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Abstract

In this paper we present a word sense disam-
biguation method in which ambiguous words
are first disambiguated to senses from an au-
tomatically generated ontology, and from there
mapped to Wordnet senses. We use the ”clus-
tering by committee” algorithm to automati-
cally generate sense clusters given untagged
text. The content of each cluster is used to
map ambiguous words from those clusters to
Wordnet senses. The algorithm does not re-
quire any training data, but we suspect that per-
formance could be improved by supplementing
the text to be disambiguated with untagged text
from a similar source. We compare our algo-
rithm to a similar disambiguation scheme that
does not make use of automatically generated
senses, as well as too an intermediate algorithm
that makes use of the automatically generated
semantic categories, but does not limit itself to
the actual sense clusters. While what results we
were able to gather show that the direct disam-
biguator outperforms our other two algorithms,
there are a number of reasons not to give up
hope in the approach.

1 Introduction

Word sense disambiguation algorithms are valuable be-
cause there are a number of tasks, such as machine trans-
lation and information extraction, for which being able
to perform effective word sense disambiguation is help-
ful or even necessary. In order to fully define the task
of word sense disambiguation (WSD), we need to know
the set of senses associated with a given word. What set
of senses ought to be associated with any word almost
certainly depends on the context we are working in. In
the case of automatic translation from English to another

language, the best sense set for each word should be influ-
enced by the set of translations of that word into the tar-
get language. Translation between distant languages such
as English and Inuit might require much finer sense dis-
ambiguation than would be needed when going between
related languages such as English and German.

WSD becomes a much more tractable problem when
we have some understanding of the semantics of the
senses that we are disambiguating. For this reason word
sense disambiguation experiments are usually do assum-
ing the sense sets of large ontologies such as Wordnet.
Using Wordnet senses gives researchers access to infor-
mation regarding the semantic relationships of the senses
of deferent words, and many WSD algorithms rely on
knowledge of these relationships. Using Wordnet senses
may also make the act of sense disambiguation more use-
ful. For example, an information extraction algorithm
may take advantage of the semantic content implied by
Wordnet senses.

However, there are a number of reasons why Word-
net might not be the ideal ontology for any given task.
If we try to use Wordnet in an information retrieval task
we may find that important technical terms are missing
(O’Sullivan, 1995). If we try to use Wordnet for machine
translation tasks, we may find that the sense distinctions
are too fine. In a perfect world, we would have a sep-
arate ontology specifically tailored for each task. How-
ever, compiling ontologies tends to be very difficult, and
so Wordnet is still the de facto standard for most WSD
experiments.

Naturally there is a demand for algorithms that can
automatically infer ontologies from text, thus providing
researchers with an infinite set of viable alternatives to
Wordnet. While no current automatically generated on-
tology can compete with Wordnet’s fine sense distinc-
tions, Pantel and Lin (2002) present an algorithm capable
of generative sense groups of a quality similar to those in
Roget’s thesaurus (2002). Unlike Wordnet, this automati-
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cally generated ontology has no hierarchical information,
instead it simply provides groups of related words senses.

In this paper we present and algorithm which auto-
matically generates an ontology given untagged text, and
then disambiguates that text into the senses of the gener-
ated ontology. Thus we hope to provide researchers with
a context sensitive alternative to Wordnet based disam-
biguation. We also outline a method for converting our
senses to Wordnet senses. This allows us to disambiguate
text to Wordnet senses by first disambiguating to the auto-
matically generated senses, and then mapping the results
to Wordnet. Because we expect the automatically gener-
ated sense clusters to be coarser than those of Wordnet,
and because the act of generating the senses leaves our
algorithm with access to extra information regarding the
ambiguous senses, we expect that disambiguating to the
automatically generated senses will be easy.

There are ways in which our method of disambiguating
to Wordnet senses might have advantages over more di-
rect approaches. Because the senses used by our system
are inferred from the text to be disambiguated, we can
expect to avoid confusion caused by senses that never ap-
pear in our text. Additionally, our system has the advan-
tage of requiring no tagged training data. Mapping the
automatically generated senses to Wordnet senses may
be complicated by the fact that the generated senses are
coarser than Wordnet’s, however, we expect that the type
mistakes realized because of this to be similar to those
mistakes that a human would make when tagging text
with the often frustratingly fine Wordnet senses.

2 Related Work

Lin (1994) introduced PRINCIPAR, a broad coverage
English parser that works using a message passing model.
Among other things, PRINCIPAR can be made to output
a set of ”dependency triples” given any sentence. Recent
work done using MiniPar, PRINCIPAR’s publicly avail-
able successor, has shown that these dependency triples
prove quite useful in the context of a number of different
tasks.

Lin (1997) introduces an algorithm for word sense dis-
ambiguation based on information from MiniPar’s depen-
dency triples.

Lin (1998) includes an excellent articulation of the
means through which the syntactic information repre-
sented by the dependency triples can be used to infer
semantic knowledge. Papers such as our own and Pan-
tel and Lin (2002) tend to rush their descriptions of the
methods first outlined in this paper, and readers trying
to implement our algorithms for themselves will be well
served by referring back to it.

Pantel and Lin (2002) presents an algorithm in which
the information from the dependency triples is used to

automatically generate sense categories. The same pa-
per also proposes a method for evaluating the similarity
between sense categories and Wordnet. Using their own
similarity measure, Pantel and Lin found that the cate-
gories they created automatically were more similar to
Wordnet than Roget’s thesaurus.

3 Methods

3.1 Automatic sense clustering

In order to generate our ontology we have implemented
the method described in Pantel (2002). The starting point
of Pantel’s algorithm is the publicity available parser
MiniPar. For each sentence in our corpus, we use MiniPar
to generate a parse tree, and then from that tree infer a set
of dependency triples. Each dependency triple specifies
two words and the syntactic relationship between them.
For example, one of the triples generated by the sentence
”Bob drinks the wine” is [drink, verb/direct object, wine].
We call the construct [drink, verb/direct object,*] a ”fea-
ture”. The frequency of a feature for a given word w is de-
fined as the number of times that we see that feature with
w filling in the wildcard slot. Thus, if we see ”Bob drinks
the wine” in our corpus, one of the frequencies that we
increment is F[drink,verb/directobject,∗](wine). The fre-
quency of all features that ever appear with a given word
define that word’s frequency vector 1.

In order to quickly compile frequency information for
a large set of sentences, we use a number of sorted as-
sociative containers (STL maps)2. We use a map from
word-feature pairs to integers to represent a sparse ma-
trix that holds the frequencies of any word/feature pair.
We also use maps from strings to integers to store the
frequencies of each feature and word. We use yet more
maps, these from strings to vectors of strings, to store
lists of the features associated with every word, and con-
versely the words associated with every feature. The
map based representation of our data allows us to quickly
update frequency information given new sets of depen-
dency triples; O(log(n)) string comparisons are required
to lookup a value given the string key, and the data struc-
tures are such that it is easy to insert information corre-
sponding to novel words and features. But once all the
triples have been processed, our map based data structure
becomes needlessly inefficient. Therefore we convert as
much of the data as possible to an indexed representation,
assigning each word and feature an integer label, and col-
lapsing many of our maps to vectors (dropping lookup
time from O(log(n)) to O(1), and doing away with the

1The concept of feature frequency is explained with more
detail in Lin (1998), and with less detail in Pantel (2002).

2In order to properly analyze the space/time efficiency of our
algorithm, it need to be noted that the version of STL that we
use implements maps using red-black binary search trees.
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need for expensive string comparisons)3.
The basic assumption at the heart of Pantel’s algorithm

is that semantic similarity will be reflected in the syntac-
tic information inherent in the feature frequency vectors.
In other words, if we see [drink, verb/direct object, wine]
a lot, and [drink, verb/direct object, beer] a lot, then there
is a good chance that beer and wine fit into the same se-
mantic category. We now outline a semantic similarity
measure which reflects this assumption.

For each word we compute its mutual information with
every feature, and store that information in a sparse vec-
tor. The equation for mutual information given a word w
and a feature f is

miw,c =
Fc(w)

N∑
i
Fi(w)

N ×
∑

i
Fi(w)

N

As you can see from the equation, the values that
were stored when compiling frequency information were
picked to make calculating each word’s mutual informa-
tion vector as fast as possible.

Following the suggestion in Pantel (2002), we multiply
our mutual information score by the following discount-
ing factor:

Fc(w)
Fc(w) + 1

× min(
∑

i Fi(w),
∑

i Fi(w))
min(

∑
i Fi(w),

∑
i Fi(w)) + 1

The theory motivating this discounting factor was not
well explained in Pantel (2002), but because we admire
his results we follow Pantel’s lead.

We define the similarity between two words as the co-
sine similarity of the associated mutual information vec-
tors.

In order to perform the main clustering algorithm, we
create a matrix that caches the similarity between any
two words. Taking advantage of the sparse nature of
the dataset, we only calculate the similarity of words
which share a common feature (preliminary tests show
that this strategy allows us to compute the similarity ma-
trix roughly an order of magnitude faster than we could
using the naive approach). Had our similarity matrix cal-
culations gone too slowly, we could have further speed
up the process by applying the ”salient feature” heuris-
tic described in Pantel (2002), however never applied the
algorithm to a situation in which the extra speed was nec-
essary. Pantel refers to the processes of setting up the
similarity matrix as ”phase 1” of the clustering algorithm.

In ”phase 2”, the words’ mutual information vectors
are clustered using the ”clustering by committee” (CBC)

3Our source code is available for the benefit of readers inter-
ested in finding out more about the details of the data structures
used.

algorithm. The goal of CBC is to create large tight clus-
ters with the additional goal that the centroids of each
cluster not be too similar to each other.

The CBC algorithm is recursive. Given a set of ele-
ments E, each e ∈ E contributes a potential cluster com-
posed of between 3 and 12 of the elements most simi-
lar to e. Potential clusters are assigned a score equal to
the product of their size and their average pairwise sim-
ilarly. Ideally, we would like to find the highest scoring
subset of the set of e’s twelve most similar elements and
use it as e’s potential cluster. Unfortunately, performing
an exhaustive search of all possible subsets is computa-
tionally expensive. Performing hierarchical average-link
clustering seems like one reasonable way to attack the
problem, but we suspected that a straightforward greedy
search might perform better in practice. Thus our own
implementation of CBC uses the greedy search4.

Potential clusters are sorted according to their score.
The sorted list is then traversed, and each potential cluster
is added to the set of committees C (initially empty) on
the condition that its centroid not have a cosine similarity
of more than σ = .35 with any element of C. If C is
empty (which happens in the case that we were unable to
create any valid potential clusters in the previous step),
we return C.

We then define the set of residual elements R as all
e such that e does not have a similarity of at least θ =
.075 with any of the committee centroids. Finally the
algorithm is recursively called replacing E with R, and
we return the union of C and the result.

The algorithms now proceeds to phase 3. Once com-
mittees have been created, we generate our ontology by
assigning each word to some number of committees; each
committee is taken to represent a semantic category. The
assignment algorithm works as follows: for each word
w, we first select the top 200 committees with centroids
most similar to w’s mutual information vector. Of those,
we consider the committee with centroid most similar to
w to be w’s first sense. Then we remove the common
features of w and the centroid from w’s mutual informa-
tion vector. Now we look for another committee to add
w to that has a centroid similar to the new w vector. If
at any time the similarity between w and the most simi-
lar remaining cluster falls bellow some threshold (in our
case .05), we stop assigning senses to w. This method
allows us to assign words to clusters that represent very
rare senses of that word. Unfortunately, the algorithm is
very slow, as the similarity of each cluster to the word
vector must be recalculated after every step through the
loop.

4It is unclear what method Pantel (2002) uses to create the
potential clusters, our initial interpretation of the paper lead us
to believe that Pantel had used the hierarchical approach, but we
are no longer certain of this.
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There are a couple of things worth noting about the
sense generating algorithm. The committees that a word
is assigned to in phase 3 have no immediate connection
to the committees that the word helped define, and every
word will likely be assigned to some committees that it
had played no part is creating. Note also that there is no
guarantee a word will be assigned even a single sense.

Given the committees representing its senses, disam-
biguating a given instance of a word is simple. We calcu-
late the implied feature vector of the instance of the word
as if the word instance were a novel word appearing only
once in the text. We then find the committee with a cen-
troid most similar to that vector, and say that the sense of
the word is the one associated with that committee.

3.2 Disambiguation to Wordnet Senses

Wordnet defines a number of relationships between word
senses. Our algorithms only make use of the hypernym
and hyponym relations. The hypernyms R of word w
are those r for which it is the case that ”w is a kind of
r”. Conversely, the hyponyms of w are the words P such
that ”p is a kind of w” is true. Thus, ’drink’ and ’ine-
briant’ are both hypernyms of a sense of ’wine’, whereas
’sake’ and ’vermouth’ are hyponyms of ’wine’. (Accord-
ing to Wordnet wine is polysemous, ’wine’ can also mean
a shade of dark red).

In order to link sense clusters created by CBC to Word-
net senses we need to decide what Wordnet sense is as-
sociated with every sense of every word in the automati-
cally generated ontology. To do this we search Wordnet
for semantic relatives of each ambiguous word’s senses
in order to find semantically similar words that have a
good chance of exhibiting the syntactic features that CBC
would have picked up on in the course of its sense cluster-
ing. We then find the centroid of that group of words, and
decide what Wordnet sense to associate each word’s CBC
sense with by comparing the centroid of the CBC sense’s
committee with the centroid of the group of similar words
gathered from Wordnet.

As an example, lets say that we some generate the fol-
lowing similarity group for the first sense of wine: {sake,
vermouth, champagne, burgundy}. The CBC cluster that
we will associate with the first sense of wine will be one
based on features that tend to arise around nouns that
specify alcoholic beverages. The similarity group for the
second sense of wine might look something like {yellow,
rose, pink, red}, and thus its centroid vector would be
filled with features that are associated with colors. Note
that if the text that we are using to generate our senses
does not have any instances in which ’wine’ is used to
describe a color, then we could expect that CBC never
added wine to a committee associated with color. In this
case we wouldn’t map any CBC sense to the second sense
of wine (and this is a good thing, as it will force all of our

disambiguations of the noun wine to be correct).
Clearly, our mapping method depends on having a

good way of creating similarity groups for a given sense.
In the case of wine’s first sense (vino), the set of hy-
ponyms is very large, and contains nothing but kinds of
wine. We would expect kinds of wine to turn up in the
same syntactic positions as the word ’wine’ itself, so in
this case using hyponyms as a similarity set is a good
idea. However, the second sense of wine (color), has no
hyponyms. What we want in this case for a similarity set
are the sisters and uncles of the sense, the hyponyms of
the hypernyms of wine (in this case, other kinds of red,
and other kinds of colors).

Using the case of wine as our only example, we might
conclude that the best way to develop a similarity group
for a word sense is to start by collecting its hyponyms,
and if they prove too small a set, expand to sister, uncle,
and cousin words. We want to avoid using words from too
high up in the tree, as ’intoxicant’ (one of the hypernyms
of wine-vino) is not likely to be used in the same sorts of
syntactic contexts as ’wine’.

But now consider the problem of creating a similarity
group for the word ’intoxicant’. Its hyponyms include
things like ’vodka’, which will likely have a very differ-
ent feature vector than ’intoxicant’. The words that we
want to see in a similarity group of ’intoxicant’ are things
like ’barbiturate’, ’inebriant’, and ’sedative’. These are
all sisters of ’intoxicant’.

Because the hyponym favoring approach runs into
problems in the case of high level words such as intox-
icant, we adopt a method for gathering similar words in
which we favor sister words above all else5, and expand
the similarity group to include both daughters and cousin
words if we can’t find enough sisters to make an informa-
tive centroid. Here a similarity group is considered to be
”informative” if it contains 15 words for which we have
gathered frequency information.

One interesting question is whether or not to limit the
allowed members of a similarity group to monosense
words. In the case of wine-color, two of its sister words
are ’burgundy’ and ’claret’, both of which also hyponyms
of wine-vino. This example demonstrates a potential
problem for our algorithm, if we happen to create a sim-
ilarity group containing many polysemous words with a
shared second sense, the similarity group might create a
centroid closer to that second sense than to the one that

5It should be mentioned that the first words added to a sim-
ilarity group are the synonyms. This is a byproduct of the fact
that a word’s first sister is itself. The Wordnet C library returns
its search results in the form of word sets; each set contains
a word sense and all of that sense’s synonyms. Thus the first
search result returned when we look for a word’s sisters con-
tains all of that word’s synonyms. While we do not consider a
word to be part of its own similarity group, we do add all of its
immediate synonyms.
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we were trying to represent. We have experimented with
limiting similarity groups to monosense words, but found
that because most of the words in Wordnet seem to be
polysemous, the monosense restriction cripples our algo-
rithm’s ability to come up with similarity groups of any
significant size.

3.3 Direct and Semi-Direct Wordnet
Disambiguation

We have created a direct disambiguation algorithm to
compare with our algorithm for disambiguation via CBC
senses. Our CBC dependent disambiguation algorithm
works by creating a feature vector for the instance of the
word to be disambiguated, then finding the CBC sense
group closest to that vector, and finally finding the Word-
net similarity group closest to the sense group. The di-
rect algorithm just matches the word instance vector with
the closest Wordnet similarity group. Thus, comparing it
with our CBC algorithm provides a measure of whether
or not mapping to the automatically generated sense is
helping or hurting us.

Similarly, we can modify the CBC dependent algo-
rithm by substituting the entire set of committees gen-
erated in phase 2 for the set of CBC senses associated
with the word. This algorithm allows us to avoid the ex-
pensive computation costs inherent in phase 3. Because
the ”semi-direct” approach has the potential to take ad-
vantage of some of the advantages of using an automati-
cally generated ontology (because we are moving first to
a coarse sense we can hope that our mistakes will be be-
tween senses with similar meanings). However, because
of the large number of potential committees, it is likely
that the vector that we end up matching with the Wordnet
simgroups will be reasonably similar to the vector that we
started with, and for this reason our results should tend to
be more like those from the direct approach than those
achieved using the CBC senses.

3.4 Evaluation Method

We have tested our algorithms using the SEMCOR cor-
pus, our version of which was created by transforming the
tags of the Wordnet 1.6 version of SEMCOR to Wordnet
1.7 senses. We comparing our algorithm’s disambigua-
tion of polysemous nouns and verbs with the SEMCOR’s
stated correct senses. All of our word/feature frequency
statistics are generated from SEMCOR sentences. To
evaluate our performance on a given sentence, we need to
align MiniPar’s parsing of the sentence with the answers
from SEMCOR. This alignment process is necessarily
imperfect. Sometimes MiniPar incorrectly identifies the
part of speech of a word, and when that happens none of
our algorithms have a chance of correctly disambiguating
it. In the case that MiniPar incorrectly claims that a word
which is not a verb or a noun is one, the extra word makes

sentence alignment difficult. We have implemented some
fairly simple algorithms that attempt to identify and throw
out all such cases. MiniPar will also group words that it
feels denote a single concept. For example, ”Fulton Su-
perior Court Judge” is stored as two words in SEMCOR,
but MiniPar treats it is as a single word. In order to make
sentence alignment as easy as possible, and avoid many
of these kinds of cases, we ignore all proper nouns. Once
sentence alignment is complete, we are left with a set of
nouns and verbs, their correct Wordnet senses as provided
by SEMCOR, and their MiniPar parse tree indices. Those
indices are used to gather the related dependency triples,
which in turn are feed to our various disambiguation al-
gorithms.

4 Results

4.1 Wordnet Similarity Groups

All of our disambiguation algorithms rely on the Word-
net simgroups. However, a brief investigation of the sim-
ilarity groups returned by our program demonstrate some
worrisome trends. For example, we sometimes fail to find
large similarity groups for common senses of words. The
simgroup for the first sense of the verb ”know” (to be
cognizant of information) is:
realize,recognise, recognize.
On the other hand, obscure senses of words can turn
up much larger similarity groups. The biblical sense of
”know”, has the similarity group:
bang, bed, breed, do it, fuck, jazz, love, make out, mount,
nick, ride, screw, serve, service, tread.
Notice that as feared, many of the words in the similar-
ity group are polysemous, representing relatively obscure
senses of other words.

Another nasty case comes up when an obscure sense
of a word has a meaning very close to that of a more
common sense. For example, the 11th sense of ”know”
(to perceive as familiar), has a similarity group very close
to that of the first sense:
recognise recognize refresh review.

4.2 Disambiguation Performance

For each of the disambiguation methods that we tested:
direct, CBC sense based, and semi-direct, we gathered
a number of statistics. We store the number of polyse-
mous words which were of sense 1. This allows us to
compare our results to the baseline method of assigning
each word to its most common sense. We also record the
performance of a disambiguator that simply selects a ran-
dom valid Wordnet sense to assign to each word. Finally
we store performance for a third baseline disambiguator,
one that uses a ”qualified random” approach. The idea
here is that we select randomly between the valid dis-
ambiguators for which we can find non-empty similarity
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groups. Such a disambiguator is useful for figuring out
how much our success is being influenced by the fact that
some word senses are ruled out in the similarity group
generation phase.

Because the algorithms used were extremely memory
greedy, unix tended to kill the processes after they had
run for about an hour. However, one hour was enough
time for our experiments to collect a reasonable amount
of data, though the trials varied slightly in length depend-
ing on what other processes were competing for memory
space.

Properly summarizing our results is made more
complicated by the problems inherent in word align-
ment. For example, during our evaluation of the direct
disambiguator we successfully aligned 54941 nouns and
verbs. 2715 words were discarded because SEMCOR
and MiniPar disagreed about whether the word was a
noun or a verb, and 8486 more of them were discarded
because they were monosense. This information, along
with performance statistics for the direct disambiguator
and the 3 baseline disambiguators is given in tabular
form below (percentages for monosense words and POS
error are calculated relative to the total number of aligned
words, while percentages for disambiguator performance
are calculated relative to the number of attempted words):

Number of Words Percent
Monosense 8486 15.5
POS error 2715 4.9
Attempted 43740 79.6

Direct Disambiguator 14591 33.3
Random Choice 10082 23.0

Qualified Random 10244 23.4
First Sense 28392 64.9

Here are results for the semi-direct disambiguator.

Number of Words Percent
Monosense 9210 15.3
POS error 3039 5.0
Attempted 47758 76.6

Semi-Direct Dis. 13434 28.1
Random Choice 10941 22.9

Qualified Random 11118 23.3
First Sense 31029 64.9

The CBC based disambiguator often found itself
trying to disambiguate words that had no associated CBC
senses. Thus we recorded compiled two scores for this
disambiguator, one in which we only recorded success
when a CBC senses existed and we used it to successfully
disambiguate the word, and ”augmented” score in which
we had the disambiguator return sense 1 in all cases
where no sense cluster was associated with the word.
We also have data for the precision and recall values of
the CBC disambiguator data, though they don’t fit nicely

into our chart. Recall was 27.2%, and precision was 35%.

Number of Words Percent
Monosense 3570 15.4
POS error 1015 4.4
Attempted 18639 80.3

CBC Dis. (augmented) 10149 54.5
CBC Dis. (pure) 1778 9.5
Random Choice 4447 23.9

Qualified Random 4515 24.2
First Sense 11973 64.2

5 Conclusions

5.1 Wordnet Similarity Groups

All of our algorithms depend heavily on the similarity
groups for the sense of each word. Given the problems
we saw in simgroup generation, it is surprising that any
of our algorithms performed better than chance. In our
future work section we speculate on some ways that the
similarity groups could be improved, and we imagine
that all our algorithms would perform significantly bet-
ter given better similarity groups.

5.2 CBC

The constant terms that we used in our implementation
of CBC were taken from one of Pantel’s later implemen-
tations of the algorithm. There is always a chance that
the algorithm might have performed better given differ-
ent parameters, but in this case it seems more likely that
the problem lies in the size of our corpora. Pantel (2002)
uses a 144 million word corpora to generate the frequency
information provided to CBC, the SEMCOR data that we
used contains slightly under a million words. It is also
worth noticing that the corpora used in Pantel (2002) was
a composition newspaper texts, while the Brown corpus
data that makes up SEMCOR comes from a wide range of
sources, including press releases and a number of differ-
ent fictional genres. The heterogenous character of SEM-
COR probably increased the number of different word
senses used in the text, therefore making the sense clus-
tering task more difficult.

5.3 Comparison of the Algorithms

The most comforting number in the performance statis-
tics is the very low percent of part of speech errors. This
indicates that MiniPar is doing its job reasonably well,
providing a solid foundation for our algorithms to work
off of. The best performance that we ever see comes from
the ”always pick the most common sense” baseline. This
is disheartening, but given the poor quality of the sim-
ilarity groups and the problems we encountered apply-
ing CBC to a dataset as small as SEMCOR, it is impres-
sive that any of our algorithms we do better than random
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chance. The fact that the qualified random disambigua-
tor performs about as well as the random disambiguator
is also heartening, as it implies that the gaps in our sim-
ilarity sets are not making the disambiguation problem
significantly harder or easier. Thus, what success the al-
gorithms do achieve beyond the random baseline is solely
the function of their ability to use the syntactic informa-
tion inherent in the dependency triples to infer semantic
relationships between words.

The direct and semi-direct algorithms both solidly out-
perform random choice, and this gives us cause to hope
that if the issues with similarity group creation could be
worked out, we would be left with a complete system ca-
pable of outperforming the ”most common sense” base-
line.

The results for the CBC based disambiguator look
rather miserable at first glance, as the pure version per-
forms worse than random chance. However, it is worse
noticing that most of the errors are due to the failure
of our application of CBC to create sense cluster, and
that problem is a result of the small dataset size. So
we can hold out hope that given a large corpus to sup-
ply supplementary frequency information, the CBC al-
gorithm might achieve much higher performance. It is
worth noticing that in those cases where it has sense
clusters available to it, the CBC based algorithm has a
precision higher than either of the previous two algo-
rithms. We had hoped that the low precision CBC al-
gorithm could be combined with the highly successful
”most common” baseline. While this project didn’t pan
out (the ”augmented” version of CBC is less effective
than the ”most common” baseline), we can always hope
that given larger corpora and better similarity groups, we
could have achieved better results.

The fact that the direct disambiguator outperforms that
semi-direct disambiguator does not necessarily mean that
the semi-direct disambiguator is in all ways worse than
the direct disambiguator. Remember that one of the ad-
vantages that we hoped to see in the semi-direct disam-
biguator was errors which had a higher tendency to be
mistakes confusing semantically similar senses of a word.
However, we had no way of adjusting our results to take
into account semantic similarity. While unencouraging,
the performance scores alone are insufficient to disprove
our hypotheses.

6 Future Work

There are a couple of ways in which the generation of
simgroups for Wordnet senses could be improved. At
the moment, we have only experimented with methods
for generating senses which have a fixed ”profile”. That
is to say, all word senses prefer to have their similarity
groups filled with some predefined set of relatives. As
we have implemented our algorithm, sisters are preferred

over everything else, first order children over cousins, and
the most distant allowed relatives are third order cousins.
One could imagine changing the set of preferred relations
in hopes of getting better results. However, it seems to
us that the right thing to do would be to build an adap-
tive algorithm that first inferred a word’s position in the
synsnet, and then used that information to define the ap-
propriate profile. Designing such an algorithm would be
a reasonably large project, we would attack the issue by
coming up with a loose parametrization for a family of
such adaptive algorithms, and searching that parameter
space for the values that maximized the performance of
our direct disambiguator.

One of the problems that we observed in our similarity
groups was the tendency for rare senses of a word to have
simgroups very similar to those of much more common
senses. Wordnet contains sense frequency information
for each of a word’s senses, and we would imagine that
our disambiguation methods could be improved by taking
advantage of that information when mapping a word in-
stance vector to a Wordnet simgroup; the algorithm could
be designed to only return a rare sense in the case that the
match was very good, other wise a more common sense
of the word would be preferred.

In the course of implementing the CBC algorithm, we
saw a couple of ways in which it might be interesting
to modify the algorithm. For example, in phase 3, CBC
completely removes feature elements included in the cen-
troid of a matched committee. However, it might be more
reasonable to subtract the centroid from the word vec-
tor, then set all the negative terms to 0 (we thought this
seemed like a better way of defining the ”residue” of a
vector). We also suspected that it might be interesting to
enforce the ”distance from all other committees” restric-
tion in phase 2 of the algorithm relative to all previously
generated committees, instead of just those committees
generated in that iteratation of the algorithm. Both of
these modifications to CBC would be easy to implement,
and we would like to see how these changes to the algo-
rithm would effect both the generated senses clusters and
the performance of our disambiguation algorithms.

If the problems hampering our system could be over-
come, it would be interesting to compare our results to
those achieved by the disambiguator presented in Lin
(1997). It represents another ”direct approach” that
works on principles rather different that those that we
used, though like our own algorithms functions based
only the dependency triple information.

It is interesting to note that unlike Wordnet, the on-
tology generated in Pantel (2002) had high coverage of
proper nouns, which could make it more suitable for MT
tasks. Al-Onaizan (2000) describes a case in which being
able to guess whether an unknown proper noun is more
likely naming a town or a militia group can improve MT
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performance. We did not test the performance of our dis-
ambiguators on proper nouns, though the only thing that
prevented us from doing so was a set of relatively minor
technical concerns involving word alignment. If those
concerns were overcome, it would be very interesting to
see how our algorithms performed in the limited case of
proper noun disambiguation.

If we could prove that the CBC based disambiguation
system was making different sorts of mistakes than the di-
rect disambiguation system, it would almost certainly be
worth trying to create a hybrid model in hopes of com-
bining the advantages of both approaches. Such a system
could be implemented by a voting algorithm as in Flo-
rian and Wicentowski (2002). It also worth considering
ways in which CBC could be modified to produce clus-
ters that are more appropriate for mapping to Wordnet
senses. One obvious modification on the current system
would be to repeatedly run CBC on SEMCOR in order
to find the similarity thresholds for sense clusters that im-
ply sense distinctions most like Wordnet’s. If we found
that the CBC algorithm was lumping two common Word-
net senses together, we would try increasing the degree to
which CBC demanded tight clusters.

Another idea would be to generate our ontology using a
clustering algorithm in which sense clusters are initially
seeded in a way that reflects Wordnet senses. The sim-
plest way to do this would be to run a k-means clustering
algorithm with initial clusters created from Wordnet sim-
groups. One might try to incorporate some of the ideas of
CBC into such an algorithm by forcing clusters to have a
certain degree of difference from each other.

What we have done in our experiments is to measure
the extent to which disambiguations using CBC senses
clusters can be effectively mapped to disambiguations for
Wordnet senses. However, it might be interesting to de-
sign an experiment that tries to go the other way: we
could run an off the shelf Wordnet disambiguation al-
gorithm and then map the results to sense tags in the
automatically generated ontology. If Wordnet-to-CBC
worked well, but CBC-to-Wordnet worked less well, then
we would be able to speculate that CBC was creating
senses using a notion of semantics similar to Wordnet’s,
but with uniformly coarser sense distinctions. How-
ever, if Wordnet-to-CBC worked less well than CBC-to-
Wordnet we might start to wonder if Wordnet was miss-
ing some interesting relationships between words that
CBC was somehow picking up on (given the results in
Pantel (2002) it seems likely that this wold be the case
for proper nouns).

One of our hypotheses was that the sorts of mistakes
that might be made by our system would be the result
of confusion between two similar senses of a word. We
further hypothesized that a human attempting to disam-
biguate words to Wordnet senses would be likely to make

mistakes on the same cases that give our system the most
trouble. It would be very interesting if these hypothe-
ses were true, however we lack the funding to properly
test them. If we had a couple of graduate students at our
disposal, we could set them on the task of hand tagging
chunks of SEMCOR. Then we could directly compare the
humans’ errors with our system’s, as well as with other
more direct WSD systems. Instead of merely paying at-
tention to overall correctness, we would attempt to de-
termine, as in Pedersen (2002), which cases were found
most difficult by which systems, and whether or not our
system made mistakes that were more ”human-like” than
those of the other statistical systems. If gradstudents
proved to be unavailable, a large amount of word aligned
text from different languages could be used as in Chugur
and Gonzalo (2002) to develop a notion of sense similar-
ity. Our hypothesis would be supported if most of our
system’s errors came from labelings with high similarity
to the proper label, while a more conventional system ex-
hibited errors with varied similarity.
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