Check for
Updates

Reverse-Engineering Congestion Control Algorithm Behavior

Margarida Ferreira
Carnegie Mellon University
Pittsburgh, PA, USA
INESC-ID, IST U. Lisboa
Lisbon, Portugal
margarida@cmu.edu

Inés Lynce
INESC-ID, IST U. Lisboa
Lisbon, Portugal
ines.lynce@tecnico.ulisboa.pt

Ranysha Ware
Carnegie Mellon University
Pittsburgh, PA, USA
rware@cs.cmu.edu

Ruben Martins
Carnegie Mellon University
Pittsburgh, PA, USA
rubenm@cs.cmu.edu

Justine Sherry
Carnegie Mellon University

Yash Kothari
Carnegie Mellon University
Pittsburgh, PA, USA
yashkoth@andrew.cmu.edu

Akshay Narayan
Brown University
Providence, RI, USA
akshayn@brown.edu

Pittsburgh, PA, USA
sherry@cs.cmu.edu

Abstract

The rise of proprietary and novel congestion control algorithms
(CCAs) opens questions about the future of Internet utilization,
latency, and fairness. However, fully analyzing how novel CCAs
impact these properties requires understanding the inner workings
of these algorithms. We thus aim to reverse-engineer deployed
CCAs’ behavior from collected packet traces to facilitate analyzing
them. We present Abagnale, a program synthesis pipeline that helps
users automate the reverse-engineering task. Using Abagnale, we
discover simple expressions capturing the behavior of 9 of the 16
CCAs distributed with the Linux kernel and analyze 7 CCAs from
a graduate networking course.

CCS Concepts

» Networks — Transport protocols.

Keywords

Congestion Control

ACM Reference Format:

Margarida Ferreira, Ranysha Ware, Yash Kothari, Inés Lynce, Ruben Martins,
Akshay Narayan, and Justine Sherry. 2024. Reverse-Engineering Conges-
tion Control Algorithm Behavior. In Proceedings of the 2024 ACM Internet
Measurement Conference (IMC °24), November 4-6, 2024, Madrid, Spain. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3646547.3688443

1 Introduction

Analyzing congestion control algorithms (CCAs) is vital to our
understanding of Internet traffic stability, fairness, and performance.
For example, past analyses have shown that AIMD approaches
such as Reno will converge to fair bandwidth shares [18] and that

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

IMC ’24, November 4-6, 2024, Madrid, Spain

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0592-2/24/11
https://doi.org/10.1145/3646547.3688443

401

Google’s BBRv1 will converge to unfair bandwidth shares in many
scenarios [63]. Recent work has further introduced model checking
to CCAs [3], providing the ability to prove performance guarantees
for input CCAs given complex edge case scenarios. Of course, these
analysis techniques rely on access to a CCA’s implementation.

Unfortunately, implementations of CCAs are not universally
available. Especially given the rise of user-space CCA implementa-
tions [43, 53], it is easier than ever to develop and deploy a propri-
etary CCA without revealing its implementation details. Indeed, re-
searchers have both observed [11, 51] and publicly claimed [65] pro-
prietary CCA implementations. Further, even with access toa CCA’s
implementation, many such implementations contain datapath-
specific implementation details that obscure their behavior [53],
making it difficult for analysts to determine their nature.

Thus, we seek to facilitate CCA analyses by synthesizing simple
implementations directly from packet traces. These simple imple-
mentations make the analysis of CCAs with known (but complex)
implementations easier, while making analysis of unknown CCAs
possible.

Generating a program based on a series of observed, example
outputs is a form of program synthesis [31, 32] (specifically, a class
of synthesis called programming-by-example, or ‘PBE’). General-
purpose PBE remains out of scope for the state of the art: today, the
most effective PBE tools are specialized to a particular domain or
language framework. We scope our design to synthesize classically-
designed congestion control algorithms. We formalize what it means
for a CCA to be ‘classically designed’ in §3.3, but at a high level,
this means that it can be constructed using a domain-specific lan-
guage derived from the set of existing Linux Kernel supported
CCAs. For example, we aim to design a tool that could reverse
engineer TCP Westwood if it were brand new to the CCA land-
scape, since Westwood can be constructed using the same language
as TCP Reno. Since most novel CCAs on the Internet today are
variants or extensions of classical algorithms (§5), ‘classically de-
signed’ algorithms are a useful category of algorithms to specialize
in. Importantly, however, this design excludes from our scope CCAs

https://doi.org/10.1145/3646547.3688443
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3646547.3688443
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3646547.3688443&domain=pdf&date_stamp=2024-11-04

IMC ’24, November 4-6, 2024, Madrid, Spain

with non-deterministic behavior (including those using machine
learning techniques).

The reason that program synthesizers target domain-specific
regimes is tractability. At their core, all synthesizers frame a search
space using a domain-specific language (DSL) defining the ‘set of
all possible programs’ and aim to find a needle in this haystack: a
program that, given the pre-specified inputs, produces the pre-
specified outputs. Constraining the size of the DSL makes the
haystack smaller. Nonetheless, even a constrained haystack is still
large: even when constrained to CCAs following a ‘classical’ DSL,
there are 101°° possible programs to explore.

To meet this challenge, we design Abagnale, a program synthesis
pipeline that utilizes domain knowledge to produce approximate
expressions representing CCAs in our scope. Abagnale cuts down
on the intractability of synthesizing CCAs by taking an uncommon
approach to program synthesis: formulating the problem as an op-
timization problem (in which a numerical objective is maximized
or minimized) rather than a decision problem (in which a logical
formula is ‘satisfied” or ‘unsatisfied’). Our insight is that we can
evaluate candidate programs in the search space based on a measur-
able distance between the visible CWND of the candidate CCA in
simulation and the observed CWND of the true CCA in the wild. We
then formulate our procedure to select a program that minimizes this
distance.

Our observation that CCAs are amenable to an optimization
formulation provides cross-cutting gains across four dimensions of
the synthesis process:

Evaluation: When we have a candidate CCA proposed by the
synthesizer, how can we evaluate whether it matches the expected
behavior of the ground truth CCA? A key challenge with mea-
surements of ground truth CCAs ‘in the wild’ is the presence of
noise in our measurements of the true CWND: our observation of
the CWND may be incomplete due to our measurement vantage
point, packets may be dropped or delayed, etc. An optimization
formulation allows us to accept candidate CCAs that are close, but
imperfect matches to what is observed, compensating for this noise.

DSL Formulation: We aim to identify any CCA that fits the DSL
defined by ‘classical’ CCAs. Nonetheless, this search space still
remains intractably large. Here, we leverage the fact that CCAs
typically fall into ‘families’ (e.g., Westwood is in the Reno family;
Veno is in the Vegas family.) Hence, we break the DSL into sub-DSLs
per CCA family. When given a new ground-truth CCA trace, we
use existing classification techniques to constrain the search to a
sub-DSL containing only operators and values for that CCA family.

Program Search: Finally, the process of searching for candidate
programs is greatly aided by the presence of a measurable function
to declare which programs are ‘closer’ to the correct solution and
which are ‘further’. We perform several key optimizations here,
including breaking down the search further across sub-DSL ‘buck-
ets’ and parallelizing search across these buckets [10]. To prioritize
which buckets to search first, we sample a few candidate CCAs
from the bucket and evaluate their distance to the ground-truth
measurements; we then prioritize search in the buckets with closer
measurements over CCAs with further measurements.

402

Margarida Ferreira et al.

Goal: We emphasize that, with Abagnale, we do not seek to pro-
duce the precise CCA implementation that produced the behavior
observed in a given set of packet traces. Rather, our goal is to pro-
duce a succinct representative expression that captures a CCA’s
core behavior. Even this limited goal is an ambitious step relative
to both modern CCAs as well as state-of-the-art program synthesis
techniques. Thus, Abagnale is an initial step towards understanding
unknown CCAs rather than the final word. For example, many of
the most advanced congestion controllers today incorporate ma-
chine learning or statistical techniques, and reverse engineering
these remains out of reach for Abagnale or any other existing tech-
nique. Similarly, as we discuss in §3, Abagnale cannot discover
hidden state variables in CCAs that affect their externally visible
trace behavior.

Key Results: Despite these challenges, as we show in §5, Abag-
nale produces a closed-form expression that approximates BBR
without using state variables to maintain the pulse state, as most ex-
isting implementations do. Further, Abagnale produces expressions
matching those fine-tuned by a domain expert with knowledge
of the CCA in question for 9 out of 16 CCAs distributed with the
Linux kernel. Of the remaining 7 CCAs, 2 (LP and HTCP) miss
conditional modes of operation, 2 (HighSpeed and CDG) are out of
our scope due to their use of non-determinism and out-of-DSL op-
erators, 1 (Cubic) exposes a limitation in our SMT-encoded search
space constraints, and the last (BIC) has an expression depth too
deep to find within Abagnale’s time-bound. Additionally, we find
(§6) that Abagnale is able to efficiently discard large and irrelevant
portions of the search space from contention in all evaluated cases.
In contrast, prior work on Mister880 [24] cannot synthesize any al-
gorithm other than NewReno (measured without noise) and cannot
handle noisy traces at all.

2 Motivation and Background

In this section, we first discuss why reverse engineering conges-
tion control algorithms (CCAs) from packet traces is useful (§2.1)
and then discuss why existing state-of-the-art approaches to syn-
thesizing programs from examples are insufficient to synthesize
CCAs (§2.2).

2.1 Why reverse-engineer CCAs?

Today’s Internet presents an unprecedented explosion in con-
gestion control diversity. Although NewReno and Cubic were often
assumed to be the only players in the past, recent studies show
tremendous diversity in CCA deployments, with one 2019 study
reporting 6 algorithms with deployments across 2% or more of
servers [51]. There is also an incredible amount of experimenta-
tion: in 2017, Google silently rolled out BBR1.1” without fanfare;
in 2019, Netflix deployed a custom variant of NewReno using its
RACK stack in FreeBSD; cloud gaming providers today continue to
develop bespoke proprietary CCAs [47].

Many researchers predict CCA diversity will increase in future
years. First, with the rise of user-space networking stacks such
as HTTP/3 (QUIC), modifying CCA code will become easier for
developers who no longer have to delve into kernel space to make
modifications. Second, application developers are beginning to see
gains from “bespoke” CCAs designed in a way that is specifically
tailored to their application. Hence, we have seen proposals for

Reverse-Engineering Congestion Control Algorithm Behavior

CCAs tailored to video streaming [27, 54] or cloud gaming [57].
Novel algorithms may furthermore be proprietary, with companies
unlikely to share the ‘secret’ behind their applications’ competitive
network performance.

The explosion in CCA diversity has important implications for
many of the fundamental design goals of the Internet. For example,
new CCAs may improve or harm any of capacity utilization, the In-
ternet’s fairness landscape, average latency, or burstiness. Hence, it
is no surprise that in recent years researchers have invested significant
attention towards characterizing the explosion in CCA diversity.

CCA Classifiers: Most attempts to characterize the Internet CCA
landscape focus on classifying CCAs: identifying whether a given
Internet service is using a particular published CCA. State-of-the-
art examples from this literature include Gordon [51], Inspector
Gadget [29], and others [55, 60, 64].

Most CCA classifiers connect to a server under investigation and
attempt to model or measure the CCAs visible congestion window
(visible CWND): the number of outstanding bytes in flight, over
time. They then use some classification algorithm (e.g., decision
tree, neural network) to match this time series of CWNDs to known,
ground-truth observations of existing CCAs (typically some subset
of the 16 default CCAs available in the Linux kernel). Classifiers
can neither provide insight into these unknown CCAs (other than
that they are unknown), nor provide any insight into known CCAs
(and indeed can also mis-classify known CCAs).

The Impact of Unknown CCAs: As discussed above, CCAs deter-
mine crucial properties of the Internet’s performance, such as link
utilization, fairness, burstiness/variability, and latency. One useful
way to understand unknown CCAs is performing measurement
either “in the wild” [20] or in testbed environments [4, 51, 56, 59].
While these experiments can illuminate useful, empirical properties
of the observed CCAs under study, they remain limited. Without
knowledge of the underlying algorithm, it is not possible to prove
bounds or guarantees about the algorithm’s behavior [3]. It is also
not possible to diagnose why a particular pessimal behavior is hap-
pening or make recommendations how to fix it: empirical tests
simply discover that something is wrong. Hence, we argue that to
truly understand the impact of novel CCAs on the Internet perfor-
mance landscape, it is crucial to understand the algorithm behind
each and every CCA.

2.2 Program Synthesis for Reverse Engineering

The process of generating a program based on its observed in-
puts and outputs is, by definition, a form of program synthesis. A
large literature of programming-by-example (PBE) tools follows
the blueprint of taking observed inputs and outputs and generating
a program that maps from input to output. However, existing PBE
tools cannot reverse engineer congestion control algorithms for
two key reasons: statefulness and noise.

Statefulness: Prior work has proposed many specialized PBE syn-
thesizers to solve practical problems such as data structure trans-
formations [25], spreadsheet data manipulation [31], data prepara-
tion tasks [22], and applications to computer networks [15, 61, 68].
There are also general PBE synthesizers [48] that take any DSL and
a set of examples as input and produce a program that satisfies the

403

IMC ’24, November 4-6, 2024, Madrid, Spain

Refinement loop (§4.4)

DSL (§3.3)

A 4

Enumeration (§4.1)

)

Simulation (§4.2)

Traces (§3.1)

A 4

-
Input selection

—_—
Search

Figure 1: Abagnale system overview

examples. To produce this program, synthesizers use machine learn-
ing [6, 16, 40, 44], constraint solvers [39, 62], or some combination
thereof [17, 21].

Unfortunately, not all program outputs are merely the result of
a stateless operation over visible input variables, and CCAs are one
such case. For example, the output of TCP NewReno after a loss
is not simply % it is % X CWND, the previously held congestion
window. Each timestep of the CCA’s progress depends on both the
inputs observed (losses, packets ACKed, measured RTTs) as well
as the existing state of the system. Because most PBE synthesizers
cannot model this state, they cannot synthesize CCAs.

Noise: Mister880 is a prototype CCA synthesizer [24]. Like us, the
authors aim to use Mister880 to uncover the underlying algorithms
of novel CCAs over the Internet. However, Mister880 formulates the
synthesis as a decision problem (as do the vast majority of program
synthesizers): it is only capable of modeling candidate synthesized
programs as ‘correct’ or ‘incorrect’ and has no flexibility for pro-
grams that are ‘close’ to the correct solution but which do not
perfectly replicate the observed behavior of the ground truth im-
plementation. This matters because in the Internet, packet traces
from a given CCA are noisy. Measurements of the ground-truth
CWND may reflect the vantage point of the trace measurement;
there may be packet delays or jitter that are unobserved; there may
be unexpected timeouts or losses that are observed at the sender but
not to our measurements, etc.. Hence, even if we had an exact copy
of the ground truth system, it is not possible to guarantee that our
measurements of the system ‘in the wild’ and our measurements
of the system in our testbed will be truly identical. In this setting,
Mister880 would discard even the correct algorithm as incorrect.

3 Model and Inputs

In the following sections, we describe Abagnale, the first program
synthesizer to take on (a) stateful programs and (b) noisy input data.
Abagnale’s stateful model of CCA behavior is similar to the model
used by Mister880, but its formulation of program synthesis as an
optimization problem rather than a decision problem is an entirely
different formulation.

Abagnale uses the measured outputs of candidate synthesized
CCAs to compute a ‘distance’ between the proposed CCA and the
ground-truth measurement; candidate CCAs with a lower distance
are considered better than those with a higher distance. Because

IMC ’24, November 4-6, 2024, Madrid, Spain

our goal is to minimize the distance, but not necessarily bring it
to 0, Abagnale can produce algorithms which almost match the
observed behavior of the ground truth CCA, thus accounting for
noise.

We find that formulating the synthesis problem as an optimiza-
tion procedure allows us to make further improvements to our
synthesis procedure, including making the search for the best can-
didate CCA more efficient and making the search space of candidate
CCAs smaller (§4.4).

Model: In general, a CCA contains multiple state variables—e.g.
congestion window or link capacity estimate-that determine its
behavior. The CCA reacts to multiple events—e.g. the arrival of an
acknowledgment or the determination of a packet loss. A com-
prehensive model of CCAs would thus determine expressions, or
handlers, to update each state variable upon the occurrence of
each event. With Abagnale, we focus on a specific but important
sub-problem: synthesizing an expression to update the congestion
window upon an acknowledgment’s arrival. While we believe Abag-
nale’s technique generalizes to synthesizing expressions to update
other known state variables for other events, we do not evaluate
such scenarios in this paper. We also leave synthesizing expressions
to update a CCA’s packet pacing rate to future work. A further
generalization might consider unknown, or hidden, state variables,
that affect the CCA’s behavior. We do not address these cases with
Abagnale and leave them to future work. However, we note that
Abagnale’s model can in some cases (e.g. BBR, see §5.2) nevertheless
synthesize handlers that approximate the CCA’s behavior despite
not modeling hidden state variables.

Fig.1 shows an overview of Abagnale’s synthesis process. In §4,
we discuss how Abagnale searches a space of possible programs to
identify candidate CCAs to replicate the ground truth CCA. Recall
that this search space is intractably large; without both optimiza-
tions and approximations we discuss, the synthesis process does not
succeed. However, before discussing the search process, we must
first identify a method to determine whether a candidate CCA has
replicated a ground truth CCA (§3.1); second, we must determine
what space of possible programs to search (§3.3).

3.1 Evaluating Candidate CCAs

Like CCA classifiers [29, 51, 64], we measure the observable
CWND and other signals (RTT, packet rate, etc.) over time from a
packet trace. Similarly to Mister880 [24], we execute each candidate
handler function in simulation given the same events and inputs
observed for the ground-truth CCA. For each packet received in
the collected trace, we execute the candidate handler function, and,
based on resulting CWND value, decide whether to send the next
packet. Once this is done for the whole trace, we have a second
time-series of the CWND produced by that handler. We call the
trace resulting from this simulation the synthesized trace. Unlike
Mister880 [24], we compare two candidate CCAs by computing
the distance (§4.3) between the two CWND traces. A handler is a
better candidate than another handler if it has a lower distance
to the ground truth trace. Using a distance measure rather than
assuming the best handler will produce identical outputs to the
ground truth CCA allows us to handle measurement noise - e.g.,
unobserved losses or jitter between our vantage point and the
server. In addition, using a distance measure allows us to use three

404

Margarida Ferreira et al.

optimizations that tune Abagnale’s exploration of the search space;
we explain how we generate candidate handlers in §4.2, how we
select a distance metric in §4.3, and finally how we use these pieces
to explore the search space in §4.4.

3.2 Trace Collection

An additional necessity in evaluating candidate handler func-
tions is ensuring that we have representative traces for that handler
function. We need a wide range of measurements of the ground
truth CCA which capture the CCA’s behaviors under varying con-
ditions and events, otherwise we risk ‘overfitting’ to one particular
trace and set of conditions (for example, we might return a handler
that simply returns a constant CWND, the trace’s BDP) [58]. To
avoid this, we provide Abagnale with a diverse set of testing en-
vironments in order to observe more behaviors from the ground
truth CCA while also doing so in a way that does not result in too
much data for Abagnale to take in.

To achieve trace diversity, we use a controlled testbed from a
prior study [63] to configure a virtual network with RTTs rang-
ing between 10 to 100ms and bandwidth between 5 and 15Mbps.
Collecting traces representing a wide range of conditions enables
Abagnale to choose better candidate handlers. Indeed, when we
attempt to synthesize Cubic based on traces, Abagnale fails to find
a correct function when only given traces from any one configura-
tion of RTT and bandwidth: it is only when we provide traces from
a range of settings that Abagnale correctly synthesizes a Cubic
function.

While providing a large number of traces improves fidelity, eval-
uating the distance function as described above in §3.1 requires a
fixed amount of work per packet in each trace. Thus, evaluating
every packet of every trace is too costly. Instead, in Abagnale we
first split flow traces into trace segments corresponding to periods
between loss events. We infer loss events by searching for instances
of triple-duplicate-ACKs. Abagnale increases the number of trace
segments considered per candidate expression in each iteration of
its refinement loop (§4.4). Given a number of trace segments to
consider in an iteration, Abagnale first randomly selects half the
desired number of trace segments. For each of these sampled seg-
ments ¢, Abagnale then selects the remaining un-picked segment
with the highest distance from ¢. This trace segment selection strat-
egy makes it more likely to sample a diverse set of trace segments
representing many network conditions; this in turn helps Abagnale
avoid handlers that “over-fit” to specific traces.

3.3 DSL Curation

Finally, Abagnale takes as input a domain-specific language (DSL)
from which it will produce an expression to match the input packet
traces. Abagnale supports a large set of congestion signals and
variables, based on prior work on frameworks for developing
CCAs [53, 66]. This high expressivity comes at a cost: including all
known signals and combinations of signals in the DSL would make
the search space intractably large. Instead, we provide as input to
Abagnale a CCA-family-specific DSL which uses only a subset of
signals and operations. Of course, the user could use different DSLs
in separate Abagnale invocations on the same traces.

Indeed, groups of CCAs often use similar signals (e.g., Reno/West-
wood/etc, BBR/Vegas/Veno). Hence, we only include these signals

Reverse-Engineering Congestion Control Algorithm Behavior

cong-signal : mss | acked-bytes | time-since-loss

| *rtt | *min-rtt | * max-rtt | * ack-rate | * rtt-gradient

num : cwnd | cong-signal | constant

num
| num+ num | num — num | num- num | —
num

| bool ? num : num | °num® | °\/num

bool : num < num | num > num | num % num = 0

Listing 1: Non-colored elements are in the base Reno-DSL, teal-
colored °-prefixed elements are extensions for the Cubic-DSL, olive-
colored *-prefixed elements are extensions for the rate/delay-DSL.

. ACKedxMSS
reno-inc —(R ,IQ_}VND I
. —min Xack-rate
vegas-diff MSS
: RTT—minRTT
htcp —dl]f maxRTT

. time-since-loss
RTTs-since-loss = =prr—

Table 1: Pre-defined macros used in Abagnale’s DSLs

if called for in a chosen ‘sub-DSL. For example, the ‘rate/delay’ sub-
DSL includes signals for the RTT and ACK rate, used by CCAs like
BBR, Vegas, and Veno, but not by CCAs like Reno or Cubic. We use
existing CCA classifiers to hint which sub-DSL Abagnale should
use for a given set of traces. We show in §6.3 that this strategy picks
DSLs similar to those we would have chosen manually.

Listing 1 shows how input DSLs can vary. Almost all useful DSLs
will include the black-colored elements (e.g., arithmetic operators),
while the user may choose to exclude uncommon operators such
as cube-root. Some of the operators are derived from others, e.g.,
we offer a built-in EWMA operation since it is commonly used in
CCA evaluation. While we could ask Abagnale to ‘discover’ the
EWMA operation during the synthesis process, we have found
that encoding common macros in the DSL enables Abagnale to
more effectively identify fruitful candidate expressions. Table 1 lists
the macros used to simplify CCAs’ commonly used expressions in
Abagnale’s DSLs. reno-inc is Reno’s CWND increment of one MSS
per sent packet. vegas-diff is Vegas’s estimation of the difference
between the expected and the actual sending rate [9]. htcp-diff is
the variation in RTT, as used by H-TCP [45]. RT Ts-since-loss is the
time since the last loss event scaled by the current RTT estimate,
as used by BBR [13].

4 Exploring the Search Space

Once the input DSL and traces are defined, Abagnale explores
the resulting search space. The main challenge is the search space
size: even when considering a sub-DSL, the search space would
remain intractable if traversed naively. To cope with the size of the
search space, we adopt the following four key techniques:

DSL constraints. First, we place constraints on the members of the
DSL we will enumerate (i.e. consider to be candidate CCAs) (§4.1).

Constant sampling. Second, candidate CCAs will contain constant
values, and the correct setting of those values is susceptible to
trace noise, so rather than considering each setting separately, we

405

IMC ’24, November 4-6, 2024, Madrid, Spain

Figure 2: Visualizing the search through an AST.

consider a random sampling of constant assignments as a single
set (§4.2).

Bucketization. Third, we devise a divide-and-conquer approach
that splits the search space into partitions; searching through these
partitions independently is faster than searching the entire space
as a whole (§4.4).

Bucket prioritization. Fourth, we identify a bucketing metric
that allows us to consider entire buckets of CCAs as a whole and
prioritize which buckets to explore deeper into (by splitting them
into sub-buckets) (§4.4).

4.1 DSL Enumeration

Our search space is composed of all the trees of operations (i.e.,
abstract syntax tree, or AST) that can be built by combining the DSL
components. These ASTs may not correspond to concrete event
handlers, since they may have nodes assigned the DSL component
constant that do not receive a final value until the simulation phase
(§4.2). Until then, we call these incomplete handlers sketches. Pos-
sible sketches from this DSL include the Reno (equation 1) and
Vegas (equation 2) sketches. The olive-colored and *-prefixed el-
ements represent the components specific to the Vegas-DSL, and
c1, €2, €3, ¢4, ¢5 represent undefined constants. Figure 2 visualizes
searching an AST within the Reno-DSL.

acked
cwnd

1)

cwnd += mss -

cwnd
ewnd += | ——— — "ack-rate < c1| ? c3 - mss
min-rit
cwnd
- *ack-rate > c3| 2 cq - mss:cs (2)
min-rit

The number of sketches we can build from DSL components
is infinite — we could simply keep growing the expression tree —
so we limit the search space by limiting the maximum depth of
the AST. For a fixed depth, the number of possible sketches grows
exponentially with the number of DSL components. This makes the
search space very large: if we consider trees of maximum depth 7
with the 25 components of the DSL in Listing 1, the correct sketch
is one out of a universe of ~ 101%0 1

1Our physical universe has ~ 107° atoms, so the sketch’s universe is much larger.

IMC ’24, November 4-6, 2024, Madrid, Spain

Dealing with large search space sizes is common in synthesis
literature, so we start by leveraging techniques from previous work.
First, we rely on an SMT formula to extract from this space only
sketches that type-check [23, 33, 48]. We also specify that sketches
should not be arithmetically simplifiable using the sympy [50]
library. Second, we impose CCA-specific constraints: the output
should have the correct units (in this case bytes) and should not
monotonically decrease (since any reasonable CCA must grow the
window at some point). We iteratively query an SMT solver to
explore the search space with the resulting formula. Each solution
to the SMT formula is a sketch with the desired properties. After
obtaining a sketch, we can ask the SMT solver for a different sketch
by adding a constraint that blocks the previous solution.

4.2 Concretizing Enumerated Sketches

The sketches the enumeration process returns can have unas-
signed constants, e.g., c1, c2, ... in equation 2. To evaluate a candidate
sketch, we first need to produce a concrete handler function with
no unassigned constants from the sketch. One way to concretize
the constants in a sketch is to try different concrete number values
for each constant. The problem with this combinatorial search is
that the set of concrete handlers associated with a single sketch
grows exponentially: the number of ways we can assign k variables
with n values is k”. For example, the Vegas sketch has 5 unassigned
variables, so if we considered 10 different values for each, we would
get ~10 million handlers for just one sketch out of millions. Ideally,
these constants should be able to take any real value, but it would
be prohibitively slow to solve the resulting real-valued optimization
problem for each sketch. Rather, Abagnale focuses on identifying
promising sketches with approximate concretization. That is, we
limit the values constants can take to a small set of values observed
in known CCAs to estimate a sketch’s distance from a trace frag-
ment. This strategy makes our approach incomplete, i.e., there are
handlers that we will not explore, dependent on the predefined
values chosen for the constants. However, in our experiments, this
did not prevent Abagnale from returning useful sketches. After
Abagnale returns a handler, it is possible to evaluate this handler’s
sketch using a broader set of constant values.

4.3 Selecting a Distance Metric

How should Abagnale determine whether a candidate handler
matches a set of traces? Because of our optimization formulation of
the synthesis problem, we require a distance metric. We consider
various methods for computing the distance between two traces.
Importantly, as described above, Abagnale cannot exhaustively
evaluate all assignments of constant values since doing so would
make the search space too large. As a result, it is important to select
a distance metric that tolerates error to the greatest extent possible.

In Figure 3, we show how four distance metrics respond to errors
in handlers’ constant values. We use packet traces corresponding
to BBR,2 and we calculate the distances using in-DSL expressions
for BBR, Cubic, Reno, and Vegas written by a domain expert. We
introduced a fixed amount of multiplicative error, from 0.1 to 10, to
each constant in each handler, and measure the resulting handler’s
distance from the trace. We then determine for each amount of error

2When selecting a primary distance metric, we additionally evaluated other CCAs’
traces and other distance metrics, but we elide those results for brevity.

406

Margarida Ferreira et al.

—— BBR -®: Cubic —®- Reno -® Vegas

Canberra

0.6
0.4
0.2

4e-05
3e-05
2e-05
le-05
0e+00

Distance

3000
2000
1000

3000
2000
1000

1.0
Constant Error Multiplier

10.0

Figure 3: Comparison of distance metrics’ tolerance to error in con-
stant values, for traces from the BBR CCA. Red-shaded regions indi-
cate that a synthesized CCA other than BBR had a smaller distance
to the traces. Note the x-axis, showing the amount of error we intro-
duce to the fine-tuned constant values, is in log-scale.

whether the correct CCA’s handler remained the closest to the trace.
If another CCA’s handler was closer using that distance metric, we
shade the background in red. We observe that the Dynamic Time
Warping (DTW) [7] distance remains correct for the widest range of
constant error. This distance metric is alignment-based; i.e. it seeks
to correct for temporal shifts between curves. Unfortunately, DTW
distance is significantly more expensive to compute than Euclidean
distance. For Abagnale, we find that in most cases, DTW’s improved
resilience to constant error is worth the additional runtime, and
configure Abagnale to use it unless otherwise described.

4.4 Guiding the Search

Even when using curated sub-DSLs and the above techniques,
Abagnale could not synthesize CCAs that use more complex DSLs.
We tackled this problem by (1) splitting the search space into disjoint
subspaces, and (2) using our distance metric (§3.1) to prioritize
subspaces that are more likely to generate CCAs with lower distance
to the input traces.

Partitioning the search space. Partitioning the space facilitates
parallelization by allowing Abagnale to use a specialized solver
invocation per bucket and performing the search across buckets in

Reverse-Engineering Congestion Control Algorithm Behavior

Algorithm 1 Abagnale’s refinement Loop

procedure SYNTHEsISLooP(DSL, buckets, N, k)
while buckets not exhausted do
for all bucket € buckets do
samples «— enumerate N sketches from bucket

> in parallel

bucket-score «— min(distances)
end for
buckets « only-top-k(buckets, bucket-scores)
Ne«N-2?
10: k—k/2
11: end while
12: end procedure

1:
2
3
4
5: distances « distance for each sketch € bucket
6
7
8
9

parallel [10]. This makes enumeration significantly faster not only
because it can take advantage of multiple cores, but also because
each solver is searching over a smaller space. Recall that (i) the
solver query grows every time we query the solver for a new sketch,
since we must exclude all previously returned sketches to get a new
one; and (2) solver execution time grows rapidly with query size.
Thus, smaller sub-search spaces can use smaller queries, which is
faster. We call each of these sub-search spaces a bucket.

Bucketing metric. How should we divide the space into buckets?
We must ensure that each sketch in the DSL belongs to a single
bucket according to a bucket discriminator: a metric we can express
in the solver query which will cause it to only enumerate sketches
in the bucket corresponding to the metric’s value.

We want to choose a metric such that two sketches in the same
bucket share not only some structural similarity—so that we can
easily encode it into a dedicated solver—but also share some be-
havioral similarity. Thus, our approach is to pick a discriminator
that ensures behavioral similarity between sketches in the same
bucket, so that we can sample N sketches from all the buckets at
the beginning, simulate them using the procedure described in §4.2,
and assign each bucket a score based on how close the traces in the
sample were to the desired behavior. Using these scores, we order
the buckets from most promising to least promising, drop the least
promising buckets, and repeat this loop with an increased size of
samples N and a reduced number of buckets.

Of course, this approach requires a bucketing metric that pre-
serves behavioral similarity. We considered four such metrics: (1)
fixing the operations of the nodes of the first 3 levels of the tree,
(2) limiting the subset of DSL operators (addition, multiplication,
power, etc) the sketch can use, (3) limiting the subset of congestion
signals and state variables (delay gradient, minimum RTT, time
since the last loss, etc) the sketch can use, and (4) fixing all DSL ele-
ments the sketch can use (so, a combination of (2) and (3)). We found
that limiting the subset of DSL operators (addition, multiplication,
power, etc.) the sketch can use—option (2) above—provided the best
results: this metric was easy to integrate into the enumeration pro-
cess and allows Abagnale to have an independent SMT solver for
each bucket and enforce the bucket’s metric value without much
overhead in the formula.

Search prioritization. We use our bucketing metric to guide the
search. Abagnale uses a refinement loop as shown in Algorithm 1.
The algorithm takes as input the DSL, and each bucket’s discrimi-
nator. It also takes the initial values of N, the number of samples

407

IMC ’24, November 4-6, 2024, Madrid, Spain

we will consider from each bucket and k, the number of buckets
that are retained to the next iteration. In each loop iteration, we
sample N sketches from each bucket (line 4). In line 5, we run the
simulation procedure on each of them and save the best distance
that a concrete handler built from that sketch can achieve. Then
each bucket is assigned a score in line 6, equal to the minimum
of these distances. Having computed all scores for all buckets, we
sort them in line 6 from most promising to least promising, i.e. by
increasing score value. Then, in line 8, we refine the search space
by selecting only the most promising buckets to be explored further.
only-top-k will return the subset of the buckets whose scores are
lower than or equal to the k-th bucket score. This means that, if
there are no ties, k buckets are retained to the next iteration of the
loop. Before going on to the next iteration of the loop, we update N
and k. Now that we know we are looking into the more promising
subset of all buckets, we want to dig deeper into each one to find as
good a handler as possible, so N, the sample size for each bucket, is
increased by 8 times in 1.9. As we get deeper into each bucket, we
increase the trust in our scoring, so we want to get more and more
conservative in how many buckets keep in the search. In 1.10 we
update k to half its previous value. Since we expect each iteration to
evaluate fewer handlers, we can afford to compute distances using
more traces, so we also increase the number of distinct traces being
used by two. Abagnale repeats this loop until either (1) there is
one bucket left, in which case we exhaustively enumerate it and
return the best handler within it, or (2) N grows larger than the
size of the largest bucket still in consideration, which means all
buckets have already been exhaustively enumerated. During the
whole loop duration, Abagnale stores the lowest distance handler
it has found thus far, so if the user interrupts the loop (e.g., with a
timeout), Abagnale will return that handler.

5 Results

We now show Abagnale’s synthesized expressions across two
sets of packet traces. The first set of traces corresponds to the
16 CCAs with implementations distributed with the Linux kernel:
BBR [13, 38], Cubic [34], Vegas [9], Reno [37], BIC [67], CDG [36],
HighSpeed, H-TCP [45], Hybla [12], Illinois [46], LowPriority [42],
NV [8], Scalable [41], Veno [28], Westwood [49], and YeAH [5].
These CCAs are implemented as Linux kernel modules in ~50-500
lines of C. The second set of CCAs is a publicly available dataset
of novel CCAs written by students at a US university as part of a
graduate-level networking class. These CCAs are implemented in
between 50-150 lines of C++.

Abagnale produces arithmetically simple expressions—i.e. with
a maximum AST depth of 5, which is significantly simpler than the
original implementations—for all these CCAs.

Implementation. To synthesize these expressions, we imple-
mented Abagnale on Python 3.11.7. We ran all experiments using
Intel Xeon Gold 6226R with 256GB of RAM, Intel Xeon E5-2630 v2
with 64GB of RAM, and Intel Xeon Silver 4110 CPUs with 64GB of
RAM, with different numbers of cores and RAM. We used Z3 [19]
version 4.8.10 for all SMT queries. Since scoring handlers (§4.3) is
a parallelizable task, we used Ray [52] to distribute the synthesis
tasks among cores across different machines. For every experiment,
we explored different depths of the same DSL on different parallel
machines (we evaluate the impact of DSL depth in §6.3). We ran

IMC ’24, November 4-6, 2024, Madrid, Spain

all synthesis tasks to completion (i.e., until Abagnale returned a
result); in all cases, this took less than 48 hours per depth per CCA.

5.1 Results Overview

We show a summary of CCAs we attempted to synthesize in
Table 2. Each row in the table refers to an analysis of traces derived
from a single CCA, identified in the first column. In the second
column we show the expression Abagnale synthesizes, as well
as the sum of distances between the synthesized traces and the
respective collected traces. Note that these expressions use only
the default constant values listed in §6.1, but we arithmetically
simplify the expressions where possible for readability. Abagnale
computes these distance values shown over the trace segments
used to synthesize each CCA. Since Abagnale synthesizes different
CCAs using different sets of traces, the distance values shown for
these handlers are not comparable across CCAs, i.e., across rows.

Within the same row, the difference between the synthesized
handler distance and the fine-tuned handler distance gives us an
idea of how close the behavior of these two handlers is. In rows
where the synthesized handler distance is the same as, or very close
to, the fine-tuned handler distance (e.g., BBR, Reno, Scalable, LP,
Hybla, HTCP, Illinois, Vegas, Veno), Abagnale outputs a handler
that closely matches the behavior of the fine-tuned handler in the
traces used for synthesis. When the synthesized handler distance
is much higher than that of the fine-tuned handler (e.g., Cubic),
Abagnale’s refinement loop was unable to select the correct bucket
for exploration, and the fine-tuned handler was never evaluated.

Before running Abagnale on the collected traces, we run a CCA
Classifier, Gordon [51], on the same traces. Gordon establishes mul-
tiple connections to the server, and classifies each connection as
running one of its known CCAs (BBR, Cubic, BIC, HTCP, Scalable,
YeAH, Vegas/Veno, Reno, Illinois, and Westwood), or as “Unknown”.
Table 3 shows Gordon’s output. If Gordon determines that a major-
ity of the test connections match a single CCA, we list that CCA in
the table. If Gordon only matches a minority of the connections, we
report that output in parentheses. Finally, when we ran Gordon on
New Vegas (“NV” in the table), it classified all of the connections
as “Unknown”, so we report this result as “Unknown”.

The CCAs from the class project dataset are implemented with a
UDP transport, which Gordon does not support. Thus, for these, we
run CCAnalyzer [64]. As expected (since these are all novel algo-
rithms), CCAnalyzer outputs “Unknown” for all algorithms. Since
this classifier uses a distance metric to compare with its known
algorithms, we can also ask it for the closest known algorithms to
the trace behavior. CCAnalyzer reported CDG and Vegas as the
closest CCAs to all the student’s algorithms but one, for which
it reported Vegas and Scalable. As before, we use these classifier
results to pick the DSLs we run Abagnale with.

Fine-Tuned Handlers: We emphasize that it is not Abagnale’s
goal to reproduce the CCA implementation that resulted in the
collected packet trace; as described previously, these implementa-
tions can comprise hundreds of lines of code, covering both logic
irrelevant to the CCA’s behavior such as custom congestion signal
measurement logic and edge cases that Abagnale does not attempt
to capture. Thus, rather than using the implementation that gener-
ated the trace as our ground truth, we use fine-tuned versions of
the synthesized handlers. To write these fine-tuned handlers, we

408

Margarida Ferreira et al.

used the synthesized expression as a starting point and use domain
knowledge of the CCAs’ implementations and descriptions of their
behavior to write a handler with the same depth and within the
same DSL that captures the CCA’s behavior. During this task, we
found (anecdotally) that it is easy to miss implementation details
and it is hard to simplify handlers’ computations to fit the DSL, so
these handlers are also not a perfect match of the CCA’s behavior.
In fact, as Table 2 shows, some fine-tuned handlers have higher
distance to the collected traces than the respective synthesized
handler. In these cases, our understanding of the original CCA’s
implementation from analyzing its implementation mismatched
the CCA’s actual behavior in the traces. This was either because
we over-estimated the impact of edge-case scenarios or there was a
mismatch between descriptions of the CCA and its implementation.
We show the fine-tuned handler for each CCA in the third column
of Table 2. We used these fine-tuned handlers to understand the
handlers Abagnale produces more deeply. We show an evaluation
of Abagnale’s accuracy relative to these fine-tuned handlers in §6.2.

5.2 BBR

BBR [13]’s core behavior consists of periodic pulses that probe
for additional bandwidth, called “PROBE_BW” mode. In most im-
plementations, these pulses are controlled by a state variable which
determines whether the sending rate and congestion window are
set above, below, or at the estimated bottleneck rate. Of course,
Abagnale does not support hidden state variables and can only
produce closed-form expressions, so we use BBR as a case study to
better understand whether Abagnale can capture such algorithms’
behavior.

In this case, Abagnale synthesizes pulsing behavior in a differ-
ent way: if the CWND is an even number, it sets the CWND to
8 X CWND, and otherwise uses 2.15 X minRTT X ack-rate. This
expression captures BBR’s “CWND gain” feature that seeks to main-
tain a standing queue [63]. By periodically increasing the CWND
beyond this value, the handler will achieve the same probing prop-
erty as BBR, since if the true bottleneck bandwidth is a higher value
than ack-rate, then the ack-rate will increase correspondingly. Dig-
ging deeper into this synthesized handler, we compare its fidelity
to the fine-tuned handler (which uses rtt_since_loss % 8 == 0 to
implement pulses) in Figure 4. Indeed, in Figure 4a we see that
this fine-tuned handler achieves a lower DTW distance than the
synthesized handler. This matches visual intuition; in this trace, the
fine-tuned handler’s pulses are aligned with the pulses observed
in the trace. However, this is not true for all traces. In the trace
shown in Figure 4b, the synthesized handler achieves a lower dis-
tance. This example demonstrates a limitation of the DTW distance
metric; because DTW purposely disregards temporal shifts, it is
less likely that Abagnale will produce a synthesized handler which
matches the original CCA’s pulse behavior. Nevertheless, Abagnale
produces a viable expression for BBR which is significantly simpler
and more understandable than the original implementation.

5.3 Reno-Variant CCAs

The Reno, Westwood, Scalable, and LP CCAs all behave similarly
to Reno, with minor modifications to the cwnd-increase function.
Indeed, Abagnale produces similar expressions for traces generated

Reverse-Engineering Congestion Control Algorithm Behavior

IMC ’24, November 4-6, 2024, Madrid, Spain

DTW DTW
CCA Synthesized cwnd-ack handler distance | Fine-tuned cwnd-ack handler distance
2 X ack-rate X minRTT + minRTT X ack-rate X

BBER {CWND%2.7 = 0} ? 2.05 x CWND : MSS 195.21 ({RTTs-since-loss%8 = 0} ? 2.6 : 2.05) 143.08

Reno CWND + .7 X reno-inc 18.84 CWND + .7 X reno-inc 18.84
Westwood | CWND + reno-inc 86.99 CWND + .68 X reno-inc 12.72
Scalable | CWND + .37 X reno-inc 26.25 CWND + .37 X reno-inc 26.25
CWND x ({htcp-diff > 5} ? .5: 1)+
LP CWND + .68 X reno-inc 18.2 ({htcp-diff)) 18.2
.68 X reno-inc
Hybla CWND + 8 X RTT X reno-inc 35.77 CWND + 8 X RTT X reno-inc 35.77
HTCP CWND + reno-inc 56.24 | CWND + reno-inc X { htcp-diff < .25} ?1: .2 54.53
Illinois CWND + 1.3 X reno-inc 397.99 | CWND + .3 X reno-inc+ 5 X reno-inc X htcp-diff 467.81
)) CWND + {vegas-diff < 1} ? .7 X reno-inc :
Vegas CWND + {vegas-diff < 1} ? .7 X reno-inc : 0 24.36 (vegas-diff > 5} ? — .7 X reno-inc : 0 20.21
Veno CWND + reno-inc X {vegas-diff < .7} ? .35 : .16 9.26 CWND + reno-inc X ({vegas-diff < .7} ? .35 : .16) 9.26
) . CWND + {vegas-diff > 1} ? .7 X reno-inc :

NV CWND + {vegas-diff < 1} ? .7 X reno-inc : 0 58.1 (vegas-diff > 5} ? — .7 X reno-inc: 0 479.39
YeAH CWND + reno-inc X {vegas-diff > 5}? .3 : 1 33.41 CWND + reno-inc X {vegas-diff > 5} ? .3 : 1 3341
Cubic ‘ CWND + time-since-loss® 3580.67 ‘ wmax + (8 X time-since-loss — /(.24 X wmax))3 41.74

Student 1 | 88 196.06 | - -
Student 2 | {285l < 5|2 CWND + MSS + Mss 12203.07 | - -
Student 3 | .8 x ACKed 7698.63 | - -
Student 4 | MSS 217.56 - -
Student 5 | 2 X MSS 32.69 - -
cwnd+150xXMSS
Student 6 m 24406.14 - -
Student 7 | CWND + 2xACKed 17541.93 | - -

Table 2: Results of running Abagnale on different input traces. The first column, “CCA” shows the ground truth, i.e., the algorithm that was
running when the set of traces used for this task was collected. The second column shows Abagnale’s output cwnd-ack handler expression, and
the sum of DTW distances between synthesized traces computed with this handler and the respective ground truth traces. The third column
shows a domain-expert’s attempt at handwriting a cwnd-ack handler expression from the source code of the respective CCA, as well as the

sum of DTW distances computed with these handlers.

by these CCAs. These CCA expressions matched the kernel imple-
mentations’ behavior even with combinations of Abagnale’s default
placeholder constants, and fine-tuning these CCAs only required
modifying the constant values. Thus, Abagnale is able to confirm
(without needing access to the source code) that these CCAs behave
similarly to each other, and is able to estimate each CCA’s relative
aggressiveness.

Three more CCAs’ traces result in handlers with the same Reno-
variant structure: Hybla, HTCP, and Illinois. The objective of the
Hybla CCA is indeed to increase similarly to Reno, but to scale
the increase to compensate for high-delay links [12]. Indeed, the
synthesized handler similarly scales the increase proportionally to
the link RTT.

Surprisingly, Abagnale also returns a Reno-Variant handler when
provided traces from HTCP [45] and Illinois [46]. This is unexpected
because we expect both to depend on delay-based signals. Figure 5

409

digs deeper into this result for HTCP (Illinois is similar). We find
that, indeed, the trace segment depicted exhibits an inflection point
in the congestion window growth. However, Abagnale is unable to
find a handler that more closely represents the behavior observed
in the traces, even at higher depths.

5.4 Vegas-Variant CCAs

The Vegas, Veno, NV, Illinois, and YeAH CCAs all use conditional
expressions derived from a delay signal to determine their conges-
tion window evolution. Abagnale consistently includes this feature
in the synthesized handlers for these traces. Note that we include in
the DSL the expression (RTT — minRTT) x %, which is a com-
monly used estimator of the number of packets in the bottleneck
queue. We highlight that even though the classifier is unable to
identify NV, Abagnale correctly produces a Vegas-variant handler
given traces from NV.

IMC ’24, November 4-6, 2024, Madrid, Spain

CCA Classifier output

BBR BBR

Reno Reno

Westwood ~ Vegas

Scalable Scalable

LP Unknown (Vegas)
Hybla BBR

HTCP HTCP

Mlinois Ilinois

Vegas Vegas

Veno YeAH

NV Unknown

YeAH YeAH

Cubic Cubic

Student 1 Unknown (CDG, Vegas)
Student 2 Unknown (CDG, Vegas)
Student 3 Unknown (Scalable, Vegas)
Student4 Unknown (CDG, NV)
Student 5 Unknown (CDG, Vegas)
Student 6 Unknown (CDG, Vegas)
Student 7 Unknown (CDG, Vegas)

Table 3: Result of running a classifier (Gordon [51] for the Kernel
algorithms, or CCAnalyzer [64] for the students algorithms) for the
CCA. The CCA name in parenthesis after "Unknown" is the CCA that
the classifier identified as closest, despite the output being Unknown.
We color classifier outputs blue if correct and red if incorrect.

In fact, Abagnale’s output given traces from NV is identical to
its output for traces from Vegas. We note that the CCAs Vegas
and NV (i.e, “New Vegas”) use the same fundamental logic [8, 9];
their differences are only in the way they measure the number of
packets in the queue. For example, NV uses a moving average of
the delay and uses a hidden state variable to reduce the frequency
of its window updates to once per RTT. Since Abagnale provides its
own definitions of congestion signals and captures behavior rather
than implementation details, it correctly returns the same handler
for both these sets of traces.

5.5 Remaining CCAs

The remaining CCAs we consider from the Linux kernel are BIC,
CDG, Cubic, and HighSpeed.

BIC: The BIC CCA, at a high level, conditionally performs either
binary search between the current window and the window at the
time of the last loss, and linear probing [67]. The closest expressions
Abagnale returns on BIC traces, meanwhile, grow the window
according to the time since the last loss. As a result, we suspect
that the correct handler for BIC has an AST depth too deep (with
multiple levels of nested conditionals) for Abagnale to effectively
explore.

CDG: The CDG CCA calculates the probability of reducing the
window based on the RTT value and randomly decides to decrease
the congestion window based on this drop probability [36]. Since
calculating random values is outside the input DSL, it is not possible

410

Margarida Ferreira et al.
Synthesized win-ack handler for BBR (DTW distance 92.0):
win-ack = (2) - ack_rate - min rtt + ((cwnd%2.7 = 0) ? 2.05 - cwnd : mss)

Fine-tuned win-ack handler for BBR (DTW distance 73.9):
win-ack = ((rtts_since_loss%8.0 = 0) ? 2.6 : 2.05) - (min_rtt - ack rate)

300000
— collected trace inflight
—— synth. trace inflight
280000
— fine-tuned trace inflight
; 260000
@
240000
220000
37 38 39 40 41 42 43 44
Time (s)

(a) A trace in which the fine-tuned handler achieves a lower distance than the
synthesized one.
Synthesized win-ack handler for BBR (DTW distance 44.9):
win-ack = (2) - ack rate - min_rtt + ((cwnd%2.7 = 0) 7 2.05 - cwnd : mss)

Fine-tuned win-ack handler for BBR (DTW distance 75.5):
win-ack = ((rtts_since 1oss%8.0 = 0) 7 2.6 : 2.05) - (min_rtt - ack rate)

70000
collected trace inflight
65000 — s_ynth. trace inflight
—— fine-tuned trace inflight

$ 60000
B
i)

55000

50000

285 20.0 205 300 30.5
Time (s)

(b) A trace for which the fine-tuned handler achieves a higher distance than
the synthesized one.

Figure 4: Even though the handler handwritten by a domain expert
based on the BBR kernel implementation is a better visual match to
the collected BBR trace, the synthesized trace with random “spikes”
has a lower distance for some traces.

Synthesized win-ack handler for HTCP (DTW distance 15.7):

win-ack = cwnd + mss:acked
cwnd
1600001 collected trace inflight
synth. trace inflight
140000
3]
<, 120000
@
100000
80000 A
3.0 3.5 4.0 4.5 5.0
Time (s)

Figure 5: Although this HTCP trace exhibits an inflection point, a
simple Reno-variant handler has a low enough distance that Abag-
nale does not explore more complex handlers.

for Abagnale to synthesize the correct handler. As a result, we do
not run Abagnale on CDG traces.

Reverse-Engineering Congestion Control Algorithm Behavior

Cubic: When encoding our unit constraints as described above
in §4.1, we make a design decision to only encode integer-valued
constraints, so that the enumerator formula remains a quantiﬁer—
free finite domain formula, which makes queries significantly faster.
Unfortunately, as a result, Abagnale cannot unit-check cube-root
operations. We thus run Abagnale with unit constraints disabled
on Cubic-derived traces. Indeed, the returned expression captures a
subset of Cubic’s behavior - growing cubically with the time since
the last loss - but this expression does not have consistent units.

HighSpeed: The HighSpeed CCA uses logarithmic operations [26].
In the Linux kernel implementation, this is implemented with a
large lookup table. As is the case with Cubic, our enumeration
constraints cannot reason about exponentiation and logarithm op-
erations. We did not run Abagnale on HighSpeed traces as a result.

5.6 Student CCAs

When we run the CCAnalyzer classifier on the student CCA
dataset, the classifier indicates that all 7 CCAs have some similarity
to Vegas. Unsurprisingly, when we run Abagnale on these traces
many are of Vegas-variant form: Student CCAs 1, 2, 4, and 5 all mod-
ify the congestion window by comparing (RTT—minRTT) X %
to a constant threshold value. Note that the synthesized result for
the Student 5 CCA is simplifiable, since the first conditional expres-
sion is trivially false; as discussed above, Abagnale cannot reason
about this simplification due to its reliance on sympy. We discuss
the student CCAs in more detail, particularly exploring the impact
of DSL depth, in §6.3.

6 Evaluation

We previously described the intractably large search space Abag-
nale must navigate during the synthesis process. We now evaluate
how well Abagnale navigates this space. We consider three aspects
of Abagnale’s exploration:

(1) How much of the search space does Abagnale evaluate in
order to return the results in §5? We show Abagnale’s explo-
ration of the search space for Reno in §6.1.

(2) How far off was Abagnale from returning the fine-tuned
CCA a domain expert developed with knowledge of both the
synthesized handler as well as the nature of the ground-truth
CCA? We discuss this in §6.2.

(3) How important are the DSL inputs to Abagnale in determin-
ing whether it will return a good sketch for an unknown
CCA? We evaluate this in §6.3.

6.1 Search Efficiency

We evaluate how efficiently Abagnale explores its search space
by digging deeper into its exploration of traces produced by Reno.
Recall that for this CCA, Abagnale returns the following expression
with depth 3: CWND + .7 X reno-inc. Note that we encode reno-inc
as a macro in Abagnale’s DSL, so that sub-expression does not
increase the depth.

The Reno DSL is shown in Listing 1. Between congestion signals,
operators, and macros, this DSL contains 11 elements. The space of
all depth-3 sketches that can be built in this DSL is then ~ 2 billion.
From those, using the enumeration pruning techniques described in
§4.1, Abagnale reduces this space to 1,617 sketches. This represents

411

IMC ’24, November 4-6, 2024, Madrid, Spain

CCA | Poviont toton2

BBR 4/127 3/5
Cubic 7/27 -

HTCP 2/31 4/5
Hybla 4/7 1/5
Illinois 3/63 3/5
LP 1/63 1/6
NV 5/15 2/5
Reno 3/218 1/5
Scalable 1/218 1/5
Vegas 5/15 4/5
Veno 1/7 1/5
Westwood 1/218 1/5
YeAH 1/31 1/5

Table 4: Abagnale’s progress through the search space for the CCAs
distributed with the Linux kernel.

the space of type-checked, unit-checked, non-simplifiable Reno-
DSL cwnd-ack handler sketches. Each of these sketches can get
expanded into concrete win-ack handlers, by filling out its holes.
In total, the Reno-DSL search space has 101,000 concrete handlers.

Abagnale first partitions the search space into 218 disjoint buck-
ets. The first iteration of the refinement loop enumerates and scores
a sample of 16 handler sketches of each of the 218 buckets. To do
this, Abagnale must concretize each sketch with constant values.
Each sketch has between 1 and 273 completions, so in this first
iteration Abagnale scores a total of 17,500 fully-populated handlers.
Scoring these handlers is parallelizable, and completes in 7 minutes
on the cluster described above. After this first iteration, Abagnale
retains 5 of the 218 buckets. In the second iteration, it samples
an additional 112 sketches (totalling 128 across the two iterations)
from each bucket. 3 of the buckets contain fewer than 128 sketches
in total; we enumerate those buckets exhaustively. Thus, in this
iteration Abagnale scores 28,400 fully-populated handlers, in 13
minutes. After this iteration, Reno retains the 2 top buckets. These
two buckets both contain fewer than 128 sketches, so they had
already been fully enumerated. So, Abagnale returns the handler
with the lowest known distance, CWND + .7 X reno-inc. Overall,
Abagnale finds this handler after exploring only about a third of
the viable search space (i.e. the search space remaining after all
enumeration constraints).

6.2 Search Accuracy

We next evaluate Abagnale’s accuracy relative to the fine-tuned
handlers described in §5.1. We measure where in the process Abag-
nale discarded the fine-tuned handler in favor of the one it even-
tually returned. Note that in some cases, such as with BBR (§5.2),
this fine-tuned handler does not have a lower DTW distance to the
collected trace than the handler the synthesizer returned.

Table 4 shows this result. Recall from §4.4 that Abagnale’s search
proceeds iteratively through “buckets” of the search space. The
column “position after iteration 1” shows both the rank of the
fine-tuned handler’s bucket, and the number of possible buckets.
For example, for BBR, “4 / 127” indicates that the fine-tuned han-
dler’s bucket had the fourth-lowest estimated distance out of 127

IMC ’24, November 4-6, 2024, Madrid, Spain

total buckets. In the first iteration of the refinement loop, Abag-
nale retains the top 5 buckets. Thus, in this example, Abagnale
correctly discarded 122 of the 127 possible buckets. For Cubic, the
first iteration of the refinement loop ranks the fine-tuned handler’s
bucket 7th. Since only 5 buckets are retained for the second itera-
tion, the fine-tuned handler’s bucket gets discarded. If this bucket
had not been discarded, exhaustive exploration would have ranked
the fine-tuned sketch at 7 / 4,794. Within these sketch completions,
the fine-tuned handler would have ranked 1/36. For Cubic, unlike
BBR, the fine-tuned handler has lower distance than the expression
Abagnale returns. So, if the fine-tuned handler had been sampled
from the respective bucket in the first iteration of the loop, Abag-
nale would have exhaustively searched that bucket and ultimately
returned the fine-tuned handler.

The second column shows the same result after the second it-
eration of the refinement loop. This second iteration has more
information about each bucket, because it samples 128 sketches
from each of the 5 buckets (in the first iteration Abagnale samples
only 16). For BBR, we see that the fine-tuned handler bucket was
ranked 3rd in the second iteration, so it was not selected for exhaus-
tive search. Similarly, for Vegas, the fine-tuned handler is in the
fourth-ranked bucket after the second iteration of the refinement
loop. In both cases, Abagnale exhaustively enumerates, concretizes,
and scores the top-scoring buckets (which do not contain the fine-
tuned handler). The fine-tuned handler’s bucket in the Vegas DSL
only contains one sketch; this means that, similarly to BBR, the
fine-tuned handler has a higher distance than the handler Abagnale
returned.

6.3 Impact of DSL Input

We use the student CCAs to evaluate the impact of the input DSL
on Abagnale’s results. In Figure 6a, we show Abagnale’s results
from three DSLs: a Delay DSL (Listing 1), which includes RTT and
rate signals, with constraints of depth 4 and up to 7 or 11 nodes
(Delay-7 and Delay-11), and the Vegas DSL, which additionally
includes a macro encoding the common sub-expression (RTT —
minRTT) X %, with depth 5 and up to 11 nodes (Vegas-11).
We observe that with Delay-7, the best-scoring handler cannot
capture the behavior of this CCA, while the best-scoring handler
from Delay-11 starts to capture the triangular pattern. Finally, using
Vegas-11 enables the macro, which frees up sketch nodes for other
operations. This handler comes closest to matching the input trace’s
behavior.

In contrast, we show the result for student CCA #3 in Figure 6b. In
this case, the best handler uses the Delay-11 DSL, not Vegas-11. This
is because the DSL components that are part of the Vegas DSL but
not the Delay DSL do not play a part in student CCA #3. This makes
the search space bigger, which in turns means that if we timeout a
search at any point, we are less likely to have already explored the
lowest-distance sketch. So, even though the lowest-distance sketch
was in both the space Abagnale explores with Vegas-11 as its input
DSL and the space corresponding to Delay-11, by the time these
searches timed out, Abagnale with Delay-11 had already evaluated
it and saved it, but Abagnale with Vegas-11 had not.

412

Margarida Ferreira et al.

Synthesized expression for Student #1

064 Collected
---= Vegas-11

05 Delay-11
5 Delay-7
204
£
2
203
2 !
>02 Wy,

0.1 u.;*‘fi")

Ro o
0.0 L=
42 44 46 48 50 52

Trace time (s)

(a) Student CCA 1 with different DSLs
Synthesized expression for Student #3

—— Collected
81 ---- Vegas-11
Delay-11
Delay-7

Visible win (Mbit)

0
0.0 0.5 1.0

Trace time (s)

15 2.0

(b) Student CCA 3 with different DSLs

Figure 6: Three different synthesized CCAs for Student 1 and Student
3 using DSLs identified by CCAnalyzer [64].

7 Related Work

Program Synthesis. Traditional approaches for program synthesis
with examples (PBE) [22, 25, 30, 31] find a program that satisfies all
given examples. Although this is the main focus of PBE research,
there is some work [35] on handling cases where examples may
have noise. In this scenario, prior work also formulated the synthe-
sis problem as an optimization problem. However, they consider
discrete data such as string or tabular data where the noise is limited
and discrete, leaving the remaining parts intact and uncorrupted. In
our case, we produce a trace of outputs for the same inputs observed
in the collected trace and compare them to the outputs visible in
the original trace. While we use the DTW distance to measure how
good our synthesized CCA is, prior work on strings can use simpler
methods like the number of failed examples or the edit distance
between strings. Moreover, Abagnale uses the distance metric not
only to evaluate a candidate handler’s merit, but also to guide the
search with our bucket prioritization strategy (§4.4).

Smaller DSLs result in a smaller search space and faster perfor-
mance but finding a small DSL expressive enough to capture the
intended behavior is a challenging task. Chan et al. [14] proposed
to start with a generic large DSL and use gradient descent to find
a sub-DSL that is effective for a specific problem. They train on
several benchmarks and reward sub-DSLs that can quickly solve
benchmarks and penalize those that fail to solve. Abagnale also has

Reverse-Engineering Congestion Control Algorithm Behavior

sub-DSLs for each class of CCAs from the Linux Kernel. Given a
network trace, Abagnale runs a CCA classifier to map the trace to
a known CCA in the Linux Kernel and uses that sub-DSL.

Synthesis of CCAs. Mister880 [24] first proposed using program
synthesis to reverse-engineer CCAs. Mister880 makes several sim-
plifying assumptions that make it unsuitable for analyzing real
CCAs. For example, it only considers a single simulated packet
trace, and cannot cope with trace noise. Additionally, Mister880’s
simulation relies on an SMT solver for the simulation procedure,
and does not scale to real-world traces, which can be hundreds of
times larger than Mister880’s simulated traces. It also attempts to
fully enumerate the search space, which is impractical for all but
the simplest CCAs. However, with Abagnale, we do take inspira-
tion from Mister880’s event-driven structure and use of distance to
evaluate candidate CCAs.

Meanwhile, CCmatic [1, 2] recently proposed program synthesis
techniques to produce novel congestion control algorithms that
satisfy desired properties. This is fundamentally a different problem
than reverse-engineering; while with Abagnale we seek to provide
fidelity to an extant CCA, Agarwal et al’s work need only consider
a CCA’s performance in some specific setting.

8 Conclusion

In this paper we described a system, Abagnale, that combines
existing and novel techniques in program synthesis with domain-
specific knowledge of CCAs to take a first step towards reverse-
engineering the behavior of arbitrary real-world CCAs. This process
is today currently fraught with uncertainty and difficulty; most
efforts at CCA analysis simply stop with providing trace collection
and performance reports. We argue that automated and mechanized
reverse-engineering, such as with Abagnale, should be an important
technique in the toolbox of the modern CCA researcher. The results
from our synthesis techniques, even when they do not precisely
match the ground-truth implementation, reliably give insights into
the signals and structure a target CCA uses.

Acknowledgments

We are grateful to Miguel Ferreira for his feedback on multi-
ple drafts of this paper. We also thank Anup Agarwal for helpful
discussions at different stages of this project. Finally, we thank
the anonymous reviewers and anonymous shepherd for their com-
ments. This work was partially supported by the Portuguese Foun-
dation for Science and Technology under the Carnegie Mellon
Portugal PhD fellowship SFRH/BD/151467/2021 and the projects
UIDB/50021/2020 and 2022.03537.PTDC. Additional support was
provided by NSF grant CNS-2212390.

Ethics

This work does not raise any ethical issues.

References

[1] Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Martins, and Srinivasan Se-
shan. Automating Network Heuristic Design and Analysis. In HotNets, 2022.
Cited on page 13.

Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Martins, and Srinivasan Se-
shan. Towards Provably Performant Congestion Control. In NSDI, 2024. Cited
on page 13.

Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad Alizadeh,
and Hari Balakrishnan. Toward Formally Verifying Congestion Control Behavior.
In SIGCOMM, 2021. Cited on pages 1 and 3.

(2]

413

IMC ’24, November 4-6, 2024, Madrid, Spain

[4] Rukshani Athapathu, Ranysha Ware, Aditya Abraham Philip, Srinivasan Seshan,
and Justine Sherry. Prudentia: Measuring Congestion Control Harm on the
Internet. In SIGCOMM N2Women Workshop, 2020. Cited on page 3.

Andrea Baiocchi, Angelo P Castellani, Francesco Vacirca, et al. YeAH-TCP: Yet
Another Highspeed TCP. In Proc. PFLDnet, volume 7, 2007. Cited on page 7.
Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. DeepCoder: Learning to Write Programs. In ICLR (Poster), 2017.
Cited on page 3.

Donald J. Berndt and James Clifford. Using Dynamic Time Warping to Find
Patterns in Time Series. In KDD Workshop, 1994. Cited on page 6.

L. Brakmo. TCP-NV: Congestion Avoidance for Data Centers. Linux Plumbers
Conference, 2010. Cited on pages 7 and 10.

Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. In SIGCOMM, 1994. Cited
on pages 5, 7, and 10.

Ricardo Brancas, Miguel Terra-Neves, Miguel Ventura, Vasco M. Manquinho, and
Ruben Martins. Towards Reliable SQL Synthesis: Fuzzing-Based Evaluation and
Disambiguation. In FASE, 2024. Cited on pages 2 and 7.

Deklin Caban, Devdeep Ray, and Srinivasan Seshan. Understanding Congestion
Control for Cloud Game Streaming. 2020. Cited on page 1.

Carlo Caini and Rosario Firrincieli. TCP Hybla: a TCP Enhancement for Hetero-
geneous Networks. Int. J. Satell. Commun. Netw., 22(5), 2004. Cited on pages 7
and 9.

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: Congestion-Based Congestion Control. ACM Queue, 14, 2016.
Cited on pages 5, 7, and 8.

Nicolas Chan, Elizabeth Polgreen, and Sanjit A. Seshia. Gradient Descent over
Metagrammars for Syntax-Guided Synthesis. CoRR, abs/2007.06677, 2020. Cited
on page 12.

Haoxian Chen, Anduo Wang, and Boon Thau Loo. Towards Example-Guided
Network Synthesis. In APNet, 2018. Cited on page 3.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé
de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. Cited on
page 3.

Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. Multi-Modal
Synthesis of Regular Expressions. In PLDI, 2020. Cited on page 3.

Dah-Ming Chiu and Raj Jain. Analysis of the Increase and Decrease Algorithms
for Congestion Avoidance in Computer Networks. Comput. Networks, 17, 1989.
Cited on page 1.

Leonardo Mendonga de Moura and Nikolaj S. Bjerner. Z3: An Efficient SMT
Solver. In TACAS, 2008. Cited on page 7.

Amogh Dhamdhere, David D. Clark, Alexander Gamero-Garrido, Matthew J.
Luckie, Ricky K. P. Mok, Gautam Akiwate, Kabir Gogia, Vaibhav Bajpai, Alex C.
Snoeren, and ke claffy. Inferring Persistent Interdomain Congestion. In SIGCOMM,
2018. Cited on page 3.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program Synthesis Using
Conflict-Driven Learning. In PLDI, 2018. Cited on page 3.

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
Component-Based Synthesis of Table Consolidation and Transformation Tasks
From Examples. In PLDI 2017. Cited on pages 3 and 12.

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps.
Component-Based Synthesis for Complex APIs. In POPL, 2017. Cited on page 6.
Margarida Ferreira, Akshay Narayan, Inés Lynce, Ruben Martins, and Justine
Sherry. Counterfeiting Congestion Control Algorithms. In HotNets, 2021. Cited
on pages 2, 3, 4, and 13.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing Data Structure
Transformations from Input-Output Examples. In PLDI, 2015. Cited on pages 3
and 12.

Sally Floyd. HighSpeed TCP for Large Congestion Windows. https://www.ietf.
org/rfe/rfc3649.txt, 2003. Cited on page 11.

Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and
Keith Winstein. Salsify: Low-Latency Network Video through Tighter Integration
between a Video Codec and a Transport Protocol. In NSDI, 2018. Cited on page 3.
Cheng Peng Fu and Soung C. Liew. TCP Veno: TCP Enhancement for Transmis-
sion over Wireless Access Networks. IEEE §. Sel. Areas Commun., 21(2), 2003.
Cited on page 7.

—_
2

[10

(11]

[12

(13

=
&

[15

[16

[17

(18

[19

[20]

[21]

[22

(23]

[24

[25]

™
2

[27

[28

https://www.ietf.org/rfc/rfc3649.txt
https://www.ietf.org/rfc/rfc3649.txt

IMC ’24, November 4-6, 2024, Madrid, Spain

[29

[30]

[31]

[32

[33]

[34

[35]

[36

[37

[38]

[39

[40]

[41]

[42

[43]

[44]

[45

[46]

[47

[48]

[49

[50]

Sishuai Gong, Usama Naseer, and Theophilus Benson. Inspector Gadget: A
Framework for Inferring TCP Congestion Control Algorithms and Protocol
Configurations. In TMA. IFIP, 2020. Cited on pages 3 and 4.

Sumit Gulwani. Programming by Examples - and its applications in Data Wran-
gling. In Javier Esparza, Orna Grumberg, and Salomon Sickert, editors, Dependable
Software Systems Engineering, volume 45. 2016. Cited on page 12.

Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet Data Manip-
ulation Using Examples. CACM, 55, 2012. Cited on pages 1, 3, and 12.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis.
Foundations and Trends in Programming Languages, 4, 2017. Cited on page 1.
Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger, and Nadia
Polikarpova. Type-Directed Program Synthesis for RESTful APIs. In PLDI, 2022.
Cited on page 6.

Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: a New TCP-Friendly High-Speed
TCP Variant. ACM SIGOPS Oper. Syst. Rev., 42(5), 2008. Cited on page 7.
Shivam Handa and Martin C. Rinard. Inductive Program Synthesis Over Noisy
Data. In ESEC/SIGSOFT FSE, 2020. Cited on page 12.

David A. Hayes and Grenville J. Armitage. Revisiting TCP Congestion Control
Using Delay Gradients. In Networking (2). Springer, 2011. Cited on pages 7 and 10.
Janey C. Hoe. Improving the Start-Up Behavior of a Congestion Control Scheme
for TCP. In SIGCOMM, 1996. Cited on page 7.

Van Jacobson, Neal Cardwell, Yuchung Cheng, and Soheil Hassas Yeganeh. Bot-
tleneck Bandwidth and RTT (BBR) Congestion Control. https://elixir.bootlin.
com/linux/v4.14/source/net/ipv4/tcp_bbr.c. Cited on page 7.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-Guided
Component-Based Program Synthesis. In ICSE. ACM, 2010. Cited on page 3.
Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain,
and Sumit Gulwani. Neural-Guided Deductive Search for Real-Time Program
Synthesis from Examples. In ICLR (Poster), 2018. Cited on page 3.

Tom Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area
Networks. SIGCOMM CCR, 33, 2003. Cited on page 7.

Aleksandar Kuzmanovic and Edward W. Knightly. TCP-LP: Low-Priority Service
via Endpoint Congestion Control. IEEE/ACM Trans. Netw., 14(4), 2006. Cited on
page 7.

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan R. Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti,
Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi
Shi. The QUIC Transport Protocol: Design and Internet-Scale Deployment. In
SIGCOMM, 2017. Cited on page 1.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating Search-
Based Program Synthesis Using Learned Probabilistic Models. In PLDI 2018.
Cited on page 3.

DJ Leith and R. Shorten. H-TCP Protocol for High-Speed Long Distance Networks.
In PFLDNet, 2004. Cited on pages 5, 7, and 9.

Shao Liu, Tamer Basar, and R. Srikant. TCP-Illinois: A Loss- and Delay-Based
Congestion Control Algorithm for High-Speed Networks. Perform. Evaluation,
65, 2008. Cited on pages 7 and 9.

Xavier Marchal, Philippe Graff, Joél Roman Ky, Thibault Cholez, Stéphane Tuffin,
Bertrand Mathieu, and Olivier Festor. An Analysis of Cloud Gaming Platforms
Behaviour Under Synthetic Network Constraints and Real Cellular Networks
Conditions. J. Netw. Syst. Manag., 31(2), 2023. Cited on page 2.

Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. Trinity: An
Extensible Synthesis Framework for Data Science. VLDB, 12(12), 2019. Cited on
pages 3 and 6.

S. Mascolo, C. Casetti, M. Gerla, M.Y. Sanadidi, and R. Wang. TCP Westwood:
Bandwidth Estimation for Enhanced Transport over Wireless Links. In MobiCom,
2001. Cited on page 7.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondrej Certik, Sergey B.
Kirpichev, Matthew Rocklin, Amit Kumar, Sergiu Ivanov, Jason Keith Moore,

414

(51

[52

o
=

[54

[55

[56

o
=)

[58

[59

[60

[61

o
&,

[63

[64

[65]

[66]

o
=

(68

Margarida Ferreira et al.

Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-
dregosa, Matthew J. Curry, Andy R. Terrel, Stepan Roucka, Ashutosh Saboo, Isuru
Fernando, Sumith Kulal, Robert Cimrman, and Anthony M. Scopatz. SymPy:
symbolic computing in Python. Peerj Comput. Sci., 3, 2017. Cited on page 6.
Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben
Leong. The Great Internet TCP Congestion Control Census. In SIGMETRICS,
2020. Cited on pages 1, 2, 3, 4, 8, and 10.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A Distributed Framework for Emerging Al Applications. In
OSDI, 2018. Cited on page 7.

Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas
Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. Re-
structuring Endpoint Congestion Control. In SIGCOMM, 2018. Cited on pages 1
and 4.

Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichandra Addanki,
Mehrdad Khani Shirkoohi, Prateesh Goyal, and Mohammad Alizadeh.
End-to-End Transport for Video QoE Fairness. In SIGCOMM, 2019. Cited on
page 3.

Jitendra Padhye and Sally Floyd. On Inferring TCP Behavior. In SIGCOMM, 2001.
Cited on page 3.

Adithya Abraham Philip, Rukshani Athapathu, Ranysha Ware, Fabian Francis
Mkocheko, Alexis Schlomer, Mengrou Shou, Zili Meng, Srinivasan Seshan, and
Justine Sherry. Prudentia: Findings of an Internet Fairness Watchdog. In SIG-
COMM, 2024. Cited on page 3.

Devdeep Ray. Integrating Video Codec Design and Network Transport for Emerging
Internet Video Streaming Applications. PhD thesis, Carnegie Mellon University,
2022. Cited on page 3.

Devdeep Ray and Srinivasan Seshan. CC-fuzz: Genetic Algorithm-Based Fuzzing
for Stress Testing Congestion Control Algorithms. In HotNets, 2022. Cited on
page 4.

Jan Riith, Ike Kunze, and Oliver Hohlfeld. An Empirical View on Content Provider
Fairness. In TMA, 2019. Cited on page 3.

Constantin Sander, Jan Riith, Oliver Hohlfeld, and Klaus Wehrle. DeePCCI: Deep
Learning-based Passive Congestion Control Identification. In NetAI@SIGCOMM,
2019. Cited on page 3.

Lei Shi, Yahui Li, Boon Thau Loo, and Rajeev Alur. Network Traffic Classification
by Program Synthesis. In TACAS, 2021. Cited on page 3.

Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodik, and Kemal Ebcioglu.
Programming by Sketching for Bit-Streaming Programs. In PLDI, 2005. Cited on
page 3.

Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry.
Modeling BBR’s Interactions with Loss-Based Congestion Control. In IMC, 2019.
Cited on pages 1, 4, and 8.

Ranysha Ware, Adithya Abraham Philip, Nicholas Hungria, Yash Kothari, Justine
Sherry, and Srinivasan Seshan. CCAnalyzer: An Efficient and Nearly-Passive
Congestion Control Classifier. In SIGCOMM, 2024. Cited on pages 3, 4, 8, 10,
and 12.

D.X. Wei, C. Jin, S.H. Low, and S. Hegde. FAST TCP: Motivation, Architecture,
Algorithms, Performance. IEEE/ACM Trans. on Networking, 14(6), 2006. Cited on
page 1.

Keith Winstein and Hari Balakrishnan. TCP ex Machina: Computer-Generated
Congestion Control. In SIGCOMM, 2013. Cited on page 4.

Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary Increase Congestion
Control (BIC) for Fast Long-Distance Networks. In INFOCOM, 2004. Cited on
pages 7 and 10.

Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau Loo. Scenario-Based Program-
ming for SDN Policies. In CoNEXT, 2015. Cited on page 3.

https://elixir.bootlin.com/linux/v4.14/source/net/ipv4/tcp_bbr.c
https://elixir.bootlin.com/linux/v4.14/source/net/ipv4/tcp_bbr.c

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Why reverse-engineer CCAs?
	2.2 Program Synthesis for Reverse Engineering

	3 Model and Inputs
	3.1 Evaluating Candidate CCAs
	3.2 Trace Collection
	3.3 DSL Curation

	4 Exploring the Search Space
	4.1 DSL Enumeration
	4.2 Concretizing Enumerated Sketches
	4.3 Selecting a Distance Metric
	4.4 Guiding the Search

	5 Results
	5.1 Results Overview
	5.2 BBR
	5.3 Reno-Variant CCAs
	5.4 Vegas-Variant CCAs
	5.5 Remaining CCAs
	5.6 Student CCAs

	6 Evaluation
	6.1 Search Efficiency
	6.2 Search Accuracy
	6.3 Impact of DSL Input

	7 Related Work
	8 Conclusion
	References

