
Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

Automatic Rule Generation and Generalization
for an Information Extraction System Using MAXIM

J. McConnell
Swarthmore College

500 College Ave.
Swarthmore, PA 19081

mmcconn1@swarthmore.edu

Anteneh Tesfaye
Swarthmore College

500 College Age.
Swarthmore, PA 19081

atesfay1@swarthmore.edu

Abstract

Many recent information extraction (IE) sys-
tems have ignored the tedious and time-
consuming nature of the preparation involved
in using them. The abundance of graduate stu-
dents has eased the pain of providing annotated
corpora, pre-filled answer templates, and man-
ual examination of automatically-generated
rules and final answers. In this paper, we
present a new system comprised of previously
published solutions to different aspects of IE in
an effort to automate as much of the task as pos-
sible while achieving competitive results.

1 Introduction

1.1 Background Information

The recent availability of large quantities of text in elec-
tronic format on the World Wide Web, has greatly in-
creased the importance of intelligently extracting de-
sired information from such text. The task of informa-
tion extraction is most easily described as that of filling
a database with information found in structured, semi-
structured, or free text. Structured text can be thought of
as text in a pre-defined format, like in a printed spread-
sheet. Semi-structured text follows general guidelines,
but is not as predictable as structured text. It is often un-
grammatical with a lot of fragmented sentences. An ex-
ample of such text might be telegraphic, military commu-
nications, or birthday invitations. Free text is just normal
prose, as found in a news article or a work of fiction, for
example.

DARPA recognized the significance of this growing
field in the late 1980’s when they funded the first Mes-
sage Understanding Conference (MUC-1). The MUC has
been held semi-annually since, and has highlighted de-
velopments in IE research. Since the early knowledge-
engineered (KE) systems developed for MUC-1, the field

has seen a trend towards automation to circumvent the
bottleneck associated with KE.

This trend is fueled by the difficulties inherent in all
KE tasks. Extensive, yet required, human involvement
makes them costly to develop, test, and apply to different
problem domains both in time and money. These sys-
tems often require annotated corpora, pre-filled answer
templates, human designed rules, or, if the systems auto-
mate the rule-making process, the manual examination of
such rules to weed out the poor ones. These requirements
are simply unacceptable for many potential applications,
and we believe they are unnecessary.

1.2 Relevant Work

Since MUC-1, researchers have been searching for an ef-
fective, autonomous IE system. Showcased at MUC-4,
Riloff’s AutoSlog (1993) program automatically gener-
ated a dictionary of concepts which were later used to
extract information from text similar in category to those
with which it was trained. This system proved capable
of achieving 98% of the performance of a hand-crafted
dictionary developed by graduate students. The students’
dictionary took 1500 person-hours to build, while the Au-
toSlog dictionary only required 5 person-hours in order to
hand-filter automatically-generated rules.

Despite the obvious benefits of AutoSlog, it was still
not practical for real-world use. As input, AutoSlog
required either a set of answer keys or a semantically-
annotated corpus. This was used to provide AutoSlog
with examples of information to be extracted. Conse-
quently, AutoSlog does not port well to different domains
since it takes many person-hours to either fill in a set of
answer keys or annotate a corpus.

To address these concerns, Riloff developed AutoSlog-
TS (1996). This improvement on AutoSlog automatically
generated extraction rules given completely unannotated
text. As input, it requires two texts, one relevant to the
problem domain, and one completely irrelevant. It works
by generating an extraction pattern for every noun phrase

84

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

in a given text. It then compares the extraction patterns
found in the relevant text to those found in the irrelevant
text. Those patterns that show up frequently in the former
but not at all in the latter are presumed to be pertinent to
the problem domain. This system is hindered however by
the need for manual examination of the resulting rules,
normally about 2,000, in order to discard poor choices.

Another system developed to automate the rule genera-
tion process is Rapier (Califf and Mooney, 1997). Rapier
takes as input sets of training text paired with a corre-
sponding answer key. It then uses this information, com-
bined with the output of a POS tagger and semantic class
tagger, each given the training text, to create specific ex-
traction rules that extract the correct answers. Up to this
point, Rapier is quite similar in execution to AutoSlog;
however, the system then goes on to generalize these spe-
cific rules in order to make the resulting dictionary more
robust. That robustness is the strength and the point of
the Rapier system.

2 The MAXIM System

2.1 Basis for MAXIM

The Maximally Automated eXtractor of InforMation
(MAXIM) system was developed out of the need for
an IE method that required next to no human interven-
tion or preparation but still received satisfactory results.
AutoSlog-TS’s necessity for manual examination of rules
as well as its lack of robustness given the specificity of its
resultant rules leaves something to be desired. Rapier’s
need for answer keys means many person-hours are re-
quired before training on any particular problem domain.
The respective strengths and weaknesses of these systems
complement each other well. As a result, we propose a
joint system built with the better halves of both. This sys-
tem consists of an implementation of the rule generation
phase of AutoSlog-TS and a rule generalization process
inspired by Rapier’s rule representation and learning al-
gorithm.

MAXIM takes as input pre-classified text from both
inside and outside the problem domain.1 It will feed this
text to the rule-generation phase of AutoSlog-TS which
has been modified to represent rules in a format similar
to that of Rapier’s (see Subsection 2.2). To minimize the
time spent on the manual examination of the many re-
sultant rules, we used a clustering algorithm in order to
group similar rules. We were then required to examine
only a fraction of the rules outputted by AutoSlog-TS.

1By ”classified text”, we mean a text that is marked rele-
vant or irrelevant. We assume that finding qualified texts should
not be difficult or time-consuming given that relevant text is
required for training any system and irrelevant text is readily
available online.

Pre-filler: Filler: Post-filler:
1

�
tag: � nn,nnp � 1

�
word: undisclosed 1

�
sem: price

2
�

list: length 2 tag: jj

Figure 1: Sample Rule Learned by Rapier

2.2 Rule Representation

2.2.1 Rapier

Rapier’s rules consist of three parts, a pre-filler pat-
tern, filler pattern, and post-filler pattern. Each pattern
consists of any number of constraints. Constraints can
be defined to match an exact word, any word with a
given POS tag, or any word that matches a given se-
mantic class as defined by WordNet (Miller et al., 1993).
Within constraints, expressions can be disjunctive if writ-
ten as � constraint � , constraint � , . . . � where the con-
straints musts all be either exact words, POS tags, or se-
mantic class tags. For example, to specify that a pattern
should match with either an adjective or an adverb, the
constraint would be � JJ, ADV � .

The appeal of Rapier’s rule representation is its ability
to express a general idea as opposed to relying on specific
word choice. For example, a rule generated by Rapier
for extracting the transaction amount from a newswire re-
garding a corporate acquisition is shown in Figure 1. The
value being extracted is in the filler slot and its pre-filler
pattern is a list of at most two words whose POS tag is ei-
ther noun or proper noun. The post-filler pattern requires
a WordNet semantic category ”price”.

2.2.2 MAXIM

Rapier’s slot constraints form the underlying idea of
the rule representation that we have adopted for MAXIM.
Due to the inconsistencies between the methods used by
AutoSlog-TS and Rapier to generate extraction patterns,
we had to use the pre- and post-filler slots as containers
for extracted values, which contrasts with Rapier’s use
of the filler slot for this purpose. This simple but cru-
cial alteration in slot design meant that we could not use
Rapier’s rule generalization algorithm without modifica-
tion. Also, the fact that this algorithm was highly depen-
dent on the answer key provided to Rapier reinforced our
decision to abandon this specific generalization algorithm
entirely.

Our implementation of AutoSlog-TS returns the ex-
traction patterns in the form of � noun phrase � � verb
phrase � � noun phrase � which aligns nicely with the
pre-filler, filler, and post-filler slot arrangement of the
rule generalization phase. We set up three constraints
for the pre-filler and post-filler slots and one constraint
for the filler slot. The pre and post filler constraints
consist of the maximum number of words in the noun

85

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

phrase, max-len, a 39-dimensional vector that serves as
a histogram bin 2 for the POS tags of the words in the
noun phrase, POS-classification-vector, and a required
POS tag, required-POS, that is determined from the noun
phrase’s POS-classification-vector. The 39-dimensional
vector was composed of 36 Penn Treebank part of speech
tags and three tags that were added later to cover punc-
tuation marks. The constraint associated with the filler
slot is just a set of words in the verb phrase, filler-set.
Like Rapier, MAXIM avoids this problem by generaliz-
ing rules using the slot constraints.

2.3 Problem Domain

Our problem domain is articles reporting the results of
soccer games. It was chosen based on a mutual interest
and the wide availability of such stories. In order to diver-
sify our training corpus as much as possible while stay-
ing in the domain, we have collected stories from differ-
ent countries and authors, resulting in texts with different
writing styles. All articles are in English. Our sources in-
clude, the FIFA coverage of the World Cup 2002, the En-
glish Premiere League’s archives of the past seven years,
as well as the Major League Soccer’s archives over the
past six years. All sources were downloaded from the
World Wide Web and have been stripped of all HTML
tags.

Having considered various choices for the irrelevant
text to be input into AutoSlog-TS, we decided that it
would be beneficial to try different sources in order to
compare and contrast how the choice of irrelevant text
affects results. We have picked the Wall Street Journal
corpus for its journalistic style and its specific and con-
sistent subject matter. Conversely, we have chosen the
Brown corpus for its broad range of writing style and di-
verse subject matter.

2.4 Building the Relevant Corpus

Once all the HTML tags had been stripped from our com-
pilation of soccer stories, we performed two tasks in order
to convert our relevant data to a corpus that was compat-
ible with both the AutoSlog-TS and Rapier systems. The
first task was to remove text that was not in a sentence
format such as headers and game statistics. The second
task was to put the soccer stories in one-sentence-per-line
format. As a result, we implemented a highly customized
sentence boundary disambiguator which included some
common proper nouns from the problem domain. The
fnTBL (Ngai and Florian, 2001) POS tagger and text
chunker was then run on the formatted text, which in-
cluded about 800,000 tokens.

2It is not technically a histogram, because the POS counts
for the phrase are weighted. More common tags, like NN, for
example, are weighted less than tags like CD, which carry more
information.

PATTERN EXAMPLE
� subj � passive-verb � team � was defeated
� subj � active-verb � player � scored
� subj � verb infin. � team � attempted totie
� subj � aux noun � player � was team

passive-verb � dobj � kicked � player �

active-verb � dobj � beat � team �

infin. � dobj � to card � player �

verb infin. � dobj � tried to foul � player �

gerund � dobj � coaching � team �

noun aux � dobj � coachName is � coach �

noun prep � np � goal against � team �

active-verb prep � np � beat by � goals �

passive-verb prep � np � was injured at � time �

Figure 2: AutoSlog Heuristics

2.5 Implementing AutoSlog-TS

Though Riloff generously offered her AutoSlog-TS im-
plementation for our research, we obtained the code too
late to make use of it. Also, since modifications were nec-
essary to the rule representation, time to become famil-
iar with the code would be called for. For these reasons,
we decided to implement what we needed of AutoSlog-
TS ourselves. Due to the extensive need for using regu-
lar expressions and the limited time allotted for develop-
ment, we decided to implement AutoSlog-TS with Perl.
AutoSlog-TS generates extraction patterns for a given
text in two stages.

2.5.1 Stage 1

In the first stage, AutoSlog-TS identifies the noun
phrases using a sentence analyzer.3 For each noun phrase,
it uses 15 heuristic rules to generate extraction patterns
that will be used in the second stage. These heuristic are
shown in Figure 2.

When the first stage is run on the corpus, a huge dictio-
nary of extraction patterns is created. This list of extrac-
tion patterns is capable of extracting every noun phrase
in the corpus. AutoSlog-TS allows multiple rules to be
activated if there is more than one match. This results in
the generation of multiple extraction patterns for a single
noun phrase. For example, running our implementation
of AutoSlog-TS on a test set of the WSJ, the sentence
”. . . have to secure additional information and reports . . . ”
produced two patterns: have to secure � dobj � and to
secure � dobj � in response to the two of the rules in

3We used the pre-trained englishTextChunker that comes as
part of fnTBL.

86

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

Relevant T.

Irrelevant T. �
Sentence Analyzer

�

S: D.C. United
V: was defeated
PP: by A.C. Milan

�AutoSlog
Heuristics

�

Concept Nodes:
� x � was defeated
defeated by � y �

Figure 3: AutoSlog-TS Stage 1 flowchart

Figure 2, verb infin. � dobj � and infin. � dobj � , respec-
tively. The relevance statistics performed in the second
stage will decide which one of the two extraction patterns
is more representative of the domain.

The process of Stage 1 is summarized in Figure 3.

2.5.2 Stage 2

In this stage, we examine both relevant and irrelevant
texts to compute the relevance statistics for each pattern.
For each pattern in our dictionary, we go through each
sentence in both our relevant and irrelevant corpora and
keep track of the number of cases that were activated by
this pattern. We use this to estimate the conditional prob-
ably that a text is relevant given that it activates a given
extraction pattern according to the formula:

� � � � � �
- 	 �
 	 � 	 �
 	 � � 	 � � � � � � 	 	 � � � � � �

� � �
- � � � � �

	 	 � �
- � � � � � (1)

where � � � - � � � � � is the number of times � � � � ! �
appeared in the relevant corpus while " � � - � � � � � is
� � � - � � � � � # $ � ! % & ' � � " � (& �) � � � � ! � appeared in
the irrelevant text. The idea behind computing the condi-
tional probability for each pattern is that domain-specific
expressions will show up more in relevant texts than ir-
relevant ones. Since AutoSlog-TS generates thousands of
extraction patterns, we need to rank each pattern in order
of relevance to the domain and discard the less important
ones. This will allow for a person to review the most rele-
vant patterns. The ranking function used by AutoSlog-TS
is a simple one:

� � ! * � + � � � � , � ! - � � � � � . � " / � 0 " � � - � � � � �
(2)

where � � � � , � ! - � � � � � is as calculated by � � 0 1 �
and

 " � � - � � � � is also the same as in � � 0 1 �
. Rank is set to2

if � � � � , � ! - � � � � � is 3 2 4 5
. 6 � 0 7 �

gives a higher

Relevant T.

Irrelevant T. 8 8 8 8 8 9
Concept Nodes:

� x � was defeated
defeated by � y �

: : : ; Sentence Analyzer

�
Concept Node ———— REL%

� x � was defeated —– 87%
defeated by � y � ——- 84%

Figure 4: AutoSlog-TS Stage 2 flowchart

rank for patterns with a high frequency. This was done
to save patterns that are common in both relevant and ir-
relevant texts from poor ranking. Both equations 1 and 2
were originally used in AutoSlog-TS. Riloff admits that
they are simple and may be improved upon but they were
suitable for her purposes. Even though we feel similarly,
strictly improving AutoSlog-TS was not the focus of our
work, so we decided to use the equations as presented.

The process of Stage 2 is summarized in Figure 4.

2.6 Rule Clustering & Generalization

When AutoSlog-TS outputs its rule extraction patterns
and sorts them according to the ranking function, there
is a danger that some important extraction patterns might
be discarded. For example, in our problem domain of
choice, the phrase ” � Rookie Ali Curtis � netted � his
second goal � ” might have been ranked a lot higher than
” � Forward Chris Brown � notched � a goal � ”. If our
rule representation relied solely on the words it found in
the training text and their ranks, these would be treated
as separate rules throughout the program and the second
phrase may be discarded as irrelevant if the top < rules
are blindly selected.

However, MAXIM keeps all the rules from AutoSlog-
TS, computes the POS-classification-vectors for both
noun phrases (i.e. the pre- and post- fillers) and the
filler-set for each rule and runs a two-level clustering
program. This program first clusters the rules with
the same filler-set together. It then calculates the aver-
age POS-classification-vectors of these simple clusters
() (& � � � - - � %) � � � to) (& � � � - - � %) � � =) and computes the
cosine similarity between all vectors using two ! x ! ma-
trices (one for the pre-filler slot and the other for the post-
filler). Next it chooses the pair of simple clusters that are
most related by finding the pair whose pre-filler and post-
filler cosine similarities’ sum is highest as long as the pre-
filler similarity’s value is above a set threshold and the
post-filler similarity’s value is above a separate threshold.

87

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

Pre-filler: Filler: Post-filler:
1

�
max-len 1

�
filler-set 1

�
max-len

2
�

POS-classification-vector 2
�

POS-classification-vector
3

�
required-POS 3

�
required-POS

Figure 5: MAXIM Rule Generalization

Then it continues this process, not considering the previ-
ously paired simple clusters, finding the next most related
pair of simple clusters until either all clusters are paired
or there are no two clusters with both pre- and post-filler
similarities higher than their respective thresholds. The
second stage of the clustering program can be repeated,
cutting down the number of clusters by half each time.

Once all the rules from AutoSlog-TS are clustered in
their respective group, a human will go through each
cluster and link the pre- and post-fillers to the appropri-
ate slot(s) in the template to be filled. Irrelevant clusters
are eliminated at this point and the good clusters are as-
signed template slots and fed in to our rule generalization
program. This is the only phase that requires human in-
volvement. We timed ourselves doing this task together
on 628 simple clusters and it took us just under one hour.
Compared with the 5 hours it took the AutoSlog-TS team
to manually assign slots to approximately 2,000 rules and
you find that we are already saving time, and this was
before the second stage of the clustering, where we cut
those 628 simple clusters into less than 314 clusters.

The generalization program is very similar to our clus-
tering algorithm since it relies heavily on POS infor-
mation. As discussed in section 2.2, the three con-
straints for the pre and post filler slots are max-len, POS-
classification-vector, and required-POS, and the only
constraint for the filler slot is the filler-set. The POS-
classification-vector for each cluster is computed by just
taking the average of the individual POS-classification-
vectors. From this vector, we obtain the required-POS by
finding the maximum element. When the rules are ap-
plied to a test set, a sentence has to satisfy a total of four
constraints before the content of its pre- and post-filler
slots are sent to the template slot as important informa-
tion. The structure of our rule representation is summa-
rized in Figure 5.

2.7 Discussion of Results

We set out to fill a template with five slots: the name of
the teams that played, the winner of the game, the score,
the scorer(s), and the names of people who were ejected
from the game. MAXIM allows for multiple values per
slot using a comma as the delimiter. Ideally, the slots are
filled with only the relevant information. However, the
slots are generally filled with entire noun phrases, which

Figure 6: A Filled Template

soccer � game template

teams: The Colorado Rapids, the Los Angeles Galaxy 1 - 0
score: the Los Angeles Galaxy 1 - 0
winner: The Colorado Rapids
scorer: Agogo
ejected: Galaxy defender Ezra Hendrickson

WSJ Brown
Recall Precision Recall Precision� � � � � �

of corpus 19.85% 68.97% 19.54% 65.31%
� � � � � �

of corpus 10.53% 61.33% 11.91% 64.2%

Table 1: Effect of Writing Style and Irrelevant Text
Choice on Performance

contain the desired information (as the example output in
Figure 6 shows). Note that this is still better than some
research-level systems, which return the entire sentence
that contains the desired information.

Although our training corpus comprises 1,300 soccer
articles (800,000 tokens), it was not possible to train our
implementation of AutoSlog-TS within the given time
frame. As a result, we trained on only � 	
 of our corpus
size. This made it possible to analyze the effect of dif-
ferent writing styles within our problem domain on the
performance of our system, as we could pick different
parts of our corpus that correspond to the different soc-
cer leagues. We tested MAXIM on 200 articles and cal-
culated recall and precision by comparing the templates
filled out by MAXIM to a human-filled answer key. As
can be seen in Table 1, both recall and precision were
better when we trained on the first 25% section (section
A) of the training corpus than the second 25% section
(section B). This is believed to be due to the fact that
this second section contained mostly articles about Pre-
mier League games while the test corpus contained only
articles from the 2000 MLS season. The writing styles
from the British writers and the American writers varied
greatly. For example, where one British writer writes,
” � player � dinked a delightful cross”, the average Amer-
ican writer writes, ” � player � blasted a cross”.

In addition, the result of different choices of irrelevant
text was analyzed by training our system on both the Wall
Street Journal (WSJ) and the Brown corpora4. We were
hoping to show that training on the WSJ corpus would
lead to better results than training on the Brown due to
the commonality of the journalistic writing style between

4Of course, the size of these corpora is proportional to that
of the relevant text.

88

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

WSJ Brown
Recall Prec. Recall Prec.

team 24.74% 72.39% 23.47% 74.80%
� � �

score 11.86% 95.83% 11.86% 92.00%
� � �

winner 15.34% 83.33% 7.98% 86.67%
scorer 21.26% 60.00% 23.56% 55.91%
ejected 10.26% 100.0% 12.82% 55.56%

team 9.44% 52.11% 12.50% 61.25%
� � �

score 4.64% 81.82% 5.15% 83.33%
� � �

winner 7.36% 75.00% 7.98% 68.42%
scorer 15.13% 62.70% 15.90% 63.36%
ejected 2.56% 100.0% 2.56% 100.0%

Table 2: Breakdown of Results According to Slots

team scorer winner score ejected

Rules 73 39 12 7 4
Recall 24.74% 21.26% 15.34% 11.86% 10.26%
Prec. 72.39% 60.00% 83.33% 95.83% 100.0%

Table 3: Number of rules assigned to each slot in the Sec-
tion A/WSJ rule-set compared to both the recall and pre-
cision for the slot.

this corpus and our relevant training corpus. We thought
that a group of common journalistic phrases may appear
a lot in the relevant training corpus but hardly at all in the
Brown and thus be deemed as relevant. The results are
inconclusive. We have not been able to link any effects to
the choice of irrelevant text.

The breakdown of our results according to the five slots
in our template is shown in Table 2. Our recall was gener-
ally best for the team and scorer slots. This is true in our
results from section A as seen in the first half of Table 2.
These recall values are followed, in descending order, by
winner, score, ejected. These numbers correspond ex-
actly with the number of rules that were assigned to these
slots as clearly shown in Table 3. It is not surprising that
the more rules assigned to a slot, the higher the recall for
that slot, as there are a greater number of ways to fill the
slot.

The precision values are ordered in exactly the oppo-
site way (with the exception of the scorer slot) as is also
seen in Figure 7. This is inversely related because the
greater the number of rules, the greater the possibility of
a mistake. Also, precision is dependent on how specific
a rule is to the desired information and how commonly
it is used in the problem domain. For instance, the most
common rule to fill the scorer slot often appears some-
thing like, ”Diallo scored in the 17th minute”. However,
it is also very common to read, ”D.C. United scored in the
17th minute”. Despite the presence of this second form,
we must assign this rule to the scorer slot since this is the
most likely way that we will find this information. Here

Figure 7: Recall/Precision as Functions of the Number of
Rules

WSJ Brown
Recall Prec. Recall Prec.

Stage 2
� � � � � �

19.85% 68.97% 19.54% 65.31%
done once

� � � � � �
10.53% 61.33% 11.91% 64.20%

Stage 2
� � � � � �

10.84% 79.44% 4.78% 74.12%
done twice

� � � � � �
2.65% 64.81% 4.62% 74.39%

Table 4: Clustering vs. Recall and Precision

we are sacrificing precision in order to increase recall.5

We found that these kinds of decisions were required fre-
quently. Unfortunately, we were not able to experiment
enough to become adept at choosing the best choice. We
believe that this, poor choice of rules to keep/delete and
slots to assign them to, played a role in our less-than-ideal
results.

The effect of the number of times the clustering algo-
rithm was run on the performance of our system was also
examined. The second stage of our clustering program re-
duces the number of clusters by half every time it is run,
cutting the human involvement time by the same amount.
However, this is done at the cost of recall, as shown in
Table 4. The most likely reason for this is that more good
rules are discarded because they were grouped with three
other irrelevant rules. This decreases the number of rules
assigned to each slot, which, as was seen in Figure 7,
directly influences recall. The over-all increase in preci-
sion when clustering again can be explained by the same
logic, though it is somewhat counterintuitive. One may
very well expect that precision would decrease with in-
creased clustering. This was not our experience, though
we still expect that this behavior may be seen if one were
to cluster more than the two times that we did.

5Examples like these are suspected to be the reason for the
low precision of the scorer slot because they are very common,
thus the anomaly in Figure 7.

89

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

What was reassuring were the results of the clustering.
After clustering twice, with nothing but part-of-speech
information and filler-set information, we were left with
less than � � � of the ”rules” that we started with. 6 Of
these ”rules”, or rather, clusters of rules, some very dif-
ferent filler-sets were quite correctly grouped together.
Some of these include � blanked, defeated, rocked, rat-
tled � , � knotted, narrowed, had scored, pressed � , � netted,
notched, missed, scored in � , and � was issued, was shown,
assumed, was ejected for � . Obviously, ”missed” and ”as-
sumed” do not belong in their respective clusters, and
”pressed” is certainly arguable at best, but the rest of
these results are fairly remarkable for the simplicity of
the system in its current state.

Besides the potential improvements discussed in Sec-
tion 2.8 that could be added to improve MAXIM, there
were some issues that could be held accountable for the
low recall and unexceptional precision. First, in the prob-
lem domain we were dealing with, figurative/descriptive
language was used heavily in order to bring the excite-
ment of the game to the article. This results in the same
idea being expressed in a multitude of ways and with a
variety of action words. We could not adequately train
for this since it just took too long. Resorting to train-
ing on � � � of our corpus hurt us here. This is not as big
a problem for the domains many other IE systems have
chosen to test on.

Secondly, we found it quite common for authors of an
article to refer to the previous week’s games, or other
games from earlier in the season. So if MAXIM finds
” � player � scored 3 goals” it has no way of determining
whether or not this happened during the current game or
a previous one and must assume the former. We auto-
matically get this wrong if the phrase in question is not
describing the current game.

Another problem we are sure that we ran into to some
degree is human error in both generating the answer keys
and comparing our results to the answer keys. For one
thing, any of the problems that MAXIM runs into when
extracting information from an article, a human runs into
as well. Also, there is always question about what to do
about things like own goals in soccer. Who to mark as
the scorer is likely up to debate and this results in incon-
sistencies.

The last major problem that we had was errors from
pre-processing. Some abbreviations escaped detection by
our sentence boundary disambiguator. Words like ”give-
and-go” and ”game-winner” were split into multiple parts
and the hyphens were chunked as being outside of the
surrounding noun-phrase by fnTBL. This broke up some
noun-phrases that would have otherwise held extractable

6We had less than
� � �

of the rules because the clustering al-
gorithm discards any rules that are not similar enough to another
rule.

information. Finally, and mistakes made by the POS tag-
ger directly effected our performance.

2.8 Conclusions

As it is clearly seen in the Results section, MAXIM suf-
fered from low recall. There are several factors that might
be responsible for this. Working towards the elimination
or minimization of these factors, we believe, will improve
both recall and precision.

The ability to train on the whole corpus may improve
recall as more rules will be detected. This will also avoid
the writing style dependency discussed in the Results sec-
tion. If MAXIM trains on MLS, Premier League, and
World Cup stories (the whole corpus), it will have a more
generic and style-insensitive rule dictionary.

In addition, we might have been too restrictive and in-
flexible with our AutoSlog-TS’s heuristic rules. The ad-
dition of rules to Figure 2 that are targeted to our prob-
lem domain and the elimination of those which are un-
likely to be useful will result in a more refined AutoSlog-
TS output. We also required our rules to be in ¡subj¿
verb ¡dobj¿ format in order to make the two phases of
MAXIM compatible (see Section 2.2). However, if we
allow ¡subj¿ verb and verb ¡dobj¿ to exist by themselves
(which means that we have to allow for empty pre- or
post- fillers), we could improve our recall.

Furthermore, we would like to minimize the exact-
word-matching dependency of the filler slot. The imple-
mentation of this phase was considered using WordNet
but preliminary trials indicated this to be a futile effort.
For example, WordNet will not consider � blanked, de-
feated, rattled, rocked � to be in the same semantic class.
Even though these words were grouped together by our
clustering algorithm to form the filler-set for the winner
and team slots, MAXIM will depend on finding one of
these words in the test set during the application of the
generalized rules. The sentence ¡Team A¿ crushed ¡Team
B¿, for example, will not help us extract team and winner
information. The use of a thesaurus or ontology would
have been ideal if, but they just do not currently have a
rich enough synonym base to be of any practical, real-
world use in any specific problem domain. At least not
one where figurative language is used as often as in the
domain we trained and tested on. It is worth noting that
when Rapier incorporated WordNet senses in its rules, its
performance was not significantly better than without this
information.

Incorporating position information in our POS-
classification-vectors might improve our clustering. Cur-
rently, we only keep track of the frequency of each POS
tag within a noun phrase. If this can be extended to in-
clude some kind of contextual information, e.g. the po-
sition of POS tags or POS tag � -grams, we may be able
to more accurately group different clusters expressing the

90

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

same idea together. This would both decrease the human
involvement required, by decreasing the amount of at-
tention necessary when examining clusters, and increase
precision, by minimizing the number of irrelevant rules
in any cluster.

Faults aside, we believe we have presented a novel ap-
proach to information extraction that requires less human
preparation and supervision than any system available at
this time. With further research into how to most effec-
tively translate AutoSlog’s rules to MAXIM’s/Rapier’s
format recall can be greatly increased. Similarly,
more work looking into a comprehensive list of extrac-
tion patterns for AutoSlog-TS would be of great bene-
fit. Improved relevancy-rate and ranking functions for
AutoSlog-TS would help to get good rules to the top
of the list.7 As mentioned above, an adequate the-
saurus/ontology would be of the greatest benefit when
it comes to generalization. Also, an improvement on
the representation of the POS-classification-vector would
be helpful. With improvements made in these areas,
MAXIM may prove to be as effective as other systems
available while requiring at most half as much human in-
volvement. This is a big step towards the development of
IE systems practical for real-world, multi-domain use.

References

Mary E. Califf and Raymond J. Mooney. 1997. Rela-
tional Learning of Pattern-Match Rules for Informa-
tion Extraction. In Proceedings of the ACL Workshop
on Natural Language Learning, pages 9-15. AAAI-
Press, Menlo Park, CA.

G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller. 1993. Introduction to WordNet: An
on-line lexical database. Available by ftp to clar-
ity.princeton.edu.

G. Ngai and R. Florian. 2001. Transformation-based
learning in the fast lane. In Proceedings of NAACL’01,
pages 40-47.

E. Riloff. 1993. Automatically Constructing a Dictio-
nary for Information Extraction Tasks. In Proceedings
of the Eleventh National Conference on Artificial Intel-
ligence, pages 811-816. AAAI Press/MIT Press.

E. Riloff. 1996. Automatically Generating Extraction
Patterns from Untagged Text. In Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence, pages 1044-1049. The AAAI Press/MIT Press.

7Although we were able to abandon looking at the ranking
of rules altogether. The clustering was so effective and time-
saving that we sent all of the rules AutoSlog-TS outputted into
the clustering stage and just deleted bad clusters, taking care of
multiple rules at once.

91

