
Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

Table Recognition and Evaluation

Jiwon Shin
Department of Computer Science

Swarthmore College
Swarthmore, PA 19081

jiwon@cs.swarthmore.edu

Nick Guerette
Department of Computer Science

Swarthmore College
Swarthmore, PA 19081

ngueret1@cs.swarthmore.edu

Abstract

We present an algorithm that recognizes
tables in document images and extracts
their structural information. We use re-
gion growing to locate bounding boxes
around text, and cluster them into columns
by examining spatial relationships be-
tween bounding boxes and their vertical
neighbors. Once initial clustering is com-
plete, a series of post-processing steps are
applied to the clusters to find columns that
line up horizontally and may form tables.

1 Introduction

In performing optical character recognition on doc-
ument images containing tabulated text, it is neces-
sary to extract the text of each table cell, and desir-
able to obtain information about the relationships of
table cells to each other.

Our goal is to create a system that recognizes ta-
bles in document images and extracts the portions of
the image that correspond to each of the table cells,
keeping track of the spatial relationships between ta-
ble cells.

2 Previous Work

A number of researchers have suggested algorithms
for table extraction and table structure recogni-
tion. A survey of the field is provided by (Zanibbi,
Blostein, and Cordy , 2003).

(Watanabe et al., 1991) created a hierarchical ta-
ble recognition and analysis system that first locates

line segments separating table cells, uses the spatial
relationships among table cells to deduce the logical
relationships among them, and passes the extracted
cells to higher-level processing functions. They pro-
pose allowing higher-level data processing functions
to return information about contradictions encoun-
tered to lower-level functions, so that the lower-level
functions can attempt a different analysis.

(Chandran and Kasturi, 1993) modified that
method to require only a line at the top and bottom
of a table to allow it to be recognized, but not lines
separating all cells of the table. They instead use ver-
tical and horizontal projections of binary images of
extracted tables to identify boundaries between rows
and between columns.

Our table recognition algorithm is based on
(Kieninger, 1998). The author proposed a method
that identifies tabular structures in a document by
grouping word bounding boxes together and search-
ing for vertically-aligned groups of words that could
potentially be columns.

3 Algorithm

3.1 Overview

Our program takes a document image as input, and
places bounding boxes around blocks of text by
region growing. It then executes a set of post-
processing steps to determine if any of the bounding
boxes should be merged. Finally, spatial relation-
ships between bounding boxes are examined in or-
der to locate possible tables and identify their struc-
ture.

8



Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

(a)

(b)

(c)

Figure 1: Segmenting by divider line identification
(a) locating the divider rows (b) locating the divider
columns between two divider rows (the result of
the first iteration) (c) after multiple iterations; the
gray regions represent areas that do not belong to a
bounding box

3.2 Finding Bounding Boxes

3.2.1 “Divider” Line Method

We initially attempted to find bounding boxes by
downsampling the input image and recursively lo-
cating “divider” lines. The program takes a docu-
ment as input, and downsamples it to have a width
in the range [256, 512). It then scans across each row
of the downsampled image, counting the number of
times that the intensity of a pixel differs from the in-
tensity of a neighboring pixel in that row. If the num-
ber of changes of intensity in a row is below a thresh-
old, which is proportional to the length of the row,
that row is marked as a “divider” row. A “divider”
row is assumed to not go through any text (Figure
1(a)). Once all the divider rows are identified, the
system executes the same procedure to scan down
columns within clusters of non-dividing rows (Fig-
ure 1(b)). This procedure produces a list of bound-
ing boxes, where each bounding box contains the
minimum and the maximum row and column values.

The list is added to the global bounding box queue,
which is initialized to be empty. For each bonding
box in the queue, we repeat the “divider” line pro-
cedure described above on the portion of image de-
fined by the bounding box, unless the box is smaller
than a threshold, and add the list of bounding boxes
this procedure outputs to the queue. If the procedure
returns an empty list, the bounding box is removed
from the queue and is stored in a separate list of final
bounding boxes. If, on the other hand, the procedure
returns a list of one or more smaller bounding boxes
within the original bounding box, then the original
one is discarded. Bounding boxes that are smaller
than a threshold are removed from the queue and
added to the list of final bounding boxes. This it-
erative process continues until the queue is emptied.

This method of finding bounding boxes did not
work well (Figure 1(c)). While the results were
acceptable when there were no lines separating ta-
ble cells, the algorithm’s performance on tables
with lines was poor. There were several problems
with the algorithm. First, the downsampling pro-
cess sometimes causes lines to have inconsistent in-
tensity, resulting a failure in recognition. Second,
when a table does not have many columns, the op-
posite can occur. Some of the rows in the table
may be marked as “divider” rows because the in-
tensity changes only few times, even though these
rows are not “divider” rows. Third, when the down-
sampling step was skipped to attempt to correct the
above problems, the algorithm generated an exces-
sive number of bounding boxes, most of which were
a character wide. This can be minimized by adding a
dilation step, but because pixels that are turned “on”
tend to be the same intensity, dilated columns often
passed the “divider” test, failing to fundamentally fix
the problem.

3.2.2 Region Growing Method

After noticing the weaknesses of the “divider”
line method, we decided to implement a region
growing algorithm to search for bounding boxes
around words. After reading the greyscale input im-
age, the system determines an intensity threshold
using an adaptation of the ISODATA clustering al-
gorithm (see Appendix A), and uses the threshold
to binarize the image (one intensity for background,
another for text). Based on the assumption that even

9



Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

Figure 2: A set of bounding boxes that are inside a
big bounding box

a light tone of grey belongs to a letter and not the
white background, we modified the ISODATA algo-
rithm to be biased toward identifying pixels as be-
longing to text. Letters in the binary image are then
dilated horizontally so that all characters in most
words are connected. The amount by which to di-
late is determined as follows. First, a histogram of
lengths of horizontal runs of background pixels be-
tween text pixels is created, and the most common
length is found. Then, the histogram counts of in-
creasingly longer lengths beyond that most common
length are examined, and the first whitespace length
to have a count less than half that of the most com-
mon whitespace length is chosen as the amount by
which to dilate. The dilation is executed by marking
that many pixels to the right of each text pixel in the
original image also as a text pixel.

Once the preprocessing is complete, we apply a
region growing algorithm to place bounding boxes
around each region of connected text pixels (with the
rightmost edge of the bounding box being adjusted
leftward by the amount by which text pixels were di-
lated earlier, so that the bounding boxes are around
the original text and not the dilated text). When the
image contains a table with an outline, this results in
a bounding box that surrounds the table in addition
to a bounding box for each word in the table. To de-
tect this outer box, we mark all the bounding boxes
whose height is greater than the average height of
all the bounding boxes, and test them to determine
whether or not they contain any smaller bounding
boxes. We keep track of all of these “big” bounding
boxes and the smaller bounding boxes they contain,
as they are likely to form a table (Figure 2). This in-
formation ended up not being used in the final algo-
rithm, however, except to ignore the “big” bounding
boxes.

This method located bounding boxes more suc-

(a) (b)

Figure 3: Two different cluster types (a) type 1 (b)
type 2

cessfully and reliably, and hence, we used this
method to find bounding boxes.

3.3 Table Identification

Our table identification algorithm, described below,
is a modified version of the algorithm presented in
(Kieninger, 1998). We had initially implemented
the algorithm as it is described in the paper, which
produced a set of incorrectly-grouped clusters, as
expected. The problem we faced was that some
of the incorrectly-grouped clusters required post-
processing procedures that were too complicated,
detracting from the benefits that the clustering step
offered. We hence decided to modify the algorithm
to do more sophisticated clustering, which simpli-
fied the post-processing step.

The table identification algorithm takes as input
a list of bounding boxes that are not big bounding
boxes. The first box in the list is picked as a “seed”
and moved up and down by its height to test if any
box in the list overlaps the region defined by the
the seed box (If the height of the seed box is less
than the average height of bounding boxes, we in-
crease its height to the average height of bounding
boxes for the purposes of this step). If we locate
such a box, we perform the one-to-one relation test,
which tests if the seed box has at maximum one
overlapping bounding box above and one below it,
and that the boxes above and below are not horizon-
tally offset. If the found box preserves the seed box’s
one-to-one relation, we put it into a cluster with the
seed box and grow it vertically to find other boxes
that need to be linked. This process continues until
the one-to-one relation is no longer preserved or the
program finds no more bounding boxes to add to the
cluster. This process is then repeated on bounding
boxes as yet unexamined until all bounding boxes
have been clustered or found not to belong to a clus-

10



Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

Figure 4: A false identification of a table column.
The bounding boxes in gray are clustered together
and are marked as type 1 because they happen to line
up vertically.

ter. The clusters generated in this process are called
type 1 clusters (Figure 3(a)), and are candidates for
being columns of a table. All the bounding boxes
that did not have any one-to-one relations with the
vertical neighbors were put into a separate cluster
named type 2 (Figure 3(b)).

After we obtain clusters, we apply a series of post-
processing steps to avoid errors that are created by
the initial clustering process.

For each bounding box in the type 2 cluster, we
calculate the distance between it and its horizontal
neighbors. A threshold for horizontal distance be-
tween neighboring bounding boxes is calculated us-
ing the same algorithm used earlier to calculate the
amount by which to dilate text pixels, except exam-
ining the distance between bounding boxes rather
than horizontal runs of background pixels. If the dis-
tance is less than the threshold, the seed box and the
relevant neighboring box are joined into one box,
and the distance between the new, larger box and
its horizontal neighbors is calculated to determine
whether or not more boxes should be joined to it, and
this is repeated until all bounding boxes have been
examined and joined if necessary. Although boxes
in type 1 clusters are not used as seed boxes in this
step, to allow for large tables with closely-spaced
columns, boxes in type 1 clusters that are neighbors
to a box in the type 2 cluster being used as a seed
may be joined with that seed.

After horizontal joining is completed, the same
algorithm used to find type 1 clusters is applied again
on the new set of bounding boxes. The number of
false identifications in blocks of text is now reduced
(Figure 4). With these final type 1 clusters, they are

Figure 5: An incorrect table identification

Figure 6: An incorrect structural analysis of a table

now all compared to each other, and any clusters that
contain any bounding boxes that vertically align are
marked as belonging to a table.

4 Results

We tested our algorithm on twenty different docu-
ment images ranging from images that only con-
tain texts to those with pictures, figures, tables, as
well as text. Our algorithm had 28.2% precision
and 90.0% recall counting tables (even if rows and
columns weren’t correctly identified or extra rows
and columns were identified outside the real table)
and 40.8% precision/87.2% recall counting individ-
ual table cells identified. The most common error
was an incorrect identification of a text block as a
table (Figure 5). This false identification occurred
especially frequently among documents that had two
columns. Another error that frequently occurred was
an incorrect analysis of the structure of a table. As
shown in figure 6, some of the table cells are subdi-
vided into smaller cells, causing an overproduction
of table columns. The problem that occurred in fig-
ure 6 cannot be fixed easily because all the cells are
in a type 1 cluster. None of the cells will ever be
tested for horizontal grouping, and the cells stay in
separate columns.

Our program was able to locate tables with and
without borders, tables with cells that span multi-
ple columns (Figure 7), as well as tables of pic-
tures (Figure 8). We had the most trouble extracting

11



Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

(a)

(b)

Figure 7: An identification of a table with cells
that span multiple columns (a) cells that span multi-
ple columns are ignored (b) cells that span multiple
columns are divided into smaller cells

Figure 8: A correct identification of a table of pic-
tures

the structural information of tables with cells that
span multiple columns. In some cases, the cells that
span multiple columns were ignored (if there were
no cells in that row not spanning multiple columns)
while in other cases, those cells were divided into
smaller cells (if there were some cells in the same
row not spanning multiple columns, so they would
have been part of one of the clusters making up the
table). If the latter happened, the list of table cells
returned the correct information, i.e. the cell spans
three columns, even though the corresponding out-
put image did not reflect it.

5 Conclusions

We presented an algorithm that identifies tables in a
document and extracts their structural information.
Our algorithm finds bounding box for each unit (a
word, a picture, etc.) in the document image, and
clusters the bounding boxes together. The clusters
go through a post-processing step, after which ta-
ble cells are grouped together and tables are identi-
fied. We have shown that this algorithm works rea-
sonably well regardless of the content of the table
cells. It was capable of identifying about 90.0% of
all the tables in scientific documents, whether the
document was a simple document with a table on
top and text in the bottom or a complex one with
pictures, graphs, source codes, tables, and texts in
two columns.

6 Future Work

There are several ways this algorithm can be im-
proved. As mentioned earlier, the algorithm often
returns a block of text as a table when the input doc-
ument has two columns. This can be minimized by
locating the column divider that divides the docu-
ment into two columns, and disallowing a bounding
box from one side of the divider to be tested against
one from the other side.

Throughout the project, we assumed that the input
image is correctly aligned. However, for documents
where this algorithm is useful, such is not necessar-
ily the case. Many documents are hand-scanned,
and thus do not line up perfectly. To handle such
documents, we need to add a preprocessing step to
the algorithm, aligning the document before bound-
ing boxes are located. The preprocessing step would

12



Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 8–13
Computer Science Department, Swarthmore College

constitute determining the major and minor axes for
the document and rotating the image by the discrep-
ancy.

After the horizontal joining step, table cells span-
ning multiple columns are often contained in a sin-
gle bounding box, and this is information that could
be used, once a table is identified, to correctly assess
the structure of the table by examining alignment be-
tween these bounding boxes and cells known to be
in the table.

Once the algorithm extracts tables with high pre-
cision and recall, it can be integrated into an OCR
software to correctly extract information in a table.

References

S. Chandran and R. Kasturi 1993. Structural Recogni-
tion of Tabulated Data Proceedings of the Second IC-
DAR, 516-519. Tsukuba Science City, Japan.

T. V. Kieninger. 1998. Table Structure Recognition
Based on Robust Block Segmentation Proceedings of
Document Recognition, volume V. 22-32. San Jose,
CA.

N. B. Venkateswarlu and P. S. V. S. K. Raju 1992. Fast
ISODATA Clustering Algorithms Pattern Recogni-
tion, volume 25(3). 335-342.

T. Watanabe, H. Naruse, Q. Luo, and N. Sugie 1991.
Structure Analysis of Table-Form Documents on the
Basis of the Recognition of Vertical and Horizontal
Line Segments Proceedings of the First ICDAR, 638-
646. Saint-Malo, France.

R. Zanibbi, D. Blostein, and J.R. Cordy 2003.
A Survey of Table Recognition: Models, Ob-
servations, Transformations, and Inferences
http://citeseer.ist.psu.edu/zanibbi03survey.html .

Appendix A

The following is the pseudo-code for our adaptation
of the ISODATA algorithm used by the system. This
version is designed to allow biasing toward either
extreme. In our implementation, we used a white
bias of 1 (the default value), and a black bias of
3. More information on ISODATA can be found in
(Venkateswarlu and Raju, 1992).
thresh = range/2;

while(1) {

black_mean = white_mean = 0;
black_count = white_count = 0;

for all buckets i
in the histogram below thresh

black_mean += i * bucket_count[i];
black_count += bucket_count[i];

for all buckets i
in the histogram not below thresh

white_mean += i * bucket_count[i];
white_count += bucket_count[i];

black_mean = black_mean / black_count;
white_mean = white_mean / white_count;
weighted_mean = ((blackmean * whitebias +

whitemean * blackbias)/
(whitebias + blackbias));

if weighted_mean == thresh then
break;

else
thresh = weighted_mean;

}

return thresh;

13


