
CS 43: Computer Networks

03: Protocols, Layering and (some) HTTP

September 3, 2025

Slides adapted from Kurose & Ross, Kevin Webb, Vasanta Chaganti

Announcements

Slide 2

• Register your Clicker: https://forms.gle/89eA9682c6wU57Qb6

• I am out of town all of next week, Prof. Kevin Webb will give lecture and lab

https://forms.gle/89eA9682c6wU57Qb6

Today

• Policy quiz results

• Protocols and encapsulation

• Layering

• HTTP [if time]

Slide 3

Policy Quiz Results

Slide 4

Policy Quiz Results

Slide 5

Reading Quiz Results

Slide 6

What is the goal of a network?

• Allow devices communicate with one another and coordinate their
actions to work together.

• Piece of cake, right?

Slide 7

A “Simple” Task

Send information from one computer to another

Host
(PC)

Host
(Server)

Link

Slide 8

A “Simple” Task

Send information from one computer to another

 hosts: endpoints of a network

 The plumbing is called a link.

Host
(PC)

Host
(Server)

Link

Slide 9

A ”Simple” Task: Sending a message from host to destination

But first... let’s try the postal system, something we are all (still!) familiar
with and address a couple of key challenges..

Slide 10

A “Simple” analogous task: Post-it Note

Alice and Mila are Swatties starting out their semester and are roommates. Alice wants
to give Mila a reminder to get milk.

Slide 11

Transport Link

Alice
Mila

Message

WORKSHEET

A “Simple” analogous task: Post-it Note

Alice and Mila are roommates, Alice wants to give Mila a reminder to get milk. Figure out some key
tasks:

1. Structure of the message:

• Construct the message that Alice posts to Mila.

2. Organizing a drop-off point.

• Who chooses the drop-off point?

3. Write a protocol to write a note /post—it to your housemate

Slide 12

<Content >

<Header portion >

A “Simple” analogous task: Post-it Note

Alice and Mila are roommates, Alice wants to give Mila a reminder to get milk.

1. Structure of the message: (Alice to Mila)

Slide 13

Don’t forget the milk!

To Mila, From Alice

Irrespective of the source and destination, the format of the message stays the same.

A “Simple” analogous task: Post-it Note

Alice and Mila are roommates, Alice wants to give Mila a reminder to get milk.

1. Structure of the message: (Alice to Mila)

Slide 14

Don’t forget the milk!

To Mila, From Alice

Irrespective of the source and destination, the format of the message stays the same.

Header: contains
sender/receiver information.
- metadata about the

message
- what other metadata

might you add?

A “Simple” analogous task: Post-it Note

Alice and Mila are roommates, Alice wants to give Mila a reminder to get milk.

1. Structure of the message: (Alice to Mila)

Slide 15

Don’t forget the milk!

To Mila, From Alice

Irrespective of the source and destination, the format of the message stays the same.

Header: contains
sender/receiver information
+ additional state
- timestamp
- urgent! (priority)
- ordering of messages (1 of

10..)
- error control..

Message

• Message: Header + Data

• Data: what sender wants the receiver to know

• Header: information to support protocol

– Source and destination addresses

– State of protocol operation

– Error control (to check integrity of received data)

Header Data (a.k.a Payload or Body)

16

usually very small

A “Simple” analogous task: Post-it Note

Alice and Mila are roommates, Alice wants to give Mila a reminder to get
milk.

2. Organizing a drop-off point.

• Who decides?

• Generally by mutual consensus – previously agreed upon location.

Slide 17

Everyone agrees to place messages on refrigerator to relay messages to housemates

What is a protocol?

Slide 18

Hi!

Hi!

Got the

time?

2:00

time

Alice Mila

Human Protocol

Protocol: message format + transfer procedure

connection
response

GET http://www.cs.swarthmore.edu

<file>

connection
request

Network Protocols
(defined in RFCs)

What is a protocol?

Goal: get message from sender to receiver

Protocol: message format + transfer procedure

• Expectations of operation

– first you do x, then I do y, then you do z, ...

• Multiparty! so no central control

– sender and receiver are separate processes

19

A “Simple” analogous task: Post-it Note

Write a protocol to write a note /post—it to your housemate

Protocol: message format + transfer procedure

• Message format: (from, to), message contents

• Transfer procedure: post on refrigerator

Alice MilaMessage

From Alice, To Mila “Don’t forget the milk!”

Header Data

20

“Post-it on refrigerator”

A “Simple” analogous task: Postal Mail

Alice moves to Chicago and Mila to Seattle for summer internships. Alice would like to send Mila
a birthday card. Think of this as filling two different pieces of information (1. the birthday card, 2.
the mailing envelope).

Slide 21

Transport Link

Alice Mila
Message

SeattleChicago

A “Simple” analogous task: Postal Mail

Alice would like to send Mila a birthday card.

1. Construct the message and header. Have the header and message portions changed from the
previous scenario?

2. List the message format and transfer procedure of the “mail sending protocol” that Alice uses.

• Who chooses the drop-off point?

• Is this the only protocol in use?

3. Message transportation and delivery

• Whose job is it to:

• choose the carrier?

• plan the route?

• deliver the message?

• ensure the message is not lost?

Slide 22

A “Simple” analogous task: Postal Mail

Alice would like to send Mila a birthday card.

1. Construct the message and the header. Have the header and message
portions changed from the previous scenario?

Slide 23

Header (outside envelope): To:

Message?

From:

A “Simple” analogous task: Postal Mail

Alice would like to send Mila a birthday card.

Header portion of the envelope

Slide 24

Header (outside envelope): To: 575 Albatross Street,
 Seattle, WA

Message?

From: .
 Chicago, IL

A “Simple” analogous task: Postal Mail

Alice would like to send Mila a birthday card.

Message portion of the envelope

Slide 25

Header (outside envelope): To: 575 Albatross Street,
 Seattle, WA

From: .
 Chicago, IL

From Alice, To Mila “Happy Birthday!”

A “Simple” analogous task: Postal Mail

Alice MilaMessage

To: 575 Albatross Street,
 Seattle, WA
From..Chicago, IL

Header Data

26

The post office does NOT care about what’s in
here, and shouldn’t be looking at it…

“Letter”

A “Simple” analogous task: Postal Mail

• Mail Sending Protocol
– Message format: (from, to), message contents
– Transfer procedure: post mail in mailbox (agreed upon

convention)

Alice MilaMessage

To: 575 Albatross Street,
 Seattle, WA
From..Chicago, IL

Header Data

27

The post office does NOT care about what’s in
here, and shouldn’t be looking at it…

“Letter”

A “Simple” analogous task: Postal Mail: other protocols in use?

Mail Protocol

– Message format: (from, to), message contents

– Transfer procedure: post mail in mailbox (agreed upon convention)

Card Protocol (within the mail protocol!)

– Message format: (from, to), message contents

Alice MilaMessage

From Alice, To Mila “Happy Birthday!!”

Header Data

To: 575 Albatross Street,
Seattle, WA
From: ... Chicago, IL

Header Data

28

“Letter”

Message Encapsulation

• Card protocol: (message + header) treated as payload

• Put it in another protocol: append an additional header

Alice MilaMessage

From Alice, To Mila “Happy Birthday!!”

Header Data

To: 575 Albatross Street,
Seattle, WA
From: ... Chicago, IL

Header Data

29

“Letter”

Message Encapsulation

• Higher layer within lower layer

• Each layer has different concerns, provides abstract
services to those above

Application

Transport: TCP

Network: IP data

Link: Ethernet data

data

30

A “Simple” analogous task: Postal Mail

▪ Message transportation and delivery

• Who’s job is it to:

1. provide the sender and receiver addresses?

2. choose the carrier?

3. plan the route?

4. deliver the message?

5. ensure the message is not lost?

Slide 31

▪ Message transportation and delivery

• Who’s job is it to:

1. provide the sender and receiver addresses?

2. choose the carrier?

3. plan the route?

4. transport vehicles?

5. ensure the message is not lost? (reliability)

A “Simple” analogous task: Postal Mail

Slide 32

(1, 2): Alice decides as the “end
host”

(3, 4): Postal Department decides as the service
that provides message transfer

Reliability? Open question – stay tuned!

Layering: Separation of Functions

• Alice and Mila

– Don’t have to know about delivery

– However, aid postal system by providing addresses

• Postal System

– Only has to know addresses and how to deliver

– Doesn’t care about “data”: Alice, Mila, letter

Letter: written/sent by Alice, received/read by Mila

Postal System: Mail delivery of letter in envelope

33

Abstraction!

• Hides the complex details of a process

• Use abstract representation of relevant properties make reasoning
simpler

• Ex: Alice and Mila knowledge of postal system:

– Letters with addresses go in, come out other side

A “Simple” analogous task: Postal Mail

• Many more considerations..

– Who decides the the sender and receiver addresses? Does someone
maintain a mapping peoples’ names to addresses?

– Can Mila always be guaranteed of this delivery date? What factors
influence delivery ?

– What if the mail gets lost – who’s responsibility is it? Alice, Mila or
someone else?

– What about security? privacy?

Slide 35

A “Simple” Task

Send information from one computer to another

 hosts: endpoints of a network

 The plumbing is called a link.

Host
(PC)

Host
(Server)

Link

Slide 36

Not Really So Simple…

Internet

GoogleSwat

Slide 37

Not Really So Simple…

GoogleSwat

Cogent
Sprint

Quest

AT&T

Slide 38

Not Really So Simple…

GoogleSwat

Cogent
Sprint

Quest

AT&T

Slide 39

Not Really So Simple…

GoogleSwat

Cogent
Sprint

Quest

AT&T
Google

Google

Slide 40

We only need…

• Manage complexity and scale up

– Layering abstraction: divide responsibility

– Protocols: standardize behavior for interoperability

Slide 41

We only need…

• Manage complexity and scale up

• Naming and addressing

– Agreeing on how to describe/express a host, application, network, etc.

Slide 42

We only need…

• Manage complexity and scale up

• Naming and addressing

• Moving data to the destination

– Routing: deciding how to get it there

– Forwarding: copying data across devices/links

Slide 43

We only need…

• Manage complexity and scale up

• Naming and addressing

• Moving data to the destination

• Reliability and fault tolerance

– How can we guarantee that the data arrives?

– How do we handle link or device failures?

Slide 44

We only need…

• Manage complexity and scale up

• Naming and addressing

• Moving data to the destination

• Reliability and fault tolerance

• Resource allocation, Security, Privacy..

Slide 45

We only need…

• Manage complexity and scale up

• Naming and addressing

• Moving data to the destination

• Reliability and fault tolerance

• Resource allocation, Security, Privacy..

(Lots of others too.)

Slide 46

Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 47

Application Layer

(HTTP, FTP, SMTP, Tiktok)

• Does whatever an application does!

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Slide 48

Transport Layer (TCP, UDP)

• Provides

– Ordering

– Error checking

– Delivery guarantee

– Congestion control

– Flow control

• Or doesn’t!

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Slide 49

Application Layer Data
becomes the payload for
the transport layer

Network Layer (IP)

• Routers: choose paths through network

50

Source Destination

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Slide 50

Transport layer data +
header becomes
payload for the
network layer

Link Layer (Ethernet, WiFi, Cable)

• Who’s turn is it to send right now?

• Break message into frames

• Media access: can it send the frame now?

• Send frame, handle “collisions”

Receiver

51

Port no.

IP address

MAC address

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport

Network

Link

Physical

Layer

Slide 51

Network layer data + header
becomes payload for the link
layer

Physical layer – move actual bits!

(Cat 5, Coax, Air, Fiber Optics)

802.11b Wireless
Access Point

Ethernet switch/router

To campus
backbone

2.4Ghz Radio
DS/FH Radio
 (1-11Mbps)

Cat5 Cable (4 wires)
100Base TX Ethernet
100Mbps

62.5/125um 850nm MMF
 1000BaseSX Ethernet
1000Mbps

Slide 52

Layering and encapsulation

Data

DataTCP/UDP

DataTCP/UDPIP

DataTCP/UDPIPEthernet

Application

Transport: reliability

Network: routing

Link: framing,

error detection

Physical

Layer

Slide 53

• explicit structure allows identification, relationship of complex system’s
pieces

– layered reference model for discussion

– reusable component design

• modularization eases maintenance

– change of implementation of layer’s service transparent to rest of
system,

– e.g., change in postal route doesn’t affect delivery of letter

Layering: Separation of Functions

Slide 54

Abstraction!

• Hides the complex details of a process

• Use abstract representation of relevant properties make reasoning
simpler

• Ex: Your knowledge of postal system:

– Letters with addresses go in, come out other side

Slide 55

Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 56

Because of our layering abstractions, we can use any technology we

want, at any layer (as long as it doesn't interfere with the other layers).
(Why or why not?)

A. Always

B. Usually

C. Sometimes

D. Never

Internet Protocol Suite

HTTP FTP Zoom…

Ethernet Wifi Bluetooth…
Physical

Applications

Data Link

Internet Protocol Suite

HTTP FTP Zoom…

Ethernet Wifi Bluetooth…

TCP UDP

IP

Data Link

Physical

Applications

Transport

Internet Protocol Suite ("Hourglass model")

HTTP FTP Zoom…

Ethernet Wifi Bluetooth…

TCP UDP

IP

"Narrow Waist"

Data Link

Physical

Applications

Transport

Putting this all together

• ROUGHLY, what happens when I click on a Web page from Swarthmore?

www.google.com

?

My computer

Internet

Slide 62

Application Layer: Web request (HTTP)

• Turn click into HTTP request

GET http://www.google.com/ HTTP/1.1
Host: www.google.com
…

Slide 63

http://www.yahoo.com/

Application Layer: Name resolution (DNS)

• Where is www.google.com?

What’s the address for www.google.com

My computer

(132.239.9.64)

Oh, you can find it at 66.102.7.104

Local DNS server

(132.239.51.18)

Slide 64

Transport Layer: TCP

• Break message into packets (TCP segments)

• Should be delivered reliably & in-order

GET http://www.google.com HTTP/1.1
Host: www.google.com
…

GET htt1p://www.2google.c3

Slide 65

http://www.yahoo.com/

Network Layer: Global Network Addressing

• Address each packet so it can traverse network and arrive at host

My computer

(132.239.9.64)

www.google.com
(66.102.7.104)

GET htt166.102.7.104 132.239.9.64

Destination Source Data

Slide 66

Network Layer: (IP) At Each Router

• Where do I send this to get it closer to Google?

• Which is the best route to take?

Slide 67

Link & Physical Layers (Ethernet)

• Forward to the next node!

• Share the physical medium.

• Detect errors.

Slide 68

Message Encapsulation

• Higher layer within lower layer

• Each layer has different concerns, provides abstract
services to those above

Application

Transport: TCP

Network: IP data

Link: Ethernet data

data

Slide 69

Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 70

Which layers should routers participate in?

(Getting data from host to host.) Why?

A. All of Them

B. Transport through Physical

C. Network, Link and Physical

D. Link and Physical

TCP/IP Protocol Stack

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

Slide 73

TCP/IP Protocol Stack

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

Application Layer

Transport Layer

Link Layer

Network Layer

Slide 74

Networks have many concerns, such as reliability, error

checking, naming and data ordering. Who/what should be

responsible for addressing them? (Why? Which ones belong in which

location?)

A. The network should take care of these for us.

B. The communicating hosts should handle these.

C. Some other entity should solve these problems.

The “End-to-End” Argument

• Don’t provide a function at lower level of abstraction (layer) if you
have to do it at higher layer anyway - unless there is a very good
performance reason to do so.

• Examples: error control, quality of service

• Reference: Saltzer, Reed, Clark, “End-To-End Arguments in System
Design,” ACM Transactions on Computer Systems, Vol. 2 (4), 1984.

77

Creating a network app

write programs that:

• run on (different) end systems

• communicate over network

• e.g., web server s/w

communicates with browser

software

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Slide 78

Creating a network app

no need to write software for network-core

devices!

• network-core devices do not run user

applications

• applications on end systems

– rapid app development, propagation

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Slide 79

HTTP: HyperText Transfer Protocol

• client: browser that uses

HTTP to request, and

receive Web objects.

• server: Web server that

uses HTTP to respond with

requested object.

PC running

Firefox browser

server

running

Apache Web

server

iPhone running

Safari browser

Client/Server model

Slide 80

What IS A Web Browser?

Slide 81

HTTP and the Web

• web page consists of objects

• object can be: an HTML file (index.html)

demo.cs.swarthmore.edu/index.html

Slide 82

Web objects

• web page consists of objects

• object can be: JPEG image

Slide 83

Web objects

• web page consists of objects

• object can be: audio file

Courtesy: New York Times Slide 84

Web objects

• web page consists of objects

• object can be: video, java applets, etc.

Slide 85

HTTP and the Web

• a web page consists of base HTML-file which
includes several referenced objects

• each object is addressable by a URL, e.g.,

demo.cs.swarthmore.edu/example/pic.html

host name path name
Slide 86

HTTP Overview

1. User types in a URL.
http://some.host.name.tld/directory/name/file.ext

host name path name

Slide 87

HTTP Overview

2. Browser establishes connection with server
using the Sockets API.

Calls socket() // create a socket
Looks up “some.host.name.tld” (DNS: getaddrinfo)
Calls connect() // connect to remote server
Ready to call send() // Can now send HTTP requests

 Slide 88

HTTP Overview

3. Browser requests data the user asked for

GET /directory/name/file.ext HTTP/1.0

Host: some.host.name.tld

[other optional fields, for example:]

User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64)

Accept-language: en

Required
fields

Slide 89

HTTP Overview

4. Server responds with the requested data.

HTTP/1.0 200 OK

Content-Type: text/html

Content-Length: 1299

Date: Sun, 01 Sep 2013 21:26:38 GMT

[Blank line]

(Data data data data…)
Slide 90

HTTP Overview

5. Browser renders the response, fetches any
additional objects, and closes the connection.

Slide 91

HTTP Overview

1. User types in a URL.

2. Browser establishes connection with server.

3. Browser requests the corresponding data.

4. Server responds with the requested data.

5. Browser renders the response, fetches other objects, and closes the
connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

Slide 92

HTTP Overview (Lab 1)

1. User types in a URL.

2. Browser establishes connection with server.

3. Browser requests the corresponding data.

4. Server responds with the requested data.

5. Browser renders the response, fetches other objects, Save the file and
close the connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

Slide 93

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80 (default HTTP server port)
at example server.

Anything typed is sent to server on port 80 at
demo.cs.swarthmore.edu

telnet demo.cs.swarthmore.edu 80

Slide 94

Trying out HTTP (client side) for yourself

2. Type in a GET HTTP request:

GET / HTTP/1.1

Host: demo.cs.swarthmore.edu

(blank line)

(Hit carriage
return twice) This
is a minimal, but complete,
GET request to the HTTP
server.

3. Look at response message sent by HTTP server!

Slide 95

Example
$ telnet demo.cs.swarthmore.edu 80

Trying 130.58.68.26...

Connected to demo.cs.swarthmore.edu.

Escape character is '^]'.

GET / HTTP/1.1

Host: demo.cs.swarthmore.edu

HTTP/1.1 200 OK

Vary: Accept-Encoding

Content-Type: text/html

Accept-Ranges: bytes

ETag: "316912886"

Last-Modified: Wed, 04 Jan 2017 17:47:31 GMT

Content-Length: 1062

Date: Wed, 05 Sep 2018 17:27:34 GMT

Server: lighttpd/1.4.35

Response
headers

Slide 96

Example
$ telnet demo.cs.swarthmore.edu 80

Trying 130.58.68.26...

Connected to demo.cs.swarthmore.edu.

Escape character is '^]'.

GET / HTTP/1.1

Host: demo.cs.swarthmore.edu

<html><head><title>Demo Server</title></head>

<body>

.....

</body>

</html>

Response
headers

Response
body
(This is what you
should be saving in
lab 1.)

Slide 97

98

Stuff for Monday Sep 8

99

	Default Section
	Slide 1: CS 43: Computer Networks
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: Policy Quiz Results
	Slide 5: Policy Quiz Results
	Slide 6: Reading Quiz Results

	a simple task
	Slide 7: What is the goal of a network?
	Slide 8: A “Simple” Task
	Slide 9: A “Simple” Task
	Slide 10: A ”Simple” Task: Sending a message from host to destination
	Slide 11: A “Simple” analogous task: Post-it Note
	Slide 12: WORKSHEET A “Simple” analogous task: Post-it Note
	Slide 13: A “Simple” analogous task: Post-it Note
	Slide 14: A “Simple” analogous task: Post-it Note
	Slide 15: A “Simple” analogous task: Post-it Note
	Slide 16: Message
	Slide 17: A “Simple” analogous task: Post-it Note
	Slide 18: What is a protocol?
	Slide 19: What is a protocol?
	Slide 20: A “Simple” analogous task: Post-it Note
	Slide 21: A “Simple” analogous task: Postal Mail
	Slide 22: A “Simple” analogous task: Postal Mail
	Slide 23: A “Simple” analogous task: Postal Mail
	Slide 24: A “Simple” analogous task: Postal Mail
	Slide 25: A “Simple” analogous task: Postal Mail
	Slide 26: A “Simple” analogous task: Postal Mail
	Slide 27: A “Simple” analogous task: Postal Mail
	Slide 28: A “Simple” analogous task: Postal Mail: other protocols in use?
	Slide 29: Message Encapsulation
	Slide 30: Message Encapsulation
	Slide 31: A “Simple” analogous task: Postal Mail
	Slide 32: A “Simple” analogous task: Postal Mail
	Slide 33: Layering: Separation of Functions
	Slide 34: Abstraction!
	Slide 35: A “Simple” analogous task: Postal Mail
	Slide 36: A “Simple” Task
	Slide 37: Not Really So Simple…
	Slide 38: Not Really So Simple…
	Slide 39: Not Really So Simple…
	Slide 40: Not Really So Simple…
	Slide 41: We only need…
	Slide 42: We only need…
	Slide 43: We only need…
	Slide 44: We only need…
	Slide 45: We only need…
	Slide 46: We only need…

	Layering
	Slide 47: Five-Layer Internet Model
	Slide 48: Application Layer (HTTP, FTP, SMTP, Tiktok)
	Slide 49: Transport Layer (TCP, UDP)
	Slide 50: Network Layer (IP)
	Slide 51: Link Layer (Ethernet, WiFi, Cable)
	Slide 52: Physical layer – move actual bits! (Cat 5, Coax, Air, Fiber Optics)
	Slide 53: Layering and encapsulation
	Slide 54
	Slide 55: Abstraction!
	Slide 56: Five-Layer Internet Model
	Slide 57: Because of our layering abstractions, we can use any technology we want, at any layer (as long as it doesn't interfere with the other layers). (Why or why not?)
	Slide 58: Internet Protocol Suite
	Slide 59: Internet Protocol Suite
	Slide 60: Internet Protocol Suite ("Hourglass model")

	Putting it all together
	Slide 62: Putting this all together
	Slide 63: Application Layer: Web request (HTTP)
	Slide 64: Application Layer: Name resolution (DNS)
	Slide 65: Transport Layer: TCP
	Slide 66: Network Layer: Global Network Addressing
	Slide 67: Network Layer: (IP) At Each Router
	Slide 68: Link & Physical Layers (Ethernet)
	Slide 69: Message Encapsulation
	Slide 70: Five-Layer Internet Model
	Slide 72: Which layers should routers participate in? (Getting data from host to host.) Why?
	Slide 73: TCP/IP Protocol Stack
	Slide 74: TCP/IP Protocol Stack
	Slide 76: Networks have many concerns, such as reliability, error checking, naming and data ordering. Who/what should be responsible for addressing them? (Why? Which ones belong in which location?)
	Slide 77: The “End-to-End” Argument

	HTTP
	Slide 78: Creating a network app
	Slide 79: Creating a network app
	Slide 80: HTTP: HyperText Transfer Protocol
	Slide 81: What IS A Web Browser?
	Slide 82: HTTP and the Web
	Slide 83: Web objects
	Slide 84: Web objects
	Slide 85: Web objects
	Slide 86: HTTP and the Web
	Slide 87: HTTP Overview
	Slide 88: HTTP Overview
	Slide 89: HTTP Overview
	Slide 90: HTTP Overview
	Slide 91: HTTP Overview
	Slide 92: HTTP Overview
	Slide 93: HTTP Overview (Lab 1)
	Slide 94: Trying out HTTP (client side) for yourself
	Slide 95: Trying out HTTP (client side) for yourself
	Slide 96: Example
	Slide 97: Example
	Slide 98
	Slide 99: Stuff for Monday Sep 8

