
CS 43: Computer Networks

Fall 2025, Week 2

Substitute Instructor: Kevin Webb

Slides adapted from Kurose & Ross, Kevin Webb, Vasanta Chaganti

Five-Layer Internet Model

2

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium (copper, the air, fiber)

Networks have many concerns, such as reliability, error

checking, naming and data ordering. Who/what should be

responsible for addressing them? (Why? Which ones belong in which

location?)

A. The network should take care of these for us.

B. The communicating hosts should handle these.

C. Some other entity should solve these problems.

The “End-to-End” Argument

• Don’t provide a function at lower level of abstraction (layer) if you
have to do it at higher layer anyway - unless there is a very good
performance reason to do so.

• Examples: error control, quality of service

• Reference: Saltzer, Reed, Clark, “End-To-End Arguments in System
Design,” ACM Transactions on Computer Systems, Vol. 2 (4), 1984.

4

Which layers should routers participate in?

(Getting data from host to host.) Why?

A. All of Them

B. Transport through Physical

C. Network, Link and Physical

D. Link and Physical

Application

Transport

Network

Link (data-link)

Physical

TCP/IP Protocol Stack

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

6

Application Layer

Transport Layer

Link Layer

Network Layer

Application Layer

(HTTP, FTP, SMTP, Zoom)

• Does whatever an application does!

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Transport Layer (TCP, UDP)

• Provides

– Ordering

– Error checking

– Delivery guarantee

– Congestion control

– Flow control

• Or doesn’t!

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Application Layer Data
becomes the payload for
the transport layer

Network Layer (IP)

• Routers: choose paths through network

9

9

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Transport layer data +
header becomes
payload for the
network layer

Network Layer (IP)

• Routers: chooses paths through network
– Circuit switching: guaranteed channel for a session (Telephone system)

– Packet switching: statistical multiplexing of independent pieces of data (Internet)

10

(Data) Link Layer (Ethernet, WiFi, DOCSIS)

• Break message into chunks (frames) to send over physical medium

• Media access: can it send the frame now?

• Send frame, handle “collisions”

Receiver

1111

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Network layer data + header
becomes payload for the link
layer

Physical layer

(Copper, Coax, Air, Fiber Optics)

802.11 Wireless
Access Point

Ethernet switch/router

To campus
backbone

2.4Ghz Radio
Cat5 Cable (copper wires)

Fiber optics

12

Because of our layering abstractions, we can use any technology we

want, at any layer (as long as it doesn't interfere with the other layers).
(Why or why not?)

A. Always

B. Usually

C. Sometimes

D. Never

Internet Protocol Suite

HTTP FTP Zoom…

Ethernet Wifi Bluetooth…

Internet Protocol Suite

HTTP FTP Zoom…

Ethernet Wifi Bluetooth…

TCP UDP

IP

Internet Protocol Suite ("Hourglass model")

HTTP FTP Zoom…

Ethernet Wifi Bluetooth…

TCP UDP

IP

"Narrow Waist"

Putting this all together

• ROUGHLY, what happens when I click on a Web page from
Swarthmore?

www.google.com

?

My computer

17

Internet

Web request (HTTP)

• Turn click into HTTP request

GET / HTTP/1.1
Host: www.google.com
…

18

Name resolution (DNS)

• Where is www.google.com?

What’s the address for www.google.com

My computer

(130.58.68.164)

Oh, you can find it at 142.250.65.238

Local DNS server

(130.58.68.10)

19

Transport (TCP)

• Break message into chunks (TCP segments)

• Should be delivered reliably & in-order

GET / HT1TP/1.12Host: ww3

20

GET / HTTP/1.1
Host: www.google.com
…

Global Network Addressing

• Add IP header, address each IP packet so it can traverse network
and arrive at destination.

My computer

(130.58.68.164)

www.google.com
(142.250.65.238)

GET / HT1142.250.65.238 130.58.68.164

Destination Source Data

21

(IP) At Each Router

• Where do I send this to get it closer to Google?

• Which is the best route to take?

?

Link & Physical Layers

• Forward to the next node!

• Share the physical medium.

• Detect errors.

Summary

• Layers of abstraction divide up responsibility for network functionality

• End-to-end principle: do work at end hosts when possible

• Protocol governs message format and transfer procedure

• Messages encapsulated by protocol headers at each layer

Up Next: Prep For Lab 1

• You need to know a bit about HTTP

• You need to know a bit about sockets

• After we get these lab prerequisites out of the way, we’ll go into more
depth about HTTP.

Slide 25

Creating a network app

write programs that:

• run on (different) end systems

• communicate over network

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Slide 26

Creating a network app

no need to write software for network-core

devices!

• network-core devices do not run user

applications

• applications on end systems

– rapid app development, propagation

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Slide 27

HTTP: HyperText Transfer Protocol

• client: browser that uses

HTTP to request, and

receive Web objects.

• server: Web server that

uses HTTP to respond with

requested object.

PC running

Firefox browser

server

running

Apache Web

server

iPhone running

Safari browser

Client/Server model

Slide 28

What IS A Web Browser?

HTTP and the Web

• web page consists of objects

• object can be: an HTML file (index.html)

demo.cs.swarthmore.edu/index.html

Slide 30

Web objects

• web page consists of objects

• object can be: JPEG image

Slide 31

Web objects

• web page consists of objects

• object can be: audio file

Courtesy: New York Times Slide 32

Web objects

• web page consists of objects

• object can be: video, java applets, etc.

Slide 33

HTTP and the Web

• a web page consists of base HTML-file which
includes several referenced objects

• each object is addressable by a URL, e.g.,

demo.cs.swarthmore.edu/example/pic.html

host name path name
Slide 34

HTTP Overview

1. User types in a URL.
http://some.host.name.tld/directory/name/file.ext

HTTP Overview

2. Browser establishes connection with server.
Looks up “some.host.name.tld”
Calls connect()

HTTP Overview

3. Browser requests the corresponding data.
GET /directory/name/file.ext HTTP/1.0
Host: some.host.name.tld
[other optional fields, for example:]
User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64)
Accept-language: en
[Blank line]

HTTP Overview

4. Server responds with the requested data.
HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1299
Date: Sun, 01 Sep 2013 21:26:38 GMT
[Blank line]
(Data data data data…)

HTTP Overview

5. Browser renders the response, fetches any
additional objects, and waits for server to close
the connection.

HTTP Overview

5. Browser renders the response, fetches any
additional objects, and waits for server to close
the connection.

<html>
 <head>
 <title>Page title!</title>
 </head>

 <body>
 <p>a paragraph of text</p>

 ...
 </body>
</html>

HTTP Overview

1. User types in a URL.

2. Browser establishes connection with server.

3. Browser requests the corresponding data.

4. Server responds with the requested data.

5. Browser renders the response, fetches any additional objects, and
waits for server to close the connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

HTTP Overview (Lab 1)

1. User types in a URL.

2. Browser establishes connection with server.

3. Browser requests the corresponding data.

4. Server responds with the requested data.

5. Browser renders the response, fetches any additional objects, and
waits for server to close the connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at example server.
Anything typed is sent to server on port 80
at demo.cs.swarthmore.edu

telnet demo.cs.swarthmore.edu 80

2. Type in a GET HTTP request:

GET / HTTP/1.0

Host: demo.cs.swarthmore.edu

(blank line)

By typing this in (hit enter twice), you send
this minimal (but complete)
GET request to the HTTP server.

3. Look at response message sent by HTTP server!

Trying out HTTP (client side) for yourself

Example (live demo)

Example

Response
headers

Response body

(This is what you should be
saving to file in lab 1.)

Request

Note!

This server is intentionally NOT using
encryption, to make it easier to work
with for lab 1!

HTTPS (live demo)

• Telnet transfers unencrypted data ("clear text")

– Great for learning

– Not so great for real world security / privacy

• For a similar (interactive) command line experience with encryption:

– openssl s_client -crlf -connect server.name:443

• two types of HTTP messages: request, response

• HTTP request message:

– ASCII (human-readable format)

request line
(GET, POST,
HEAD, etc. commands)

header
 lines

carriage return,
line feed

GET /~kwebb/index.html HTTP/1.1\r\n

Host: web.cs.swarthmore.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

carriage return character (CR)

line-feed character (LF)

HTTP request message

Why do we have these \r\n (CRLF) things all

over the place?

A. They’re generated when the user hits ‘enter’.

B. They signal the end of a field or section.

C. They’re important for some other reason.

D. They’re an unnecessary protocol artifact.

GET /~kwebb/index.html HTTP/1.1\r\n

Host: web.cs.swarthmore.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

How else might we delineate messages?
(What are the good/bad properties of each of these ideas?)

A. There’s not much else we can do.

B. Force all messages to be the same size.

C. Send the message size prior to the message.

D. Some other way (discuss).

HTTP is all text…

• Makes the protocol simple
– Easy to delineate message (\r\n)

– (Relatively) human-readable

– No worries about encoding or formatting data

– Variable length data

• Not the most efficient
– Many protocols use binary fields

• Sending “12345678” as a string is 8 bytes

• As an integer, 12345678 needs only 4 bytes

– The headers may come in any order

– Requires string parsing / processing

HTTP is all text…

• The HTTP PROTOCOL is all text

– That is, the messages that are required (request and response)

– All headers are text

• The BODY of a message might NOT be text

• This distinction is critically important for lab 1!

– Fine to use string functions on HTTP messages

– You better not use string functions on body data

Visualizing HTTP: telnet

Visualizing HTTP: wireshark

• There’s more to say about HTTP, but for lab 1, let’s talk a bit about
sockets too…

Slide 55

What is a socket?

An inter-process communication (IPC) abstraction through
which an application may send and receive data.

Behaves similarly to way an open file handle allows an
application to read and write data to storage.

Slide 56

Recall Inter-process Communication (IPC)

• Processes must communicate to cooperate

• Must have two mechanisms:

– Data transfer

– Synchronization

Inter-process Communication (IPC)

• Operating systems provide several IPC mechanisms (Take CS 45)

– files

– shared memory (in several ways)

– pipes

– …

– sockets

• Broadly, these fall into two categories:

1. Shared memory

2. Message passing

Only works on one computer
(shared hardware).

Also, this is what you're most
familiar with.

Thread Model (Shared Memory)

• Single process with multiple
copies of execution resources.

• ONE shared virtual address
space!

– All process memory shared by every
thread.

– Threads coordinate by sharing
variables (typically on heap)

Text

Data

T1 Stack

OS

Heap

T2 Stack

T3 Stack

Process

PC

SP

PC

SP

PC

SP

Execution
Context

Note: this is technically not IPC (there's only one process),
but this is the most common form of shared memory today.

Message Passing IPC (Pipe)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

Let's say process P1 wants to send
data to process P2.

They execute on the same hardware
and share an operating system.

They do NOT directly share any
memory.

Message Passing IPC (Pipe)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P1 can send data into the pipe by
calling:

write(…, data pointer, count)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)

Message Passing IPC (Pipe)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P1 can send data into the pipe by
calling:

write(…, data pointer, count)

data pointer: the start of data to copy

count: how many bytes to copy

Message Passing IPC (Pipe)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P1 can send data into the pipe by
calling:

write(fd, data pointer, count)

data pointer: the start of data to copy

count: how many bytes to copy

Message Passing IPC (Pipe)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P1 can send data into the pipe by
calling:

write(…, data pointer, count)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)

data pointer, 3

Message Passing IPC (Pipe)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P2 can receive data from the pipe by
calling:

read(…, data pointer, count)

data pointer: the start of location to
copy into

count: how many bytes to copy
(at most)

Message Passing IPC (Pipe)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P2 can receive data from the pipe by
calling:

read(…, data pointer, count)

data pointer: the start of location to
copy into

count: how many bytes to copy
(at most)

data pointer, 2

Message Passing IPC (Pipe)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

Data transfer: data moves in (write) and
out (read) of OS message buffer

Synchronization: ?

Where is the synchronization* in message passing IPC?
(*application synchronization)

A. The OS adds synchronization.

B. Synchronization is determined by the order of sends and receives.

C. The communicating processes exchange synchronization messages
(lock/unlock).

D. There is no synchronization mechanism.

Message Passing IPC (Socket)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

Let's say process P1 wants to send
data to process P2.

They execute on the different
hardware and share nothing but a
network connection.

OS kernel

Network

Message Passing IPC (Socket)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

P1 can send data into the socket by calling:

send(…, data pointer, count, …)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)

OS kernel OS kernel

Network

Message Passing IPC (Socket)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

P1 can send data into the socket by calling:

send(…, data pointer, count, …)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)

OS kernel OS kernel

Network

Message Passing IPC (Socket)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

P1 can send data into the socket by calling:

send(…, data pointer, count, …)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)

OS kernel OS kernel

Network

Message Passing IPC (Socket)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

OS kernel OS kernel

Network

P1 can send data into the socket by calling:

send(…, data pointer, count, …)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)

Message Passing IPC (Socket)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

The sender's OS will transmit the data
to the receiver's OS when it's
convenient to do so.

OS kernel OS kernel

Network

Message Passing IPC (Socket)

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

OS kernel OS kernel

Network

P2 can receive data from the pipe by calling:

recv(…, data pointer, count, …)

data pointer: the start of location to copy into

count: how many bytes to copy
(at most)

Questions about this model?

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

OS kernel OS kernel

Network

Don't worry about "how many" bytes yet.

Questions about this model?

Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

OS kernel OS kernel

Network

Don't worry about "how many" bytes yet.

"Socket buffer"

Descriptor Table

• OS stores a table, per
process, of descriptors

Process

Kernel

Descriptors

Where do descriptors come from?

What are they?

Descriptor Table

• OS stores a table, per
process, of descriptors

Process

Kernel

0

1

2

stdin stdout stderr

…

socket()

• socket() returns a
socket descriptor

• Indexes into table

Process

Kernel

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

7

socket()

• OS stores details of the
socket, connection,
and pointers to buffers

Process

Kernel

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

socket()
Process

Kernel

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

• OS stores details of the
socket, connection,
and pointers to buffers

Buffer: Temporary
data storage location

Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Internet

Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

recv(): Move data from
socket buffer to process.

Internet

Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

send(): Move data from
process to socket buffer

Internet

Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Challenge: Your process does
NOT know what is stored here!

Free space? Is data here?

recv()
Process

Kernel

0

1

2

7

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: …, Local port: …
Send buffer , Receive buffer

r_buf (size 200)

Is data here?

What should we do if the receive socket
buffer is empty? If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

Socket buffer (receive)

Empty

100 bytes

Two Scenarios:

r_buf (size 200)

What should we do if the receive socket
buffer is empty? If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

Empty 100 Bytes

A Block Block

B Block Copy 100 bytes

C Copy 0 bytes Block

D Copy 0 bytes Copy 100 bytes

E Something else

Socket buffer (receive)

Empty

Two Scenarios:

r_buf (size 200)

100 bytes

"Block" means pause the calling process.

What should we do if the send socket
buffer is full? If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int send_val = send(sock, s_buf, 200, 0);

Socket buffer (send)

Full

Two Scenarios:

s_buf (size 200)

100 bytes

What should we do if the send socket
buffer is full? If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int send_val = send(sock, s_buf, 200, 0);

Full 100 Bytes

A Return 0 Copy 100 bytes

B Block Copy 100 bytes

C Return 0 Block

D Block Block

E Something else

Socket buffer (send)

Full

Two Scenarios:

s_buf (size 200)

100 bytes

Blocking Implications

• DO NOT assume that you will recv() all of the bytes that you ask for.

• DO NOT assume that you are done receiving.

• ALWAYS receive in a loop!*

• DO NOT assume that you will send() all of the data you ask the kernel to
copy.

• Keep track of where you are in the data you want to send.

• ALWAYS send in a loop!*

* Unless you’re dealing with a single byte, which is rare.

ALWAYS check send() return value!

• When send() return value is less than the data size, you are responsible
for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

ALWAYS check send() return value!

• When send() return value is less than the data size, you are responsible
for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

60

Data sent: 60
Data to send: 130

Data:

ALWAYS check send() return value!

• When send() return value is less than the data size, you are responsible
for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

Data sent: 60
Data to send: 130

// Copy the 70 bytes starting from offset 60.
send(sock, data + 60, 130 - 60, 0);

Data:

60

ALWAYS check send() return value!

• When send() return value is less than the data size, you are responsible
for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

Data sent: 60
Data to send: 130

// Copy the 70 bytes starting from offset 60.
send(sock, data + 60, 130 - 60, 0);

Data:

?

Repeat until all bytes are sent. (data_sent == data_to_send)…

60

Blocking Summary

send()

• Blocks when socket buffer for sending
is full

• Returns less than requested size when
buffer cannot hold full size

recv()

• Blocks when socket buffer for receiving
is empty

• Returns less than requested size when
buffer has less than full size

Always check the return value!

Create a TCP socket: socket()

int socket(int domain, int type, int protocol)

int sock = socket(AF_INET, SOCK_STREAM, 0);

• domain: communication domain of the socket: generic interface.

• type of socket: reliable vs. best-effort

• end-to-end protocol: TCP for a stream socket -

– 0: default E2E for specified protocol family and type.

int socket(int domain, int type, int protocol)

int sock = socket(AF_INET, SOCK_STREAM, 0);

/* AF_INET: Communicate with IPv4 Address Family (AF),

 SOCK_STREAM: Stream-based protocol

 int sock: returns an integer-valued socket

descriptor or handle

*/

if (sock < 0) { // If socket() fails, it returns -1

perror("socket");

exit(1);

}

Create a TCP socket: socket()

Close a socket: close()

int close(int socket)

if (close(sock)) {

perror("close");

exit(1);

}

/* int socket: int socket descriptor is passed to close()*/

• Close operation similar to closing a file.

• initiate actions to shut down communication

• deallocate resources associated with the socket

• cannot send(), recv() after you close the socket.

connect()
socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

connect()

• Before you can communicate, a connection must be established.

• Client Initiates, Server waits.

• Once connect() returns, socket is connected and we can proceed with
send(), recv()

int connect(int socket, const struct sockaddr
*foreign_address, socklen_t address_length)

connect()

int connect(int socket, const struct sockaddr
*foreign_address, socklen_t address_length)

struct sockaddr_in addr;

int res = connect(sock, (struct sockaddr*)&addr, sizeof(addr));

/* int socket: socket descriptor

 foreignAddress: pointer to sockaddr_in containing Internet
address, port of server.

 addressLength: length of address structure

*/

send(), recv()
socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

send(), recv()

Socket is connected when:

• client calls connect()

• connected socket is returned by accept() on server

ssize_t send(int socket, const void *msg, msgLength, int flags)

ssize_t recv(int socket, void *rcvBuffer, size_t bufferLength, int flags)

/* int socket: socket descriptor

 return: # bytes sent/received or -1 for failure.

send()

send():

ssize_t send(int socket, const void *msg, msgLength, int flags)

/* int socket: socket descriptor

 send(): msg: sequence of bytes to be sent

 send(): mesgLength: # bytes to send

send(), recv()

recv():

ssize_t recv (int socket, void *rcvBuffer, size_t bufferLength, int flags)

int recv_count = recv(sock, buf, 255, 0);

/* int socket: socket descriptor

 void *rcvBuffer: generally a char array

 size_t bufferLength: length of buffer: max # bytes that can be
received at once.

 flags: setting flag to zero specifies default behavior.

 Place all send() and recv() calls in a loop, until you are left with no more
bytes to send or receive. One call to send()/recv(), irrespective of the
buffer does not necessarily mean all your data will be received at once.

	Default Section
	Slide 1: CS 43: Computer Networks
	Slide 2: Five-Layer Internet Model
	Slide 3: Networks have many concerns, such as reliability, error checking, naming and data ordering. Who/what should be responsible for addressing them? (Why? Which ones belong in which location?)
	Slide 4: The “End-to-End” Argument
	Slide 5: Which layers should routers participate in? (Getting data from host to host.) Why?
	Slide 6: TCP/IP Protocol Stack
	Slide 7: Application Layer (HTTP, FTP, SMTP, Zoom)
	Slide 8: Transport Layer (TCP, UDP)
	Slide 9: Network Layer (IP)
	Slide 10: Network Layer (IP)
	Slide 11: (Data) Link Layer (Ethernet, WiFi, DOCSIS)
	Slide 12: Physical layer (Copper, Coax, Air, Fiber Optics)
	Slide 13: Because of our layering abstractions, we can use any technology we want, at any layer (as long as it doesn't interfere with the other layers). (Why or why not?)
	Slide 14: Internet Protocol Suite
	Slide 15: Internet Protocol Suite
	Slide 16: Internet Protocol Suite ("Hourglass model")
	Slide 17: Putting this all together
	Slide 18: Web request (HTTP)
	Slide 19: Name resolution (DNS)
	Slide 20: Transport (TCP)
	Slide 21: Global Network Addressing
	Slide 22: (IP) At Each Router
	Slide 23: Link & Physical Layers
	Slide 24: Summary

	HTTP
	Slide 25: Up Next: Prep For Lab 1
	Slide 26: Creating a network app
	Slide 27: Creating a network app
	Slide 28: HTTP: HyperText Transfer Protocol
	Slide 29: What IS A Web Browser?
	Slide 30: HTTP and the Web
	Slide 31: Web objects
	Slide 32: Web objects
	Slide 33: Web objects
	Slide 34: HTTP and the Web
	Slide 35: HTTP Overview
	Slide 36: HTTP Overview
	Slide 37: HTTP Overview
	Slide 38: HTTP Overview
	Slide 39: HTTP Overview
	Slide 40: HTTP Overview
	Slide 41: HTTP Overview
	Slide 42: HTTP Overview (Lab 1)
	Slide 43: Trying out HTTP (client side) for yourself
	Slide 44: Example (live demo)
	Slide 45: Example
	Slide 46: Note!
	Slide 47: HTTPS (live demo)
	Slide 48: HTTP request message
	Slide 49: Why do we have these \r\n (CRLF) things all over the place?
	Slide 50: How else might we delineate messages? (What are the good/bad properties of each of these ideas?)
	Slide 51: HTTP is all text…
	Slide 52: HTTP is all text…
	Slide 53: Visualizing HTTP: telnet
	Slide 54: Visualizing HTTP: wireshark
	Slide 55
	Slide 56: What is a socket?
	Slide 57: Recall Inter-process Communication (IPC)
	Slide 58: Inter-process Communication (IPC)
	Slide 59: Thread Model (Shared Memory)
	Slide 60: Message Passing IPC (Pipe)
	Slide 61: Message Passing IPC (Pipe)
	Slide 62: Message Passing IPC (Pipe)
	Slide 63: Message Passing IPC (Pipe)
	Slide 64: Message Passing IPC (Pipe)
	Slide 65: Message Passing IPC (Pipe)
	Slide 66: Message Passing IPC (Pipe)
	Slide 67: Message Passing IPC (Pipe)
	Slide 68: Where is the synchronization* in message passing IPC? (*application synchronization)
	Slide 69: Message Passing IPC (Socket)
	Slide 70: Message Passing IPC (Socket)
	Slide 71: Message Passing IPC (Socket)
	Slide 72: Message Passing IPC (Socket)
	Slide 73: Message Passing IPC (Socket)
	Slide 74: Message Passing IPC (Socket)
	Slide 75: Message Passing IPC (Socket)
	Slide 76: Questions about this model?
	Slide 77: Questions about this model?
	Slide 78: Descriptor Table
	Slide 79: Descriptors
	Slide 80: Descriptor Table
	Slide 81: socket()
	Slide 82: socket()
	Slide 83: socket()
	Slide 84: Socket Buffers
	Slide 85: Socket Buffers
	Slide 86: Socket Buffers
	Slide 87: Socket Buffers
	Slide 88: Socket Buffers
	Slide 89: recv()
	Slide 90: What should we do if the receive socket buffer is empty? If it has 100 bytes?
	Slide 91: What should we do if the receive socket buffer is empty? If it has 100 bytes?
	Slide 92: What should we do if the send socket buffer is full? If it has 100 bytes?
	Slide 93: What should we do if the send socket buffer is full? If it has 100 bytes?
	Slide 94: Blocking Implications
	Slide 95: ALWAYS check send() return value!
	Slide 96: ALWAYS check send() return value!
	Slide 97: ALWAYS check send() return value!
	Slide 98: ALWAYS check send() return value!
	Slide 99: Blocking Summary
	Slide 100: Create a TCP socket: socket()
	Slide 101: Create a TCP socket: socket()
	Slide 102: Close a socket: close()
	Slide 103: connect()
	Slide 104: connect()
	Slide 105: connect()
	Slide 106: send(), recv()
	Slide 107: send(), recv()
	Slide 108: send()
	Slide 109: send(), recv()

