postfix

HELO cs.swarthmore.edu

250 allspice.cs.swarthmore.edu

MAIL FROM:<rware@cs.swarthmore.edu>

250 2.1.0 OK

RCPT TO:<rware@cs.swarthmore.edu>

250 2.1.5 OK

DATA

354 End data with <CR><LF>.<CR><LF>

To: Ranysha Ware <rware@cs.swarthmore.edu>

From: Ranysha Ware <rware@cs.swarthmore.edu>

Subject: Telnet test message

This is a test message, via telnet, to myself.

End of message: CRLF (Dot) CRLF

What keeps us from entering a fake information (e.g., FROM address)?

A. Nothing.

B. The MTA checks that the FROM is valid.

C. We enter a name/password logging into the MTA.

Fun Demo