
Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

1

An In Depth Look at Two Approaches to Sentiment
Classification

Shannon McGrael
Swarthmore College

CS97 — Senior Conference
smcgrae1@swarthmore.edu

Stephen Michael Smith
Swarthmore College

CS 97 — Senior Conference
ssmith1@swarthmore.edu

Abstract
There have been a variety of
approaches to the problem of
categorizing text based on
sentiment. Many of these
approaches require a large
amount of user input and effort.
In this paper we compare two
very different manners of
categorizing text, both which
requires minimal user input.
Both techniques parse through
reviews in various domains
(video games, movies, etc) and
attempt to correctly categorize
the review as positive or
negative. Through this process
we will be able to better
understand the problem, as well
as the strengths and weaknesses
of the solutions. From this we
hope to create a basis for
developing a more robust
system.

1. Introduction
As the world enters into the

information age, technologies are
emerging that allow faster and more
complete access to vast bodies of
knowledge and text. The growth in
quantity and diversity means that it has
become increasingly more difficult to

locate text that is particularly relevant to a
certain topic. In many cases the shear size
of the available data can be a hindrance
causing one to find less data rather than
more. This obstacle has created demand
for a classification system capable of
sorting through text, and going beyond a
regular search engine by taking a user s
personal preferences and the sentiment of
the text into account as well. There are
undoubtedly millions of applications for
this type of technology. What has held it
back is the low accuracy of previous
results and the need for user input that is
difficult to amass. What is needed is a
robust system that can accurately perform
sentient classification with little input
from the user.

2. Applications
Peter Turney (Turney, 2002) and

Ken Lang (Lang, 1995) speak of different
applications and algorithms for addressing
the problem of automated review ranking
and text categorization. This technology
is useful in search engines, news services,
information boards, sales and many other
applications.

There are various applications for
review ranking in search engines. Turney
suggests that a user could type in a query
such as Akumal travel review and the
search engine could then return the result
that There are 5,000 hits, of which 80%

97

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

2

are thumbs up and 20% are thumbs down
(Turney, 2002). There are millions of
objects that are reviewed on the web; the
problem is compiling it all together. Users
could also ask to see only reviews of a
certain ranking. This way they could sort
through the reviews to get only the data
they needed. This could be useful in
immeasurable ways. An artist or any user
could easily sift through reviews to
understand the criticism of a certain work
of art. Web designers could quickly find
out what features were liked/disliked by
their users. Or it could be as simple as
consumers quickly being able to benefit
from the opinions of others in an effort to
get the most of their money.

Ken Lang (Lang, 1995) uses this
technology in a netnews-filtering system
called NewsWeeder. This system learns a
user’s preferences through the reviews
they give to certain news articles, and
through the reviews that other users like
them give to news articles. With this
information NewsWeeder is able to
present users with more of the news
articles that are important and relevant to
them and less of those that are not.

These systems could also be used
in order to determine when a particular
piece of text was unusually positive or
negative. Many times it is very important
that text be impartial and fair, such as
judge s comments, text books, and news
articles. Systems such as the ones
described below could be used to flag text
that is unusually emotional, when that
type of response is not appropriate.
Likewise these systems may even be able
to be adapted to learn to detect ideological
differences in articles. For instance a
system may be able to detect if a
newspaper was particularly liberal or
conservative or feminist or anti-feminist.

3. Approaches

3.1 Semantic Orientation
Peter Turney utilized the concept

of Semantic Orientation (SO) in his
approach to this task (Turney, 2002). A
phrase has a positive semantic orientation
if it is most often seen in conjunction with
known positive words such as excellent .
A phrase has a negative semantic
orientation if it is most often used in
conjunction with known negative words
such as poor . His approach to this
problem centers on the idea that adjectives
and adverbs are often present in evaluative
(as opposed to factual) sentences
(Hatzivassiloglou & Wiebe, 2000; Wiebe,
2000; Wiebe et al., 2001). This means
that they often convey the feelings of the
writer more so than any other part of
speech. The algorithm attempts to
estimate semantic orientation of an entire
document (a single review) using
information about the adjective phrases
within that document.

The first step in this approach is to
part-of-speech tag the document and
extract all bigram phrases that contain
adjectives or adverbs. We used the
fnTBL1.0 englishPOS tagger for the POS
tagging. The bigrams are extracted
because the adjectives or adverbs by
themselves don t necessarily give all of
the information. This is true because
adjectives and adverbs are, by definition,
modifiers, so it is easy to see that their
semantic orientation is influenced by the
words that they are modifying. An
example that Turney gives is:

the adjective unpredictable
may have a negative orientation in
an automotive review, in a phrase
such as unpredictable steering ,
but it could have a positive
orientation in a movie review, in a

98

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

3

phrase such as unpredictable plot
(Turney, 2002)."

So, the modified word acts as
context words to accent the sentiment of
the adjective. See Turney 2002 for the
rules used to extract usable two-word
phrases from reviews.

Turney then estimates the semantic
orientation of each adjective phrase by
making queries to the AltaVista Search
Engine (www.altavista.com), ours looked
like this:
(<Word1>+AND+<Word2>)+NEAR+poor.
(<Word1>+AND+<Word2>)+NEAR+excellent.

We then recorded the number of
hits for each phrase (we ll call them
hitsneg and hitspos, respectively). We
also recorded the total number of hits if
we just search for poor and excellent
individually (we ll call them hitspoor and
hitsex, respectively). Using this
information, we can estimate the SO for a
given adjective phrase by:
SO(phrase) = log2((hitspos * hitspoor) / (hitsneg
* hitsex)).
The nature of this calculation is such that
if hitsex > hitspoor, then SOphrase > 0.
Alternatively, if hitspoor > hitsex, then
SOphrase < 0.

To compute the SO for a given
review, we simply take the average of the
SO s for all of the adjectives that we
extracted from this document. In order to
avoid counting phrases that have very
little correlation to either poor or
excellent , we remove any phrase which

gets less than 4 hits for both of the
AltaVista queries from this calculation.
Also, to avoid a possible division by zero,
we added .01 to the number of hits for
every individual phrase. Any document
with an SO greater than zero is considered
to be recommended, and any document
with a negative SO is considered to be
not-recommended.

3.2 Bag of Words
Lang s method, commonly

referred to as the bag of words method,
requires separate training and testing data.
The idea behind this method is that similar
texts will contain similar words. Lang’s
method does not take word order or syntax
into account. The method assumes that
most of the information needed to
differentiate between texts is in the words
themselves. For the purposes of this
research we have implemented a system
similar to that described by Ken Lang in
his paper: NewsWeeder: Learning to
Filter Netnews.

In order to implement the bag of
words method, the text must first be
parsed separated into tokens, each token
being a word or punctuation mark. These
tokens are then converted into vectors the
length of the vocabulary. One main vector
is created for the whole corpus that is a list
of every unique token in the corpus. Then
each separate document or review has its
own corresponding vector that contains
numerical values indicating the number of
times a particular word appeared in that
document. A zero for at the location of a
certain word would indicate that it did not
appear in the document, whereas a 20
would indicate that it frequently appeared
in the text.

In order to complete the learning
process a representative vector must be
created for each separate category. First
the document vectors must be changed
into normalized vectors, then by using
least-squares regression, a numeric value
is assigned to each of them. All the
vectors in the training corpus pre-
determined to be of the same classification
are then averaged to get a representative
vector for each category.

At this point the training process is
completed. To test the system a review
must be parsed and turned into a word

99

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

4

vector and then given a least-squares
regression value in the same manner as the
vectors in the training corpus. This value
is then compared to each of the
representative category vectors. The
system guesses that the new document is
of the same category of the representative
vector closest to it.

4. Corpus Creation
Our corpus consists of 100 reviews taken
from the Epinions web si te
(www.epinions.com). The original idea of
this project was to solve the problem of
sentiment classification on video game
reviews. However, any game that was
popular enough to have more than a
handful of reviews were generally given a
recommended rating. So, we took 50

reviews of the game Tekken Tag
Tournament (10 not recommended Table 2.
Results for 10 Tekken Tag Tournament reviews

, 40 recommended), and we took
50 reviews of the movie Gladiator (25 not
recommended and 25 recommended) for
our corpus data. Since Lang s algorithm
requires training data, we split the two
halves of the corpus into 40 reviews for
training and 10 reviews for testing. The
results given in this paper are for those 20
reviews we used for testing, with
additional results for Turney s system
having been run on the entire corpus.

5. Results Table 3. Results for 10 Gladiator
reviews

For the purposes of comparison, we ran
both algorithms on the smaller corpus of
20 reviews that we separated from our
corpus for testing. The bag of words
method uses the other 80 reviews for
training purposes. Because Turney s
algorithm does not require training data
we were able to run it on the entire corpus
of 100 reviews.

5.1.1 Turney s Results (Comparable
to Lang s Approach)

When run on the test corpus,
Turney s approach receives a 40% on the
video game reviews, and a 60% on the
movie reviews. Tables 2 and 3 show the
results we achieved for the test corpus.

Apparently, the reviewers used
some pretty negative word-choice to
describe their pleasure with the game.
This is understandable since it is a
fighting game and we may be getting

negative feedback from words that the
authors mean to use as positive aspects
(i.e. prolific gore , massive hits , etc.).

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 2 2
SYSTEM NOT RECOMMENDED 6 0

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 2 3
SYSTEM NOT RECOMMENDED 3 2

100

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

5

Again, the reviewers seem to have
used phrases which in everyday random
text would be viewed as negative, but in
the context of the entire document, it
should be seen as positive. One example
bigram from our corpus is disastrous
effects . This bigram appears in a section
of the review in which the author is
describing something that happens in the
movie, not how he/she feels about the
movie itself. However, our algorithm
would incorporate this bigram into a lower
Semantic Orientation score than the
review most likely deserves.

Table 3a shows a comparison of
actual adjective bigrams tested in reviews
that Turney s system correctly classified
as recommended or not-recommended.

Table 3a. Comparison of adjectives in correctly
classified positive and negative reviews.

SAMPLE
BIGRAMS from a
correctly classified

POSITIVE
REVIEW (TEKKEN

TAG)

SAMPLE BIGRAMS
from a correctly

classified NEGATIVE
REVIEW

(GLADIATOR)

Nice night Many clues
Extra cash Upper hand
Good amount Bad guy
Good characters Pretentious corniness
Main arcade Embarrassingly easy
Different stages Inefficient republic
Pretty cool Natural enemy
Other modes Not interested
Basic fighters Moral development
Different buttons Not entertained
Fairly new Loving violence
Special combos Violent scenes
Good fighting Elaborate distraction
Awesome graphics Less distasteful
Widely successful Misogynistic hatred
Joyous sound Questionable moments

5.1.2 Turney s Extended Results
Since Turney s algorithm does not

require training, we decided it might be
interesting to see how it runs on the entire
corpus of 100 reviews. The final results
for this run are as follows:
1. We correctly classified 21 of the 50

Tekken Tag Tournament reviews,
giving a precision score of 42%, which
is slightly better than the score we
received by only running it on a small
number of reviews.

2. We correctly classified 26 of the 50
Gladiator reviews,
giving a precision score of 52%, which
is only slightly better than the baseline
score of 50% if one were to choose
recommended every time.

Table 4a is a compilation of the results
from the 50 Tekken Tag Tournament
reviews, and Table 4b is a compilation of
the results from the 50 Gladiator reviews.

5.2 Lang s Results
For the following tests the data

from Tekken Tag Tournament and
Gladiator were always tested separately.
The corpus was divided into two
categories of reviews, recommended and
non-recommended. In order to train the
system and create the representative
vectors for each category in each domain,
40 of the 50 available reviews were read
in and put into token vectors, as
previously described. The vectors created
from the test documents were then
compared to these two representative
vectors.

The first round of results were very
poor. The results were near 50% for both
domains. The data was difficult to
manipulate because of it very high

101

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

6

dimensionality. Also commonly used
words such as and , I , is , etc occur
so frequently that they were outweighing

Table 4a. Results from the complete corpus of
50 Tekken Tag Tournament Reviews

Table 4b. Results from the complete corpus of
50 Gladiator Reviews

other words that would have had much
more descriptive power. Because of this
the representative vectors for the two
separate categories were so similar that it
was very difficult to differentiate them.
To improve upon our results we
implemented a pruning method that would
limit the number of words that the system
took into account. After all the training
and testing data was read into the system.
Each token that appeared more than X
number of times in the whole corpus was
eliminated from the

Table 5a.

word vectors. Then these pruned vectors
were normalized and there cosine
similarity was found. This has the effect
of disregarding words that are used
frequently throughout the corpus and that
have no relevance in determining the
category of a particular document. It also
reduced the dimensionality of the vectors
making them more precise and easier to
manipulate.

The bag of word s approach is
correct 40% on the movie reviews, and a

90% on the video game reviews. Tables 5
and 6 show the results we achieved for the
test corpus in two different formats.

Results for 10 Gladiator reviews
Table 5b.

Actual Rating Our Rating
N Y
N N
N Y
N N
N N
Y N
Y N
Y Y
Y N
Y N

6. Difficulties
As we attempted to create these

systems we came upon many obstacles.
Some of these obstacles were unique to
our chosen method and others were related
to the problem and the way people express
themselves.

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 18 7
SYSTEM NOT RECOMMENDED 22 3

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 9 8
SYSTEM NOT RECOMMENDED 16 17

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 8 1
SYSTEM NOT RECOMMENDED 0 1

102

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

7

Results for 10 Tekken Tag Tournament Reviews
Table 6a.

Table 6b.

Actual Rating Our Rating
N Y
N N
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y

The test results can be found in greater detail in
appendix A.

One of the largest problems that
we both should have expected but that
became very apparent as we sorted
through our text and results was that
people use very different ways of
expressing themselves. This problem took
a few different forms. What one person
may consider to be a negative attribute
others would consider a positive. One line
of text could be indicative of contrasting
emotions depending upon the person, their
manner of speech and their likes and
dislikes. For example: I had never seen
a movie so focused on war, destruction
and lifelike, gory violence as Gladiator.
While one reviewer may hate the movie
for its extensive action scenes and gory
details, others may find that to be one of
its most exciting aspects.
The other case where the diversity of
people is a big obstacle is in the
inconsistency of their rankings. Each

review was written by a different
person with a different concept of what

recommended and non-recommended
means, where to draw that line, and for

what reasons. For example, about half the
people that ranked Gladiator as three stars
recommended it and the other half did not.
But, even more difficult to deal with were
the cases where a reviewer would rank the
movie as one or two stars, however would
still recommend the movie.

6. Pros and Cons

6. 1 Turney Pro s and Con s
In general, this is a very simple

algorithm. The system is standalone, and
requires no training time or training data.
This must be why he called his system
“unsupervised,” even though by hard-
coding the words “poor” and “excellent”
into the estimation algorithm, he
automatically gave his system prior
knowledge that was helpful in solving the
problem.

This system is easily portable to
other domains while remaining
generalizable within the domain of
reviews. Turney showed that he could get
much better results with reviews from
other sub-domains such as automobile
reviews and bank reviews (Turney, 2002).
Also, one could replace the words “poor”
and “excellent” with “conservative” and
“liberal” to create a system which could
read a newspaper article and report which

of those two categories that article was
most heavily associated.

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 2 3
SYSTEM NOT RECOMMENDED 3 2

103

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

8

One positive element of this
system that was not immediately obvious
is how it handles negation. As the bigrams
are extracted, given the rules developed by
Turney (Turney, 2002), negation words

such as “not” are extracted and used in the
computation of that document’s SO. For
example, the bigram “not interested”
receives a much more negative SO than
the bigram “more interested” which
appears in a different review.

Turney’s algorithm is easy to
implement (low coding overhead),
however, this fact also makes it easy to
find specific cases that it does not cover.
In this way, the generalizability of the

system negatively affects its accuracy. The
rest of this section will focus on specific
problems that we encountered.

While this algorithm takes
relatively little time to implement and no
time to train, it takes an incredibly long
time to issue all of the queries to the
Search Engine. In fact, Turney’s
experiment on 420 reviews took over 30
hours to run (Turney, 2002)! This has an
adverse effect on the scalability of the

system.
In a review, it is common for the

author to compare the subject that they are
reviewing with something else that is
well-known in that domain. Adjective
phrases that are associated with anything
other than the reviewed subject should not
have the same impact on the semantic
orientation of that review. However, with
the current approach, we give equal
weight to all adjective bigrams, regardless

of the subject of that particular sentence.

It seems intuitively obvious that
any system attempting to use the entire
World Wide Web as a source of
information on a language would have
many unforeseeable shortcomings which

could be very difficult evaluate. For
example, any words remotely related to
pornography in a review may have huge
weight in the semantic orientation of a
review, while very specific technical
observations may even be ignored by their
relative non-presence on the Web.

Lastly, one reviewer may use
language that, in the overall scheme of
things, is seen as negative in everyday
language. However, if the reviewer is

using that language as if it is describing
positive events, this algorithm will
wrongly classify those phrases as actually
being negative. Some examples from our
corpus include bigrams such as
“incredibly gruesome”, “mighty blows”,
and “very painful.” Each of these
examples remains ambiguous since it is
possible that one person would find these
things positive in certain contexts.

6. 2 Bag of Words Pro s and Con s
In the bag of words method there

were many problems that were unique to
the method because it does not take syntax
or word order into account, thus making
sense disambiguation impossible. For
example if a review were to use the word
bad, the system is unable to determine if

this word means awful, or refer to an evil
person, or poor conditions, or even the
slang use of the word that has positive
connotations. The system lumps all of
these uses of the word bad together.

104

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

9

Another problem can be seen in
the following example taken from the
corpus: Why is this analogy in the
movie? Because it sounds really
cool This is an example of one of the
many speeches used in Gladiator to make
it characters sound neat. This is a
negative review that was wrongly
classified as positive. The system picks
up on the positive words such as really ,
cool , and neat. It is unable to see that

this reviewer is being sarcastic and does
not at all like the analogy used or the other
long speeches in Gladiator. The system is
unable to pick up on this. Another way a
very similar problem occurs is with the
word not or other negatives. Because
words are not taken in context the system
could easily misinterpret phrases such as
not good or not bad.

However there are also many Pro s
to Lang s approach. It is much faster that
Turney s approach and therefore much
more likely to be useful to applications
such as search engines and navigating the
web. It is also very easy to implement and
to modify. As long as the training data is
correctly set up and the number of
categories is set correctly the system can
deal with any domain.

7. Improvements

7.1 Ways to improve on Turney s
algorithm
1. Do some pre-processing on the corpus

to tag Subject-Object pairs. This would
allow adjective phrases in certain
sentences to be weighted more than
others. In this case, adjectives in
sentences in which the actual product is
the subject would have more weight
than adjective phrases in sentences about
the author s girlfriend.

2. As Turney himself pointed out, the SO
estimator is extremely simple. A much

deeper mathematical and statistical
analysis of the problem could give us a
better estimator, and therefore a better
system.

3. Over the next few years, technology is
becoming faster, cheaper, and more
reliable. It seems possible that in a very
short amount of time, we will have the
processing power to actually process
entire documents for meaning,
sentiment, etc., instead of doing a token-
by-token discrete analysis.

4. This algorithm doesn t necessarily get
to the heart of the problem. It seems as
though the semantic orientation of a
phrase can be modified for the better by
one or more informative subroutines
(example, see #1).

7.2 Ways to Improve Results from
Lang s Method:

1. Pruning the data
The first step in pruning the data
provided much better results.
However further experimentation in
better methods could further improve
the results.

a. TF-IDF Weighting
TF-IDF weighting refers to term
frequency/inverse-document
frequency weighting. This is an
accepted and tested technique. It is
based on the idea that the more times a
token t appears in a document d, or the
term frequency, the more likely it is
that t is relevant to the topic of d.
However, the more times that t occurs
throughout all documents, or
document frequency, the more poorly t
discriminates between documents.
The TF-IDF weight of a token is
computed by multiplying the term
frequency by the inverse of the
document frequency.

105

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

10

b. Minimal Description Length (MDL)
According to Lang the MDL
principal provides an information-
theoretic framework for balancing the
tradeoff between model complexity
and training error (Lang). This would
involve how to determine the weights
of different tokens as well as how to
decide which tokens should be left out.
MDL seeks to find the optimal

balance between simpler models and
models that produce smaller error
when explaining the observed data
(Lang).

2. Better Grouping of data
a. Root Words

Words with the same root are
classified as unique tokens. By
combining these tokens it might
decrease dimensionality and give a
more accurate view of sentiment.

b. Punctuation
Uninterrupted punctuation is seen as
one word. For example !!!!! is in
one token instead of being 5 instances
of !. Also !!! is a separate token.

8. Conclusion

During our analysis of each of
these approaches, we realized that the two
systems differ in the type of review that

they will correctly classify. Turney’s
approach works better on reviews with full
sentences written as a concise narrative.
These reviews should include little
extraneous material. Also, this system will
lose any benefit of long strings of
adjectives, and all punctuation, since these
strings will be parsed into bigrams, and

will not be viewed as a single adjective
phrase. Lang’s approach, conversely,
works better on reviews written by the
colloquial, informal writer. Sentence
structure can be ignored and strings of

adjectives do not have a negative impact
on the ability of this system to classify a
review correctly. However this system
loses information from negation words
such as “not” and “but”.

After analyzing their alternative
approaches, it seems as though Ken Lang
(Lang, 1995) and Peter Turney (Turney,
2002) developed systems that could be
easily combined in parallel to create a
more robust system. The output of

Turney's system is a ranking, from –1.0 to
1.0, with positive rankings indicating a
positive review, and negative rankings
indicating a negative review. Lang’s
approach gives a similarity ranking, in
degrees, to pre-trained “positive review”
and “negative review” vectors. If both
systems give the same rank (positive or
negative) to the same review, we can be
surer about the correctness of our
classification. If they disagree, we can

normalize Lang’s output by dividing by
360, and compare the magnitude of the
rankings (by taking the absolute value)
given by each approach, choosing the
ranking that is closer to 1.0. This would
basically choose the ranking from the
system that was “most sure” of its ranking.

106

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

11

Appendix A

Gladiator Results:

Test 1-5 should have been negative and 6-10 should have been positive
__
PosAvg = 16.0186606915661
NegAvg = 11.8380473345302

--
TestReview 1 = Positive
Cosine = 23.2709696439365 Positive Average = 16.0186606915661
--
TestReview 2 = Negative
Cosine = 13.7287385024832 Negative Average = 11.8380473345302
--
TestReview 3 = Positive
Cosine = 21.0261787760811 Positive Average = 16.0186606915661
--
TestReview 4 = Negative
Cosine = 11.5234315064659 Negative Average = 11.8380473345302
--
TestReview 5 = Negative
Cosine = 12.7149150507662 Negative Average = 11.8380473345302
--
TestReview 6 = Negative
Cosine = 11.4870277804537 Negative Average = 11.8380473345302
--
TestReview 7 = Negative
Cosine = 13.3473100260505 Negative Average = 11.8380473345302
--
TestReview 8 = Positive
Cosine = 14.2941176470588 Positive Average = 16.0186606915661
--
TestReview 9 = Negative
Cosine = 13.1102578104888 Negative Average = 11.8380473345302
--
TestReview 10 = Negative
Cosine = 11.2413709596575 Negative Average = 11.8380473345302

Tekken Tag Tournament Results:

Test 1 and 2 should have been negative and the 3-10 should have been positive

NegAvg = 11.8229121304717
PosAvg = 13.1909226170445

--
TestReview 1 = Positive
Cosine = 14.2503313100448 Positive Average = 13.1909226170445
--
TestReview 2 = Negative
Cosine = 12.5051490549628 Negative Average = 11.8229121304717

107

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

12

--
TestReview 3 = Positive
Cosine = 17.0557835789563 Positive Average = 13.1909226170445
--
TestReview 4 = Positive
Cosine = 15.4480815863922 Positive Average = 13.1909226170445
--
TestReview 5 = Positive
Cosine = 15.2916255149102 Positive Average = 13.1909226170445
--
TestReview 6 = Positive
Cosine = 17.4736133305576 Positive Average = 13.1909226170445
--
TestReview 7 = Positive
Cosine = 18.4138705812283 Positive Average = 13.1909226170445
--
TestReview 8 = Positive
Cosine = 16.9111365668947 Positive Average = 13.1909226170445
--
TestReview 9 = Positive
Cosine = 16.9747545634721 Positive Average = 13.1909226170445
--
TestReview 10 = Positive
Cosine = 13.3273304529849 Positive Average = 13.1909226170445

108

