
Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

Political Blog Analysis Using Bootstrapping Techniques

Fritz Heckel, Nick Ward
Department of Computer Science

Swarthmore College
Swarthmore, Pennsylvania, USA

{fwph,nward}@sccs.swarthmore.edu

Abstract

In the past few years, the form of Internet
media known as “blogging” or weblog-
ging has exploded, especially in the realm
of politics. We propose and implement
a system for performing qualitative text
analysis of political blogs, with the ulti-
mate goal of placing them on a map to cat-
egorize them according to political bias.
Our system performed surprisingly well
on the task of categorizing entire blogs,
though the success is not entirely unquali-
fied, and the system is not suitable for cat-
egorizing individual articles.

1 Introduction

Political bloggers are some of the most prolific writ-
ers of today’s new media, generating thousands, if
not millions, of articles a day. We can harness the
sheer mass of blog articles to create a large and very
dense corpus for use with machine learning tech-
niques. Furthermore, as blogs are generally quite
easy for a human to classify by political bent, it is
effectively a self-labeled corpus.

Because of the sheer size of “the Blogosphere”,
it can be extremely difficult to navigate; informa-
tion overload takes on a new meaning after spend-
ing several hours traversing the blog nets. We pro-
pose a system to help ease this task, by performing
qualitative text analysis on blog articles. We hope to
develop a system that not only categorizes blogs dis-
cretely, but also places them along a spectrum so that
it is easy to compare different blogs with a glance.

We do not make any hypotheses as to the nature
of the final blog classification results. We seek only
some sort of document classification that reveals
some interesting patterns in blogs. Whether those
patterns manifest themselves as political affiliation,
authorship, or some more subtle content-based qual-
ifier, they will give some meta-information about a
given blog.

2 Related Work

There has been effectively no work in the area of
automatically classifying blogs based on their con-
tent. Most proposals focus on creating a pre-defined
taxonomy of blog subject matter that would be in-
tegrated directly into RSS stream files as metadata;
the current incarnation of such a system is a <taxo>

XML tag that can be included in a blog’s RSS feed
(Beged-Dov et al., 2000). Note that this system re-
quires manual entry of blog metadata by each blog
author for every document that they create.

One example of a set of classifications that could
be used with a taxonomy-based system has been
proposed for blogs produced not by individuals but
by corporations, businesses, or other organizations
(Wackå, 2004). The author suggests that the pri-
mary division in this blog subdomain is between
“External Blogs”, which are used by the company
or organization to promote their image, and “Inter-
nal Blogs”, which are used by employees to col-
laborate and disseminate knowledge and company
culture. The author mentions that any sort of top-
down classification proposed for blogs, even within
a constrained subdomain of “the Blogosphere”, is
doomed to failure simply because no one will agree

20

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

on what the fixed taxonomical classification stan-
dard will be. This is why automated classification
systems are necessary.

Other extensions to existing blog metadata have
been proposed, such as one to add Semantic Web-
compatible content classifiers to existing RSS feeds
(Karger and Quan, 2004). None of these methods
appear to address the fact that every blogger would
be required to conform to some sort of metadata
standard in order to make their entries classifiable,
nor that some bloggers might choose to intentionally
mislabel their entries for some reason.

3 System Architecture

Our system is composed of three major parts: a
data harvester, a training system for discovering
domain-specific lexicons, and a categorization com-
ponent. The first component uses Perl’s XML::RSS
and LWP::RobotUA modules to create a simple
RSS aggregator which feeds entries into a MySQL
database. The use of MySQL lets us continuously
harvest blog articles from RSS feeds while simul-
taneously training our system, avoiding problems of
file-locking and other race conditions, while the Perl
modules give us pre-existing code to help us avoid
reinventing the wheel.

The second component is based on the BASILISK
system (Riloff and Thelen, 2002) created by Ellen
Riloff. BASILISK first utilizes the AutoSlog (Riloff,
1996) system to generate extraction patterns from
the training data, then takes a seed lexicon to dis-
cover a larger dictionary of words relating to a num-
ber of categories in the political domain. We re-used
the top extraction patterns as templates to match
in new documents; these combined with the words
matching in the pattern will be used to create feature
vectors for the categorization step.

The third component is based on a part of the
SOMLib Digital Library system (Merkl and Rauber,
2000) created by the Department of Software Tech-
nology team at the Vienna University of Technol-
ogy. Their unsupervised document classifier con-
sists of a hierarchical feature map (HFM), a tree-like
arrangement of several independent self-organizing
maps (SOMs). The feature vectors derived from the
second component will be used as input to these
HFMs, which will be implemented using an exist-

ing SOM software module in the Python Robotics
Project (Blank et al., 2002) (Blank et al., 2005).
Developing in this pre-defined Python environment,
with which both of us are experienced, sped the de-
velopment of this component.

4 RSS Aggregation

We chose as sources for training data a number of
high profile, high volume blogs for which we knew
the political slant. The full list is shown in Table 1.

Table 1: Political Weblogs
Political Weblogs

Category Blog

Conservative GOP Bloggers

The Museum of Left Wing Lu-
nacy

Secure Liberty

The Blue State

Liberal Blog vs. Blog

Pandagon

Eschaton

TalkLeft

Kicking Ass

Most of these blogs are fairly high volume, and
each one is clearly partisan. Over the course of 2
1/2 weeks, 962 blog articles were aggregated, total-
ing around 25,000 words. This is not a very large
training corpus, but the unique nature of blogs would
likely cause a larger corpus aggregated over a much
longer time period to be far less useful: issues in
blog-space may change rapidly, requiring retraining
of the feature map on a regular basis.

5 Feature Training

We tried two different approaches to building fea-
tures:

• Caseframe features (Sec. 5.1)

• Lexical features (Sec. 5.2)

We expected lexical features to be far more success-
ful, as caseframes would tend to be more general,

21

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

and not necessarily even strongly related to the do-
main (ie, he said). Lexical features, on the other
hand, would be words which tended to show up fre-
quently throughout the corpus.

AutoSlog builds caseframes based on a num-
ber of simple heuristic patterns such as <subj>
passive-verb, which will generate caseframes like
<person> gave. When using AutoSlog-TS, these
extraction patterns are generated for each noun
phrase in each set of texts. Based on the number
of times a pattern is found in the relevant texts and
not in the irrelevant texts, each pattern is assigned
frequency values. These can then be used to provide
a probability that a caseframe is found in the text of
an interesting domain. This serves as a score, and a
number of patterns can be chosen based on their high
scores. AutoSlog extracts patterns for each word
specified in a target dictionary, rather than for every
word in the corpus as AutoSlog-TS does. Frequen-
cies are not calculated for these caseframes; instead
they are used for extracting additional words, and
the words are scored based on frequency.

5.1 Caseframe Features

To build caseframe features, or extraction patterns,
we used AutoSlog-TS. AutoSlog-TS is capable of
generating extraction patterns from text with no su-
pervision. Our text corpora were composed of about
900 entries from the blogs mentioned above, totaling
about 25,000 words, and an unrelated text composed
of samples from the Corpus of Professional Spoken
American English1. The samples from CPSA to-
taled about 75,000 words; ideally, we would have
used a more balanced corpus.

Caseframes are extraction patterns: generally,
they are composed of a verb phrase (or partial verb
phrase) with one or more slots for an associated
noun phrase. From these corpora, AutoSlog gen-
erated 855 caseframes which we used as individual
buckets in a feature vector. By calling Sundance on
each blog entry, we were able to find the number of
times each extraction pattern occurred in the text;
these values were used to build the actual feature
vector which could then be fed into the SOM for
training.

1http://www.athel.com/cpsa.html

5.2 Lexical Features

To build a lexicon for the domain, we started with
a number of seed noun phrases in several categories
relating to politics. Table 2 shows examples of cat-
egories and seed noun phrases for each. Ultimately,
we found just seven seed noun phrases to be suf-
ficient: Bush, President, security, terrorism, terror,
Congress, and Senate.

Building the full lexicon then followed a simpli-
fied variant on the BASILISK method(Riloff and
Thelen, 2002).

• Run the training corpus through AutoSlog, us-
ing the seed lexicon to generate extraction pat-
terns

• Use Sundance with the new extraction patterns
to discover additional lexicon candidates

• Choose some number of candidate noun
phrases to add to the lexicon

• Remove common noun phrases from the list
(such as he, she, this, etc.)

• Repeat until the lexicon size stabilizes.

We simplified the method by placing a threshold
on the number of occurrences necessary for noun
phrases to be added to the lexicon, rather than us-
ing a full probabilistic method. Using a threshold of
five occurrences, we found that after six iterations of
the algorithm, the lexicon had stabilized at 254 noun
phrases for our training set. Some of the top noun
phrases were, unsurprisingly, Congress, Senate, and
George Bush. Other, more loaded in context, were
Pro-Choice President or Pro-Life President.

Once again, the feature vector was created by
counting the number of times the features– this time,
the members of the lexicon– occurred in each blog
entry. This vector’s buckets represented number of
occurrences of words instead of extraction patterns,
and the feature vectors were fed into the map as with
the extraction pattern features.

6 Categorization

6.1 Self-Organizing Maps

A self-organizing map (SOM) consists of a two-
dimensional grid of nodes, each of which is ini-
tialized with a random vector in the feature space.

22

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

Table 2: Categories and Seed Words
Categories and Seed words

Category Seeds

Issues Social Security

Iraq War

Election Reform

Gay Rights

Parties Democrats

Republicans

GOP

Figures George W. Bush

John Kerry

Paul Wolfowitz

The training set for a single SOM consists of a large
number of vectors distributed throughout the feature
space; therefore the SOM will effectively ”learn” a
simple clustering of that space. A conceptual depic-
tion of a newly initialized 4x4 SOM can be seen in
Figure 1. Note how the mapping of each SOM unit
into the feature space is arbitrary.

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

Figure 1: The units of a self-organizing map (SOM)
in the standard two-dimensional grid configuration
and their initial mapping into a feature space.

As each vector from the training set is input into
the SOM, the unit whose state is closest to the input

in the feature space by Euclidean distance ”wins”.
The unit, and with some fall-off its neighbors, has
its state adjusted to be closer to the input vector. Af-
ter training, the nodes or units in the SOM will have
clustered the feature space. The neighborhood func-
tion hci is given in Equation 1, where ‖rc − ri‖ is
the distance in feature space between two units’ vec-
tors, and σ(t) is the width of the Gaussian. ‖rc − ri‖
is merely a representation of whatever arbitrary dis-
tance metric is selected for a particular SOM im-
plementation; no vector subtraction necessarily oc-
curs. In our system, we chose to use standard Eu-
clidean distance in the feature space, since we could
guarantee that all of our input vectors would be the
same length. σ(t) decreases with time, so after many
training iterations only the winning unit’s position in
feature space is updated (Merkl and Rauber, 2000).

hci(t) = e
−
‖rc−ri‖

2

2σ2(t) (1)

By adjusting not just the best-match unit but also
its neighbors, and by decreasing the influence on
neighbors over time, the SOM units tend to detect
clusters in the feature space. Hopefully, the end po-
sitions of the unit vectors subdivide that space in an
interesting way.

The output of each unit in an SOM is associated
with at most one cluster, although multiple units
may represent a single informative cluster. The in-
terpretation of the result of the training is entirely
up to the user; the SOM can only give a clustering
in terms of the feature space, as it does not “know”
anything about the problem domain. In our case,
feature vectors represent individual blog entries, so
the clusters are interpreted as representing some ab-
stract grouping of entries.

6.2 Hierarchical Feature Maps

The number of clusters is highly dependent on the
architecture of an individual SOM. It can only clus-
ter the feature space into at most as many clusters
as it has units. This is where a hierarchical feature
map (HFM) becomes useful: by using one SOM to
divide the feature space into smaller sub-problems,
each of those sub-problems can in turn be clustered
by an SOM. The result is a highly specific clustering
of the feature space.

23

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

A typical HFM consists of a tree structure in sev-
eral layers, as shown in Figure 2. The topmost layer
of the HFM, and the root of the tree, consists of a
single SOM. The individual units of an SOM at each
layer pass feature vectors onto an entire SOM in the
next layer down, all the way down to the base of the
HFM.

� � � � � � � � �

� � � � � 	

� � � � �

Figure 2: A hierarchical feature map (HFM) consists
of multiple SOMs in a tree-like structure

To speed training and improve the accuracy of the
results, the dimensionality of the feature space can
be reduced between each layer on a unit-by-unit ba-
sis. If all of the input vectors that match have similar
values along one feature space dimension, that di-
mension can be eliminated before passing the train-
ing subset onto the next SOM layer.

Note that it is possible for the dimensionality
of the feature subspace being handled by different
SOMs on the same HFM layer to vary. Some SOM
units higher up in the HFM tree may be trained to
make big clustering decisions that significantly re-
duce the dimensionality, while others may make no
change to the dimensionality and pass vectors di-
rectly to their child SOMs.

Once the HFM has been trained, using it is simply
a matter of inputting a feature vector. At each layer,
the “winning” unit of the SOM will pass the vector
down to its child SOM, until the bottom of the HFM
tree is reached. The bottom-most units of an HFM
are each interpreted as having some cluster-related

meaning, based on the feature vectors.

� � � �

� � � � � � �
� � � � � � � � �

� � � � � � � � � � � �
� � � � � � � �

�

! " #

$ � � � � � % � � � � &
' � � � (& � �

�) �
� � � � � � �

* � � � &

� � & � � � �
� � � � � � � � �

�

� � � � � � � & � � � �
+ � � � � � � � � � �

! " #
� � � �

�) �
� � & � � � �

* � � � &

Figure 3: The training and testing process for an
HFM

The complete process for training and testing a
single HFM can take many iterations, depending on
the size of the training and testing feature vector sets.
The flowchart in Figure 3 demonstrates this proce-
durally.

6.3 Implementation

The blog aggregating software was written in Perl,
using a MySQL database for storing information.
Our spider used the XML::RSS and LWP::RobotUA
Perl modules to fetch and parse blog RSS feeds.
Some slight modifications to portions of the Sun-
dance package were necessary to fix out of date
code, and the process of running the two feature
training algorithms was automated with a number of

24

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

Bash and Perl scripts, while feature vector informa-
tion was generated using Perl.

Our implementation of HFMs was written en-
tirely in the Python programming language. We
chose to use Python so that we could use the existing
SOM implementation written by Daniel Sproul ’03
that is included as part of PyRo, the Python Robotics
package (Blank et al., 2002).

The main functional unit of the system is the
HFMNode class, which simply contains an SOM in-
stance and a 2-D list of child HFMNodes. Because
of the way in which the outputs of the SOM units at
each HFM layer are passed on to the next layer, as
described above in Section 6.2, the SOM and the list
of child nodes must be the same size.

The HFMNodes are contained with the HFM
class, which is merely a convenience class that holds
a single HFMNode as the root of the HFM’s tree.
The HFM class also contains file I/O functionality,
for reading input feature vectors generated during
the lexical training steps described in Section 5.2.

6.4 Visualization

In order to examine the training and testing pro-
cess, we needed some intuitive way of displaying
the output of an HFM. Pyro’s SOM implementa-
tion did have some visualization capability, but it
was for live observation only, and suffered from data
overload. In addition, our HFM implementation ab-
stracted away from the SOM class to a large extent,
so it was necessary to develop our own visualizer.

Each layer of a given HFM training or testing run
can be output as a grid. This allows us to observe
both the final categorization and the initial clustering
decisions made by the SOMs in the lower-resolution
layers of the HFM. Each grid cell in the output im-
age represents one of the SOMs in that layer. The
points drawn within cells are color-coded by blog,
allowing us to distinguish the output. Each point
represents a single tested or trained feature vector.

7 Results

To obtain our final results, we trained a 3-layer HFM
consisting of 2x2 SOMs. The HFM was trained for
150 iterations using the entire corpus of blog entries
from the nine blogs listed in Table 1. We then exam-
ined the testing results for each of the blogs individ-

ually.
The results from the caseframe features were un-

remarkable at best– the caseframe features did not
extract a sufficient amount of information to cluster
the blog entries in any manner. It is not necessary
to cover that method any further, so the remainder
of this section refers to our results using lexical fea-
tures.

7.1 Training

Figures 4 and 5 contain examples of the output from
the deepest layer of the HFM after training on the en-
tire blog entry corpus. The primary feature of note is
that the vast majority of the entries clustered along
one of the diagonal axes of the HFM. The diagonal
axis is inconsistent between training runs because
the SOMs in the HFM have their initial positions in
the feature space set randomly at runtime.

Figure 4: HFM training output for Run 1

The distributions of the training set are very sim-
ilar between the two separate training runs, which
implies that our HFM is probably learning the same
distinguishing features. Note for example the strong
cluster from a single blog that appears in cell (0, 2)
of Figure 4 and in cell (7, 3) of Figure 5 as a denser
stripe of points. This cluster from a single blog was
assigned its own bucket between runs. The fact that
we have consistent training of a randomly-initialized
neural network structure is a very good sign that our
testing results have some non-trivial meaning.

We wish to reiterate the somewhat black-box na-

25

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

ture of network-based learning methods. These re-
sults are very much open to interpretation, although
we believe that the patterns that can be seen in our
results are not just mere chance.

7.2 Testing

The distribution of blogs shown in Table 3 is associ-
ated with the second training run shown in Figure 4.
With the exception of Pandagon and The Museum
of Left Wing Lunacy, the lower-left contains con-
servative blogs and the upper-right contains liberal
blogs. It should be noted that this table reflects the
primary concentration of each blog’s testing output.
Instapundit and Talking Points Memo are two blogs
that were exclusively in our testing data set.

If we examine the results more closely, it be-
comes clear that our HFM did succeed in perform-
ing the basic liberal/conservative classification task.
Pandagon is a particularly unique blog, and had
the most diffuse results from the HFM. It is only
barely concentrated with the conservative blogs,
even though it is a liberal blog. There is not a strong
explanation for why Pandagon emerged differently,
though it is worth noting that the tone and nature of
the articles on Pandagon are rather unique.

The Museum of Left Wing Lunacy, as an
unashamedly conservative blog, was classified with
the liberal blogs. However, a quick examination of
their entries shows that they primarily quote other
blogs, and mostly liberal blogs at that. This means

Figure 5: HFM training output for Run 2

Table 3: HFM output
HFM Output

Left Wing Lunacy (C)

Blog vs. Blog (L)

Eschaton (L)

TalkLeft (L)

Kicking Ass (L)

Talking Points Memo

GOP Bloggers (C)

Secure Liberty (C)

Blue State Conserva-
tives (C)

Pandagon (L)

Instapundit

that the plain text version which we analyzed con-
tained mostly liberal-leaning text. This result might
be avoided if we removed all quotations from the in-
put entries.

8 Future Work

Our implementation of BASILISK was somewhat
less sophisticated than the original method, as we
took a simpler approach to choosing words to be
placed in the lexicon. Because many blog articles
are very short– though may still contain a great deal
of information– it seemed more important to avoid
creating an overly small lexicon than one that was
too large.

The original design of this project would have
used both lexicon and extraction pattern data to gen-
erate the features, but we had difficulty in finding a
feature representation which could concisely repre-
sent all of this data in a form which could provide
useful results from the SOM. Feature maps seem to
have served well in this task, though we do believe
that our method could be refined significantly. We
are not entirely satisfied with the feature vectors as
they stand.

In addition, before calling this an unqualified suc-
cess, further testing with a larger corpus must be per-
formed.

26

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 20–27
Computer Science Department, Swarthmore College

9 Conclusion

The combination of BASILISK and Self-Organizing
Maps worked surprisingly well for this project.
Given the ultimate sparsity of our feature vectors, we
did not expect to achieve the level of performance
that we did. Further exploration of this combination
would certainly be worthwhile in the future.

References

Beged-Dov, G., Brickley, D., Dornfest, R., Davis,
I., Dodds, L., Eisenzopf, J., Galbraith, D., Guha,
R.V., MacLeod, K., Miller, E., Swartz, A., and
van der Vlist, E. (2000) ”RSS 1.0 Modules: Tax-
onomy”, RDF Site Summary 1.0 Modules, 20
Mar 2001, RSS-DEV Working Group, 01 Apr 2005,
<http://web.resource.org/rss/1.0/modules/taxonomy/>.

Blank, D.S., Kumar, D., and Meeden, L. (2002) ”Python
robotics: An Environment for Exploring Robotics Be-
yond LEGOs”, ACM Special Interest Group: Com-
puter Science Education Conference, Reno, NV
(SIGCSE 2003).

Blank, D.S., Kumar, D., Meeden, L. and Yanco, H.
(2005) ”Pyro: A Python-based Versatile Programming
Environment for Teaching Robotics”. To appear in the
ACM Journal on Educational Resources in Computing
(JERIC).

Karger, D. and Quan, D. (2004) ”What Would It Mean to
Blog on the Semantic Web?”, International Semantic
Web Conference 2004.

Merkl, D. and Rauber, A. (2000) ”Document Classifica-
tion with Unsupervised Neural Networks”, Soft Com-
puting in Information Retrieval, 2000, pp. 102-121.

Thelen, M. and Riloff, E. (2002) ”A Bootstrapping
Method for Learning Semantic Lexicons using Extrac-
tion Pattern Contexts”, Proceedings of the 2002 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2002).

Riloff, E. (1996) ”Automatically Generating Extraction
Patterns from Untagged Text”, Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence (AAAI-96) , 1996, pp. 1044-1049.

Wackå, Fredrik, ”Six Types Of Business
Blogs - A Classification” [Weblog en-
try], CorporateBloggingBlog, 10 Aug 2004,
<http://www.corporateblogging.info/2004/08/six-
types-of-business-blogs.asp>, 01 Apr 2005.

Kicking Ass, http://www.democrats.org/blog/

TalkLeft, http://www.talkleft.com

Eschaton, http://atrios.blogspot.com/

Pandagon, http://www.pandagon.net/

Blog vs. Blog, http://blog.battletothedeath.net

The Blue State Conservatives, http://www.radiobs.net/
thebluestateconservatives/

Secure Liberty, http://secureliberty.org/

The Museum of Left Wing Lunacy, http://www.museum
ofleftwinglunacy.com

GOP Bloggers, http://www.gopbloggers.org/

27

