
Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

A Simple Probabilistic Approach to Ranking Documents by Sentiment

Andrew Lacey
Department of Computer Science

Swarthmore College
Swarthmore, PA 19081

lacey@cs.swarthmore.edu

Abstract

The problem of determining the senti-
ment of documents has often been ap-
proached via highly human-structured or
highly complex methods. These ap-
proaches have generally been constrained
to dividing an input corpus into two cat-
egories, positive and negative. I present
a simple and straightforward probabilis-
tic algorithm that attempts to rank an en-
tire corpus in increasingly-positive order
of sentiment, which is a more useful out-
put. The output can be easily reinterpreted
to solve a two-category sentiment classi-
fication task, in which case the proposed
algorithm performs nearly as well as ex-
isting approaches to that problem.

1 Introduction

Humans generally have little difficulty in determin-
ing the sentiment – that is, overall “positiveness” or
“negativeness” – of documents. However, this has
proved to be a rather difficult task for machines. Fur-
thermore, much of the research in this direction has
involved classifying the documents in a corpus into
two categories, as if the task were essentially the
same as topic classification, which it is not. In the
case of topic classification, a document is generally,
for example, about baseball or not about baseball.
The output of a program ranking documents in or-
der of the extent to which they are about baseball
would probably seem strange to a human reader – a

document that uses the term “home run” to describe
the sales of the Chrysler 300, which might rank near
the middle of such a scale, is really not about base-
ball at all. But this is not the case with sentiment
analysis. Sentiment of documents is essentially a
continuous spectrum. One imagines that the concept
of “half stars” in movie reviews was introduced be-
cause human reviewers found the choice between a
mere five ratings to be constraining. Thus, it makes
sense to approach the sentiment analysis task in a
way that naturally lends itself to ranking an entire
corpus in order of sentiment, rather than simply (or,
in fact, not so simply at all) making a decision be-
tween two categories, for documents that are clearly
in one of those categories. The algorithm presented
here takes such an approach, and is also easily mod-
ified to provide output that can be compared to that
of two-category sentiment classifiers.

2 Background and Explanation

The problem of determining sentiment of documents
really consists of two subproblems. The first is gen-
erating a list or dictionary of some kind containing
some sort of sentiment-term data. This could take
the form of a list of sentiment terms, a list of sen-
timent phrases, and/or a list of grammatical struc-
tures that assign the sentiment of a term in one posi-
tion to a noun in another, to name a few approaches.
The second subproblem is that of actually using this
sentiment-term data to assign sentiment to docu-
ments in a test set.

It is possible to essentially skip the first subprob-
lem, as far as machine NLP is concerned. That is,
one can manually generate a list of sentiment data by

1

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

referring to a dictionary, a thesaurus, and common
grammatical knowledge. This might be an accept-
able approach if it could be done definitively once.
However, sentiment data for varying domains can be
quite different. In automotive reviews, a reference
to “spongy” brake pedal feel seems to be a case of
negative sentiment. But the term “spongy” is prob-
ably irrelevant to sentiment in the context of movie
reviews. There are many similar examples. Thus,
a human would be required to manually develop a
list of sentiment data for each new domain of docu-
ments. This is a significant drawback.

It is also possible to design an algorithm – often,
in existing research, a rather complex one – to de-
velop a body of sentiment data from a training set of
documents. The drawback of such methods is that
they can be relatively complicated, difficult to im-
plement, and may suffer from long running times.
If they work well, that is a price worth paying. But
they do not work exceedingly well, as explained in
the following section. I show that similar results can
be achieved using a more straightforward approach
than those attempted in previous research.

3 Previous Work

A key piece of research on sentiment classification
involves several methods of classifying movie re-
views into positive and negative categories (Pang et
al., 2002). This paper limits the domain to docu-
ments that humans have classified as clearly positive
or negative. It does not attempt to rank documents
on a spectrum. The methods include two probabilis-
tic approaches, both more involved than that pre-
sented here, and a support vector approach that cre-
ates vectors describing training documents and finds
a hyperplane that best separates them. The best ac-
curacy reported by these authors is 82.9% correctly
classified.

(Turney, 2002), working on a similar task, tries
an interesting method: using a Web search engine
to find associations between various words and the
words “poor” and “excellent,” classifying words that
co-occur frequently with “poor” and infrequently
with “excellent” to be negative sentiment terms, and
vice versa. Although he achieves impressive 84.0%
accuracy on automotive reviews, his attempt at clas-
sifying movie reviews logged a lackluster 65.8% ac-

curacy. Turney mentions that “descriptions of un-
pleasant scenes” could be hampering the movie-
review results. This is not surprising, because his
sentiment data is gleaned from a Web search of gen-
eral documents, where words might be used very
differently than in movie reviews – not to mention
the dubious choice of the word “poor” as the flag
for negative sentiment, when the word is frequently
used in the economic sense.

(Yi et al., 2003) reports an interesting variation
on sentiment analysis. They developed a method for
mining the sentiment about particular attributes of
an item from a document, rather than classifying the
sentiment of the entire document. While this is not
directly related to the work presented here, it is in-
teresting because it goes beyond the common task of
binary document-level classification. This work is
an example of a highly structured approach to senti-
ment analysis – the researchers used predefined dic-
tionaries of terms and sentiment-phrase structures.
They found that accuracy was quite good – 85.6 %
– on product reviews, but deteriorated rapidly when
the corpus contained general Web documents where
sentiment phrases were sparse.

4 Algorithm

The proposed approach to the first subproblem – ex-
tracting a list of sentiment terms from a training set
– functions entirely on a unigram level, with one ex-
ception, to be discussed later. A training set of doc-
uments, each of which is associated with a numer-
ical score (the range of possible scores is specified
as a parameter), is used to construct a list of words.
Each word is associated with two numerical values:
the number of documents in which it was seen, and
the sum of the scores of all documents in which it
was seen. A given word is counted only once per
document. When all the documents have been pro-
cessed and the table has been filled, the table data
is used to compute an average score for each word.
This word-scoring formula appears in equation (1),
where d represents a document, w represents a word,
D represents a set of documents, and S(x) represents
the score of item x. The words are then ranked in
order of their final scores, and the list of words and
scores constitutes the output.

2

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

S(w) =

∑
[S(d) | w ∈ d]

| (D : d | w ∈ d) |
(1)

I added one heuristic that uses a bigram model.
The program contains a predefined list of negation
words, such as “no” and “didn’t”. These words are
never inserted into the word table. Instead, they indi-
cate that the next word should be flagged as negated.
This is done by prepending a ‘!’ to the lexeme. For
example, the phrase “didn’t satisfy” would result in
the word token !SATISFY being inserted in the word
table (or its count being incremented, if it were al-
ready there).

It is worth noting that this approach produces a list
containing a large number of terms that are not sen-
timent terms by any reasonable standard. One could
argue that using such a list would be a case of over-
fitting the data. However, in a certain sense, all in-
telligent approaches to sentiment-data gathering in-
volve overfitting the data. As alluded to previously, a
good set of sentiment data for movie reviews would
probably perform poorly when used to classify au-
tomotive reviews. A generic set of sentiment data
would probably perform poorly on most domains,
as (Turney, 2002) discovered. Either it would be
so small as to miss most of the sentiment terms in
each document, or it would be so large that it would
assign sentiment to terms that were not sentiment-
oriented within the domain. Thus, a good set of sen-
timent data for a given domain is defined function-
ally – as a set of data that performs well at judging
sentiment for that domain. Whether the words in the
list “look like” sentiment words is not particularly
relevant. Incidentally, this implementation does ig-
nore words containing capital letters, on the grounds
that assigning sentiment to proper names might in-
deed be a case of excessive overfitting. Reviews of
1990 Hyundais are much more negative than reviews
of 2004 Hyundais, so a corpus with a large num-
ber of early Hyundai reviews might result in nega-
tive sentiment being assigned to the word “hyundai”,
which is clearly undesirable even within the domain.
But, in general, I do not view the inclusion of non-
sentiment terms in the word table as a serious prob-
lem.

There are two key parameters that can be ad-
justed to change the results of the sentiment-term-
discovery process. The parameter f is the number

Word Score
!FUNNY 0.415323
SLOG 0.426471
DISMAL 0.431818
REDEEMING 0.4375
UNFUNNY 0.446429
... ...
ENCHANTING 0.897727
TRANSCENDS 0.902778
RESIGNED 0.902778
BLESSED 0.908333
HEARTBREAKING 0.910256

Table 1: Sample output of sentiment-term extraction

of times that a word must be seen in order to be in-
cluded in the final word list. For example, a word
that was only seen in one review might be rare, spu-
rious or irrelevant. The parameter n is the number
of words on each end of the sentiment spectrum that
will be included in the final word list. One approach
would be to essentially set this parameter to infin-
ity, leaving the entire word list intact. Since words
near the center of the spectrum are probably not sen-
timent words and may be irrelevant, I hypothesized
that removing a portion from the middle of the word
list might give better results when scoring test re-
views. A sample of resulting words and scores from
running this algorithm on a training set of movie re-
views appears in Table 1. Note that scores are auto-
matically normalized to a zero-to-one scale for con-
sistency across corpora.

Once the list of scored words has been generated,
the second subproblem – ranking a test set of doc-
uments – can be attacked, essentially in the inverse
way. Each test document receives the score equal to
the average of the scores of the words appearing in
the document. Words in the document that are not in
the list of sentiment words are ignored. The output is
a list of pairs of numbers – the score assigned to the
document by the program, and the document’s ac-
tual score. The document-scoring formula appears
in equation (2), where L is the list of words resulting
from the term-extraction process and W is a set of
words.

3

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

S(d) =

∑
[S(w) | (w ∈ d) ∧ (w ∈ L)]

| [W : (w ∈ d) ∧ (w ∈ L)] |
(2)

It should be noted that the assigned scores output
by this algorithm tend to be packed very close to the
middle of the score range, and thus are not directly
usable as meaningful scores. They could obviously
be normalized to the scale if meaningful scores for
individual reviews were desired. The goal of this
work was to output a ranking of documents, which
could be compared to the true human-determined
ranking for a clear picture of the overall performance
of the algorithm. For a large body of documents,
this seems to be closest to the sort of task we would
want to perform in a real-world situation. It also al-
lows for some telling visual representations of the
results. Much previous work on sentiment classi-
fication has involved classifying documents merely
as positive or negative. Aside from the fact that this
seems not terribly useful in practical applications, a
few statistics showing the percent of documents cor-
rectly classified in a two-bucket model does not ex-
actly provide a nuanced look at the performance of
the algorithm.

5 Results

I ran trials on two corpora: a very large set of Roger
Ebert’s movie reviews (approximately 4,000,000
words) and a smaller set of Consumer Reports Mag-
azine’s automotive reviews (approximately 86,000
words). I divided each corpus into a training set and
a test set of approximately equal size. For each cor-
pus, I tried several settings of the two parameters de-
scribed previously. Results are presented in graphi-
cal form. The horizontal axis represents the ranking
this algorithm assigned to a document. The vertical
axis represents the human-assigned score of a doc-
ument. Thus, completely correct output would be a
nondecreasing y-value as x increases. In the case of
the movie reviews, where the number of documents
is large and the number of possible scores is small,
this would look like a step function. Lines connect-
ing the points have been omitted from these graphs
for clarity.

While the graphs clearly deviate significantly
from an ideal result, they do provide some promis-
ing evidence. The Ebert graphs in Figures 1 and 2

show an obvious trend of increasing y-values as the
x-values increase, which is a desired result. The al-
gorithm works rather well with reviews that received
scores at an extreme, particularly those that received
very low scores (0 and 0.5). The middle of the spec-
trum is somewhat muddled, though an upward trend
is still visible. It should be noted that the graph of an
ideal result would not show steps of an equal width,
because there are fewer 0-score reviews than 2.5-
score reviews, for example. Thus, the fact that the
2.5-score reviews form a wide cluster is not entirely
unexpected. The higher setting of both parameters
seems to give better performance at the lower and
upper ends of the scale, as is evident in the graphs.
I tried a number of different parameter settings not
shown here. There was not a great deal of variation
in the results from different parameter settings.

In addition to generating the graphs showing the
ranking of all reviews, I also tried ignoring all docu-
ments with human-assigned scores other than 0, 0.5,
3.5 and 4, supposing that the goal was to correctly
classify strongly negative and positive documents as
such. I counted a document that appeared in the
lower half of the overall ranking as being ranked
negative, and a document appearing in the upper
half as being ranked positive. On this scale, 81%
of strongly negative and strongly positive documents
were correctly classified in the best trial. The best
accuracy achieved by (Pang et al., 2002) on a simi-
lar task using much more complex approaches was
82.9%, which was achieved through the use of sup-
port vector machines. Thus, this algorithm appears
to be within striking distance of a known benchmark
on the binary classification task.

The results from the Consumer Reports corpus,
in Figures 3 and 4, were similar in character to the
Ebert results, though appear less informative due to
the small size of the corpus. While there is a cor-
rect upward trend in the graphs of results, there is
quite a bit of fluctuation. However, it is notable
that, if the task is recast as a binary decision task,
where reviews with a human-assigned score of 80
points or higher are considered positive, those with
a human-assigned score of 40 points or lower are
considered negative (a larger section of low scores
was used because almost no reviews in the corpus
have human-assigned scores below 20 points), and
all other reviews are ignored, the classification ac-

4

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

curacy is 87%, which is quite good. In fact, this is
better than the accuracy numbers reported by any of
the similar binary classification experiments noted
in Section 3. This is, no doubt, at least partially
due to the nature of the Consumer Reports docu-
ments, which are written in a very straightforward
and unembellished style that does not wander off
on tangents not directly related to the product being
reviewed, as movie reviews sometimes tend to do.
None of the other sentiment-classification research I
have examined used Consumer Reports documents,
so the accuracy number presented here is not di-
rectly comparable. If a larger Consumer Reports
corpus were compiled, and some additional heuris-
tics possibly added to the algorithm, I would not be
surprised to see accuracy approaching 90%. Further
experimentation in this direction is warranted.

6 Future Work

Assembling a larger corpus of Consumer Reports
documents for further experimentation is an obvious
next step. I would expect better results for a larger
training set. Some further heuristics, perhaps in-
cluding additional bigram analysis or part-of-speech
sensitivity, may be worth trying. However, I would
be careful to add such features gradually and con-
servatively. The results presented here show that
other researchers who began with fairly complex ap-
proaches may be over-thinking the problem.

7 Conclusions

Automatic sentiment classification is a relatively dif-
ficult problem. However, when a large corpus is
available, a simple probabilistic approach yields re-
sults that are nearly comparable to those derived
from substantially more complicated algorithms.
Furthermore, this simple approach lends itself natu-
rally to creating an ordered ranking of documents by
sentiment, rather than merely classifying documents
into two buckets. This may be a much more useful
approach in real-world applications. A human who
is trying to read reviews of products will likely want
to read the best few reviews, not the best half, partic-
ularly when thousands of reviews are available. The
approach presented here is inherently suited for gen-
erating such results.

References

Bo Pang, Lillian Lee and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment classification using ma-
chine learning techniques. In Proc. of the Conference
on Empirical Methods in NLP, July 2002, pp. 79-86.

Peter D. Turney. 2002. Thumbs up or thumbs down?
Semantic orientation applied to unsupervised classifi-
cation of reviews. In Proc. of the ACL

Jeonghee Yi, Tetsuya Nasukawa, Razvan Bunescu,
Wayne Niblack. 2003. Sentiment analyzer: extracting
sentiment about a given topic using natural language
processing techniques. In Third IEEE International
Conference on Data Mining, Nov 2003.

5

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000

"ebert-5-1000.sco"

Figure 1: Results for Ebert corpus with f=5 and n=1000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000

"ebert-10-3000.sco"

Figure 2: Results for Ebert corpus with f=10 and n=3000

6

Appeared in: Proceedings of the Class of 2005 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

"score_out.txt"

Figure 3: Results for Consumer Reports corpus with f=2 and n=500

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

"score_out.txt"

Figure 4: Results for Consumer Reports corpus with f=2 and n=∞

7

