
Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

Language segmentation for Optical Character Recognition using Self
Organizing Maps

Kuzman Ganchev

Abstract

Modern optical character recognition (OCR)
systems perform optimally on single-font
monolingual texts, and have lower performance
on bilingual and multilingual texts. For many
OCR tasks it is necessary to accurately rec-
ognize characters from bilingual texts such as
dictionaries or grammar books. We present a
novel approach to segmenting bilingual text,
easily extensible to more than two languages.
Our approach uses self organizing maps to dis-
tinguish between characters of different lan-
guages allowing OCR to be performed on each
part separately.

1 Introduction

Modern optical character recognition (OCR) systems per-
form optimally on single-font monolingual texts, espe-
cially when they have been trained on a font very sim-
ilar to the one they need to recognize. Performance on
bilingual texts, however is not nearly as good, especially
when the two languages that occur in the text have simi-
lar characters. The reason for this is that dictionaries and
language models are usually trained on a per-language
basis. Sometimes the OCR program will assume that
there are multiple fonts for the same language and make
poor guesses about which characters are in which lan-
guage. Despite these difficulties, there are real lines of
motivation for performing bilingual OCR. For example
is the rapid development of translation systems requires
large amounts of training data. There are many languages
around the world for which collections of texts as well as
dictionaries and grammar books are readily available in
printed form, but not in electronic form. For the task of
rapidly developing a translation system, optical character
recognition may be the only viable solution for obtaining
training text.

This paper focuses on a sub-topic of bilingual OCR –
namely deciding which characters are in which language.

Once this has been done, monolingual OCR can be per-
formed on each of the sections of text and the original
document can be subsequently reconstructed. In order
to perform this division, we use self organizing maps
(SOMs) to distinguish between characters of one lan-
guage and characters of the other. SOMs are a mecha-
nism for sorting high dimensional vectors into a two di-
mensional grid, in such a way that similar vectors are
sorted into grid locations near each other. A more de-
tailed description of SOMs and how we use them is pro-
vided in Section 3.

Our results show that using the approach outlined in
this paper, we can correctly determine the language of
98.9% of the characters in Uzbek-English dictionary text.
Our experiments as well as these results are described in
Section 4.

2 Related Work

2.1 Self Organizing Maps

Kohonen (1990) provides a concise introduction to self
organizing maps in general, considering their appli-
cations since their conception. He describes how a
SOM might work, and notes that it may be necessary
to preprocess the information somehow: “it would of-
ten be absurd to use primary signal elements, such as
. . . pixels of an image, for the components of [a SOM]
directly”(Kohonen, 1990). Kohonen presents his SOMs
in the context of “Vector Quantization” – the assigning of
quantum values to vectors; similar to what we want to do,
if the image is the vector, then the quantum representation
would be the character that produced it or in the case of
language segmentation, the language that that character
is in. In this context he also talks about a “codebook” of
vectors that are essentially the definition of the quantum
to vector relationships. He presents three algorithms for
“Learning Vector Quantization” called LVQ1, LVQ2 and
LVQ3.

He and Ganchev (2003) use SOMs and neural net-
works for simple object recognition on a mobile robot,
with limited success. The images taken from a camera

109



Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

mounted on a Khepera robot moving in an enclosed space
are sorted into a large SOM, after which a neural network
is used to associate labels to images.

2.2 Optical Character Recognition

Berman and Fateman (Berman and Fateman, 1994) de-
scribe an OCR system for mathematical texts. The main
application of their work is to recognize printed tables
of integrals, or mathematical proofs. The algorithm they
describe requires that images for every variation of ev-
ery font be learned separately by the program. They
use the Hausdorff asymmetric distance function which is
defined as the largest Euclidean distance from any “on”
pixel in the source image to the nearest “on” pixel in the
destination image. One interesting feature of this metric
is that in one direction it treats characters with missing
“on” pixels as a perfect match, while in the other direc-
tion it treats characters with extra “on” pixels as a per-
fect match. This allows it to deal with broken glyphs and
over-connected characters. Unfortunately the authors do
not give any numerical results, and the system has to be
retrained from scratch for even a slightly different font
or font size. Since a maximum of distances is taken for
the measure; this approach might also be very sensitive
to dust. For example, a spec of dust in the middle of an
“O” would make it as far from the model “O” as if it was
completely filled in.

3 Abstract Implementation

In order to investigate methods for using SOMs to divide
an image into languages, we developed different versions
of a system for classifying characters into two sets based
on the language which generated them. The first subsec-
tion gives an overview of the architecture of this system.
Subsequent subsections describe each of the system com-
ponents in more detail. Subsection 3.2 describes the Gnu
Optical Character Recognition program, Subsection 3.3
gives an overview of self organizing maps, and Subsec-
tion 3.4 describes the system components that we imple-
mented.

3.1 Architectural Overview

Figure 1 shows a graphical representation of the system
architecture. In the figure, the dotted lines represent flow
of information, while the solid lines represent the flow
of control. Given a source image, we use the Gnu Op-
tical Character Recognition program (GOCR) to find the
boxes that contain characters of text. We then wrote a
program to extract data vectors corresponding to char-
acters of text from the image using the box descriptions
provided by GOCR. Once this training data has been ex-
tracted, it is used to train a self organizing map (SOM).
We used the SOM PAK (Kohonen et al., 1995) toolkit for

all the SOM tasks. Finally, we use the trained SOM to
distinguish between characters of different character sets.

This is a page of text

it is wonderful to be a 

page of text because 

of all the recognition 

example this page will

eventually be recog−

nized

that you get. For 

1

Image

SOM

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

GOCR Find boxes

extract data

Train SOM

Categorize characters

Figure 1: Architecture: The dotted lines represent flow
of information, while the solid lines represent the flow
of control. GOCR is used to find the boxes that con-
tain characters, the data vectors corresponding to those
boxes is extracted and used to train the SOM. Finally the
trained SOM is used to categorize the characters into two
languages.

3.2 GOCR

GOCR, developed by Joerg Schulenburg and Bruno Bar-
beri Gnecco, is a free optical character recognition sys-
tem under continuing development. GOCR reads in an
image file, and scans it for boxes containing a single char-
acter of text. Each box ideally contains a single character
and is the smallest rectangular area with sides parallel to
the � and � axes. In practice boxes may contain more
than one character (See figure 3) but in our experience
they rarely contain less than a character. After a list of
boxes has been generated, GOCR removes dust and pic-
tures that do not need to be recognized, attempts to detect
a rotation angle and lines of text within the scanned im-
age, and attempts to correct glued boxes and broken char-
acters. Finally GOCR runs an OCR engine on the sorted
boxes. As an example of its performance GOCR program
gives the following output for the image shown in Figure
2; GOCR also added two extraneous new lines between
each pair of lines of text, probably because of the high
resolution of the source image. The “ ” characters rep-
resent characters that GOCR was not able to recognize.
Figure 3 shows the boxes and lines of text that GOCR
has found within the image.

itcan go. Butthe"3O’s
pas_. The eleven mus
ch_sen as the great o
periodbe_een l94O

110



Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

Figure 2: A sample of scanned text used for optical char-
acter recognition. Note that the image is very hight reso-
lution, but imperfect and skewed.

Figure 3: The same scanned piece of text, after process-
ing by GOCR. The blue lines represent the lines of the
text as well as the box boundaries. Characters for which
GOCR does not have a high confidence are shaded in red.
Note that the “tw” shaded in red on the bottom line is in
fact a single box. GOCR is not able to recover from this
error.

3.3 Self Organizing Maps

Conceptually, a self organizing map (SOM) is a structure
for sorting vectors into a grid in such a way that vectors
close together on the grid are similar, and vectors farther
away are more dissimilar. After training, each grid lo-
cation contains a vector that represents the ideal vector
at that location called a “model vector”. Typically, SOM
grids are hexagonal, as shown in Figure 4. This allows
each cell to be adjacent to six other cells, rather than four
with a rectangular grid.

Before the SOM can be trained, it is initialized by set-
ting all its model vectors to random values. Training is
done as follows: for each data vector, find the model vec-
tor closest to it, and modify that vector and vectors nearby
(in the grid) to make make them closer to the data vec-

<0,0> <0,1>

<1,0> <1,1>

<2,0>

<3,0>

<2,1>

<3,1>

Figure 4: A hexagonal SOM topology. This is a � � �

SOM – it has four rows and two columns.

tor. We used Euclidean distance to determine how close
a data vector was to the model vector. We opted for this
approach since it is the default for SOM PAK; an other
option would have been to use cosine similarity as the
distance metric. One way to make one vector closer to
another is to use a weighted average of the two. The rel-
ative weights of the vectors are determined by a learning
rate parameter.

There are two stages of training. During the first short
stage the learning rate is set high and the neighborhood of
the vectors is large, so that the SOM roughly but quickly
organizes the vectors into groups. During the longer sec-
ond stage of training a lower learning rate and smaller
neighborhood are set so that local arrangements can be
made and the model vectors approach ideal characters.

After the training phase is complete the same vectors
used for training can be sorted into locations on the grid.
The location and difference from the nearest model for
each vector is recorded for use as described in Subsection
3.4. We used SOM PAK (Kohonen et al., 1995) as the
SOM implementation for our experiments.

3.4 Custom Components

Our system relies on a number of small components other
than SOM PAK and GOCR. Section 3.4.1 describes how
we convert the images described by the character boxes
generated by GOCR, into data vectors used to train the
SOM. Section 3.4.2 describes how we use the trained
SOM to segment bilingual text.

3.4.1 Converting Images to Vectors
In using a SOM to sort images, we need to first convert

the images into some vector representation, since SOMs
are designed to work with vectors. We do this by using
“1” to designate a white pixel and “0” to designate a black
pixel, and then creating a vector that has one dimension
per pixel. For example a � � � image with black top
and bottom rows and a white middle row would be rep-

111



Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

resented as “(0,0,0,1,1,1,0,0,0)”. This provides a mecha-
nism to convert an image to a vector and vice-versa, but
the sizes of the vectors depend on the size of the image,
so a “.” character, might be a � � � image (correspond-
ing to a nine dimensional vector) while a “M”character
might be much larger. This complicates matters because
a SOM only works with vectors of the same size. We de-
scribe two techniques we used to deal with this in Section
4.

3.4.2 After Training

Once we have a SOM trained in one language, we map
characters from an unknown language into that SOM.
Based on the distance from the character vector to the
nearest model vector in the SOM, we decide whether
the character belongs to the same language on which the
SOM has been trained or to some other language.

4 Experimental Results

This section describes the empirical evaluation we per-
formed on our system. Subsection 4.1 describes our ini-
tial approach for converting character boxes to vectors –
placing the box at the top left-hand corner of the image
– and describes the problems that produces. Subsection
4.2 describes a refinement to this approach – scaling the
characters – and provides comparative results to those ob-
tained in Subsection 4.1. Subsection 4.3 describes how
the algorithm performs on hand-selected training data for
the task of segmenting dictionary text. Finally, Subsec-
tion 4.4 describes its performance when trained using un-
edited “dirty” training data.

4.1 Top Left Corner

The first approach we use to convert character boxes into
vectors is to place the character box in the top left-hand
corner of a white image that is the same size for all the
characters. We create a white image, then copy the pixels
of the character into the top left hand corner of this image.
Figure 5 illustrates this. We can then convert the image
into a vector as described in Section 3.4.1. Since the im-
age into which we are copying the characters is the same
for each character, all the vectors will be of the same size
and we can use them to train the SOM and to categorize
the characters.

This initial approach has a few limitations. Firstly, for
even a slightly different font or different font-size, the
SOM might have to be retrained from scratch. This is be-
cause a character in a different size or font would show
a significant mismatch of the model vectors pixels, even
when the fonts are identical. Secondly, when we started
to test the system to find unlikely characters we found that
this approach gave a considerable advantage to smaller
characters over larger ones. Figure 6 shows some re-
sults that demonstrate this. The grey areas are parts of

eThe

Imagenary ImageOriginal Text

Figure 5: Initial “top left corner” method of converting
character boxes to vectors. On the left is a segment of
text with a box (dotted line) drawn around a character
boundary, on the right is the image that will be used to
generate the vector for the character.

the image that were not part of a box. The color of each
character is determined by how close the vector repre-
sentation of the character is to the nearest model vector
in the trained SOM, and hence how confident we are that
they are in the language the SOM was trained on. Blue
characters are close to the SOM model vector, while red
characters are distant.

Figure 6: Distance from the nearest matching model vec-
tor for the characters in the text presented in Figure 2.
Blue characters are close to the language the SOM was
trained on, while red characters are classified outside that
language. The ideal result would be to color all char-
acters characters, except for the box that contains “tw”,
since this is not an English character (it is two).

We note that the small characters are closer to the mod-
els than the larger ones. This is because of the way we
convert the images to vectors; any two small characters
share a lot of “white space” and can differ only in the top
left hand corner of the image we use to generate the vec-
tors, since we pad the rest of the space with white pixels
for both small characters. So for example, comparing a
“.” to a “;” the difference ”,” might occupy five pixels,

112



Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

while two capital “M”s might have a larger difference.
While both “.” and “;” occur in English, small charac-
ters in another character set are more likely to be closer
to small Latin characters than two scans of identical char-
acters.

4.2 Scaling Characters

To overcome the problems the “top left corner” technique
incurs with different sizes of the same font and of giv-
ing an advantage to small characters, we tried scaling the
characters when converting them to a vector representa-
tion. Again, we create intermediate images of the same
size for all the characters, but this time we scale the char-
acter to this image. The intermediate image is then con-
verted to a vector as above. Figure 7 illustrates the con-
version.

The e
Imagenary ImageOriginal Text

Figure 7: The “scaling” method of converting character
boxes to vectors. On the left is a segment of text with
a box (dotted line) drawn around a character boundary,
on the right is the intermediate image with the character
scaled and placed in the top left hand corner.

This method produced much better results. Figure 8
shows a sample of text color-coded in the same way as
Figure 6. With the exception of the “m”s the boxes con-
taining a single character in the main font are colored
blue, as we would like. The italicized characters and the
box containing the “th” bigram are correctly classified as
different than the rest of the text. Section 5 describes pos-
sible improvements to this approach to deal with misclas-
sified character like the “m”. The following experiment
applies this approach to bilingual text.

4.3 Hand-Selected Regions

To test our system on the task of bilingual text segmenta-
tion, we attempted to segment text from the Hippocrene
Uzbek-English English-Uzbek dictionary (Khakimov,
1994) into Cyrillic and Latin characters. We train the
SOM using regions of a dictionary selected by hand to
contain English text, and then use the trained SOM to
estimate the language of unknown characters. Figure 9
shows a sample of Latin and Cyrillic as they occur in the
dictionary, as well as the part selected as Latin text. The

Figure 8: Distance from the nearest matching model vec-
tor using the scaling approach on English text. Blue char-
acters are close to the nearest SOM model vector, red
characters are far from all SOM model vectors. Note that
the italicized characters are more pink than the rest of the
text, as expected.

box in the figure is a part selected as English. Note that
the word “goalkeeper” was not selected in this process to
save time. The word will be classified as English by the
trained system. As a rough estimate of how much human
time this initial selection entailed, selecting English po-
tions from 40 pages of dictionary text took roughly fifteen
minutes.

Figure 9: Part of a page from the Uzbek-English dictio-
nary used for the experiment described in Section 4.3.
The part of the image enclosed by the box has been se-
lected as Latin text, and so can be used to train the SOM.

It is important to note that the Cyrillic characters are
in a bold font while the Latin characters are not, which
may help performance. It is probably not unjustified to
assume that this will often be the case, since changing
the font also makes it easier for a human to distinguish
between languages at a glance and a typesetter might do
this to aid the human reader.

Figure 10 shows part of a dictionary page color-coded
by the system. Letters closer to blue are more likely to
be Latin, while those closer to red are more likely to be
Cyrillic. We see that most of the English text is correctly

113



Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

classified – the word “goalkeeper” is most interesting,
since it was not used during training, and was correctly
classified except for the “pe” bigram for which GOCR
did not find the bounding box correctly. We also see that
on a word by word basis, the system works pretty well –
the Cyrillic words are more red than the Latin words, but
there are a number of places where we make mistakes;
several Latin characters are very pink, and several Cyril-
lic characters are very blue.

Figure 10: Distance from the nearest matching model
vector for dictionary text. Blue characters are classified
as Latin, red characters are classified as Cyrillic.

To obtain quantitative results for this experiment, we
hand-selected all the English text in a dictionary page,
and saved only this in an image. Similarly we placed all
the Uzbek text from three dictionary pages into one im-
age. This gave us 576 characters of English and 312 char-
acters of Uzbek. We then used our system to classify all
the characters in each image. The results are summarized
in Table 1. The system made a correct guess of 98.9% of
the time.

Language Correct Percentage
English 566 / 576 98.3%
Uzbek 312 / 312 100%
both 878 / 888 98.9%

Table 1: The performance of our system with hand-
selected training data on the task of segmenting dictio-
nary text.

4.4 Pages of a Dictionary

The results from the previous experiment are encourag-
ing, but we wanted to investigate whether the human ef-
fort of segmenting some pages of text was really neces-
sary. To investigate this we repeated the above experi-
ment, but instead of training the system on hand-selected
parts dictionary pages, we trained on entire pages of the
dictionary. The idea behind this is to assume that since
most of the characters on the page are of one language
(English for the portion of the dictionary we used), it
may be acceptable to pretend the rest of the characters
are noise. Unfortunately, the results this provides are not

nearly as good as those obtained in the previous experi-
ments. Figure 11 illustrates the results for the same part
of the page shown in Figure 10.

Figure 11: Distance from the nearest matching model
vector for dictionary text, when using unedited pages of
the dictionary. Blue characters are classified as Latin, red
characters are classified as Cyrillic.

Quantitative results were obtained as above, after the
system was trained on unsegmented pages of the dictio-
nary. Overall the system makes the correct estimation
72.2% of the time. As a comparison, always choosing
English would have given a performance of 64.7%, so
this is not an impressive result at all. The details for each
language are shown in Table 2.

Language Correct Percentage
English 339 / 576 58.9%
Uzbek 302 / 312 96.8%
both 641 / 888 72.2%

Table 2: The performance of our system trained on
unedited pages of the dictionary.

5 Conclusions and Future directions

We presented a novel approach for using self organizing
maps to segment bilingual text into its component lan-
guages, with applications to OCR. We tried this approach
on pages from an Uzbek-English dictionary, and found
that we were able to identify the correct language for
100% of the Uzbek characters and 98.3% of the English
characters. With this success in mind, there are a number
of limitations to the approach presented here, and we dis-
cuss these in Section 5.1. Section 5.2 concludes the paper
with a discussion of possible future work.

5.1 Problems with this Approach

There are a number of limitations to the method presented
in this paper. In order to get the results we obtained, we
needed to manually select English text on which the SOM
could be trained. While this did not take a lot of time, it
is a cost that needs to be incurred for each new book on
which OCR is to be performed. The method we describe

114



Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

is also very computationally intensive and requires a lot
of space; training the system took several hours on the
available hardware and the training data occupied about
115 MB of disk space (compared to less than 2.5 MB
for the images). We also do not use character position
information in any way, so we may guess that a character
that is part of a long word is of a different language than
the rest of the word. Making the assumption that there
is one language per word would probably considerably
improve our results.

5.2 Future Work

Investigating the limitations mentioned above would be
the first line of future work. One part of this would be
to investigate how much training data is really necessary.
Perhaps it is enough for a human to segment one page of
training data instead of forty. If a few pages of training
data are sufficient this would also alleviate a lot of the
space requirements we currently have. We also do not in-
vestigate the possibility of training the SOM for a smaller
number of iterations. It would be interesting to find out
how this affects performance.

Extending the method to use position information
would also be a line of future work. The one language
per word assumption would not be difficult to implement
and may improve result – especially when we only have
scarce training data. Further position information could
also be learned on the fly. For example, in our dictionary
all the characters in the left two-thirds of the page were
English. Another easy extension of this work would be
to adapt it to deal with more than two languages.

A more difficult future work (suggested by one of the
anonymous reviewers) would be to combine our approach
with a language model approach. For example, if we
perform OCR on each word in the image assuming it is
in one language, the resulting text would match the lan-
guage model best if we guessed the correct language. We
could repeat this for each possible language before mak-
ing a final decision. Combining this approach with ours
would be helpful, since it could be used to provide train-
ing data with no human involvement, while our approach
would deal with words that do not match the language
model, such as the Latinization of the Cyrillic words in
our dictionary.

References

Benjamin P. Berman and Richard J. Fateman. 1994.
Optical character recognition for typeset mathemat-
ics. In Proceedings of the international symposium on
Symbolic and algebraic computation, pages 348–353.
ACM Press.

Kamran Khakimov. 1994. Hippocrene Books.

Kohonen, Hynninen, Kangras, and Laaksonen. 1995.
The self organizing map program package.

Teuvo Kohonen. 1990. The self-organizing map. Pro-
ceedings of the IEEE, 78(9).

115


