
Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

Part Of Speech Tagging Using A Hybrid System

Sean Finney
Swarthmore College

finney@cs.swarthmore.edu

Mark Angelillo
Swarthmore College

mark@cs.swarthmore.edu

Abstract

A procedure is proposed for tagging part of
speech using a hybrid system that consists of
a statistical based rule finder and a genetic al-
gorithm which decides how to use those rules.
This procedure will try to improve upon an al-
ready very good method of part of speech tag-
ging.

1 Introduction

The tagging of corpora is an important issue that has been
addressed frequently in computational linguistics for dif-
ferent types of tags. Transformation-Based Learning
(Brill, 1995) is a successful statistical method of tagging a
corpus. It has been useful in part of speech tagging, word
sense disambiguation, and parsing among other things.
This paper describes a hybrid method for tagging part
of speech. The method employs an implementation of
Brill’s Transformation-Based Learning (TBL) as the sta-
tistical part of the system, and a Genetic Algorithm which
tries to modify the transformation ruleset in a way that
will produce better results.

Part of speech taggers are very useful in modern Natu-
ral Language Processing, and have potential applications
in machine translation, speech recognition, and informa-
tion retrieval. They are usually used as a first step on a
block of text, producing a tagged corpus that can then
be worked with. Of course, the better the tagger is, the
more accurate overall results will be. While TBL is a
very successful part of speech tagger, it does still create
some errors. It might be possible to tag a corpus perfectly,
and it might be possible to use TBL, slightly modified, to
acheive that goal.

During Transformation-Based Learning, transforma-
tion rules are learned which will correct errors in an in-
correctly tagged corpus. The incorrectly tagged corpus is
compared to the truth in order to learn these rules. Once

cond 1 transform x

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 4

cond 2

transform x

transform z

transform w

transform x

transform x

transform z

Figure 1: A Sample Ruleset for TBL

the rules are learned, they are applied in an order deter-
mined by a greedy search. The rules are applied to the
corpus to see how many errors they correct. The rule that
corrects the most errors is chosen as the next rule in the
ruleset. This process is inherently shortsighted.

The issue here is the greedy search. As rules are ap-
plied, the number of errors corrected in the text is always
the largest. However, the transformation rules do tend to
create errors, even as they are fixing errors. This process
assumes that those errors are unimportant, or that they
will be corrected later on in the ruleset. This assumption
is made by TBL, and we are hoping to fix this potential
problem. With a careful reordering of the rules, it might
be possible to create a tagged corpus without any errors.

2 Related Work

Other workers in the field have produced non-statistical
systems to solve common NLP problems. There appears

23

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

to be a number of methods that produce varying results.
The Net-Tagger system (Schmid, 1994) used a neural net-
work as its backbone, and was able to perform as well as
a trigram-based tagger.

A group working on a hybrid neural network tagger for
Thai (et al., 2000) was able to get very good results on a
relatively small corpus. They explain that while it is easy
to find corpora for English, languages like Thai are less
likely to have corpora on the order of 1,000,000 words.
The hybrid rule-based and neural network system they
used was able to reach an accuracy of 95.5(22,311 am-
biguous word) corpus. It seems that the strengths of rule-
based statistical and linguistic methods work to counter-
act the inadequacies of a system like a neural network,
and vice versa. It seems logical to combine the learning
capabilities of an AI system with the context based rule
creation capabilities of a statistical system.

3 Genetic Algorithms

The Genetic Algorithm (GA) takes its cue directly from
modern genetic theory. This method entails taking a
problem and representing it as a set of individual chro-
mosomes in a population. Each chromosome is a string
of bits. The GA will go through many generations of
chromosomes. One generation consists of a fitness se-
lection to decide which chromosomes can reproduce, re-
production itself, and finally a chance for post reproduc-
tion defects. The GA generates successive populations
of chromosomes by taking two parent chromosomes se-
lected by a monte carlo approach and applying the basic
genetic reproduction function to them. The chromosomes
are ranked by a fitness function specific to the problem.
The monte carlo approach assures that the two best chro-
mosomes are not always chosen.

The reproduction function is crossover, in which two
chromosome parents are sliced into two pieces (See Fig-
ure 5 in the appendix). The pieces each take one of the
pieces from the other parent. The resulting two chromo-
some children have part of each of the parents1.

After reproduction, there is a chance that mutation will
occur, in which some part of the child chromosome is
randomly changed (see Figure 6 in the appendix).

When selection, reproduction, and mutation have fin-
ished, the generation is completed and the process starts
again. The genetic algorithm is a good way to try many
probable solutions to a problem. After a few generations
of a genetic search, it is likely that the solution generated
will already be very good.

Text

TBL

 Ruleset
Compilable
Chromosome

GA

Figure 2: A Sample Flowchart for Our System

4 Representing the Problem

Given that we are trying to produce the optimal set of
rules, and the order in which to use them, our chromo-
somes are best represented as a set of rules in order. The
first parent from which all successive generations grow is
collected directly from TBL. We let TBL find the rules
that it finds useful, trim that set of rules to a satisfactory
length, and run that through as the first parent of our GA.

One issue that we ran across was how we would repre-
sent each TBL rule as a bitstring. A rule in TBL consists
of a series of predicates acting on the words before and
after the word in question, and a trigger that changes the
tagged part of speech on the word if all of the predicates
are met. A predicate can be either a matching of a part of
speech, or one of a number of string matching rules. The
first of these is a pre or postfix matcher. The second adds
a pre or postfix and checks to see if the resulting string is
a separate word. The third removes a pre or postfix, and
checks if the resulting string is a word. The fourth checks
to see if a certain string is contained within the word. The
fifth checks if the word in question appears to the left or
right of a specified word in a long list of bigrams.

TBL Rule i TBL Rule i+1

...

Pred#i,0 Pred#i,n Action#i

Figure 3: A sample TBL ruleset embbedded in a chromo-
some

In our actual implementation, every C structure con-

1an exception is where the crossover consists of an entire
chromosome from one parent and none from the other

24

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

index lexical meaning contextual meaning
1 type of predicate type of predicate
2 extra info for predi-

cate type
whether or not the
predicate is a range

3 not used if a range, the
start and stopping
bounds

4 index into a ta-
ble of observed
strings/POS’s

index into a ta-
ble of observed
strings/POS’s

Table 1: Meaning of chromosome values to a predicate

tained member variables that could be easily converted to
and from a genetic bitstring. In our population of individ-
ual chromosomes, each chromosome represented a lexi-
cal and contextual ruleset, such that any individual could
be output via a helper function into the files necessary for
fnTBL to run.

Each chromosome is first divided in half, with one half
representing the lexical portion (prefixes, suffixes, et c.)
of the fnTBL tagging rules, and the other representing the
contextual (ngram) portion of the rules.

Both of these halves are then divided into several
smaller parts of equal length, each part representing a sin-
gle rule (see Figure 3). If the reader will recall, a rule
consists of a series of predicates and a resulting action to
execute if the predicates are all matching. The action is an
integer which is computed via a modulo operation against
the number of possible actions, such that it will always
evaluate to the value of an enumerated part of speech.

A predicate is in fact one of two kinds of data struc-
tures, depending on whether it is found in the lexical or in
the contextual portion of the gene sequence. They are of
the same length (16 bytes), but but each 4 byte sequence
may have a different meaning (See Table 1).

Our genetic ”fitness” heuristic takes a chromosome,
and converts it into a structure that conforms to the heirar-
chy discussed above. this structure is then used to output
the necessary data files, which are then used to determine
the error rate, which is then returned as the fitness to the
genetic algorithm.

5 The Process

Our GA process works in series with TBL. We start with
a corpus which gets passed through TBL, but only far
enough to output the ruleset to a file. We then run a script
that generates a compilable chromosome representation
from the TBL ruleset file. That chromosome representa-
tion is then passed to a GA program written in C by Lisa
Meeden of the Swarthmore College Computer Science
Department, and severely hacked by us. In the original
implementation, a chromome ”bitstring” was an array of

integers, where each integer was set to either 1 or 0. The
author hopes that the reader can understand how this will
become prohibitively large for any kind of complex repre-
sentation. We therefore modified Meeden’s code to have
each integer be a random value, and therefore saved the
memory resources required by this program by a factor
of 322.

The GA then loops on itself for as many generations as
we deem necessary. The final ruleset chromosome is then
converted back into a file in the form that TBL likes, and
the results are also written to a file.

The TBL implementation we used is Florian and
Ngai’s fnTBL(Florian and Ngai, 2001). We worked hard
to integrate our scripts and code with their implementa-
tion of TBL, which trying to keep their code as intact as
possible.

As it is implemented, fnTBL has two parts, the first
being a script that trains the ruleset, and the second be-
ing the ruleset applicator. It was fortunate for us that
fnTBL was broken up in this way, because we were able
to take the learned ruleset and run it through our GA, pro-
ducing another ruleset which could then be given to the
fnTBL rule applicator. The results are placed in another
file which can then be tested for accuracy.

6 Annealing the Mutation Rate

In order to make sure that we would get enough varia-
tion in our populations , we used a bit of the methods of
annealing on our mutation rate. For the first few gener-
ations of running, the mutation rate is very high so that
the children will show a lot of difference from the par-
ents. Over time, we bring this mutation rate down so we
converge on a good solution without jumping around as
much. We feel that this method further reduces the risk
of the solution being the greedy path to the goal.

One potential point of contention arises here. It is im-
possible for us to guess what the best place to begin our
mutation rate is. We also need to pick the decay function,
and we cannot choose whether a linear or logarithmic or
exponential decay function would be better without try-
ing them all first. We did speculate that the rate should
start high and follow an exponential decay function. We
want the chaos in the system to start high and come down
fast, so the system has a lot of time to work out all of the
chaos that was introduced in the first few generations of
the GA. We chose to try a linear decay first, with a high
starting mutation rate. The idea here is that much chaos
over a long period of time will produce a ruleset that is
radically different from the parent.

25

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

Figure 4: If only we had a month of cpu time...

7 Results and Discussion

After 100 generations without an annealed mutation rate,
we had a success rate of 84.45%. When compared to
fnTBL’s 94.57% success rate, we actually took a loss
on the performance of the system. This does make
sense, seeing as how the mutation rate was very low,
about 0.001. Essentially the only process being run was
crossover, and when a set of rules is crossed over, more
that likely the better rules at the beginning of the ruleset
will be moved to the end. It certainly does not make sense
to run the less successful rules first.

We experienced much better results once we annealed
the mutation rate and ran the GA for 100 generations.
Our success rate on this run was 89.96better results. One
problem with this approach was the way the mutation rate
was annealed, a strictly linear decay. We hope with an
exponential decay rate, our results will be even better.

Another run with an annealed mutation rate used a
starting mutation rate of .1 instead of the .8 used in the
result above. 100 generations produced a success rate of
89.7even reached the level acheived already by TBL. The
inherent nature of the GA approach is to need many gen-
erations, and a large population size. Unfortuantely, these
runs both took close to 8 hours to complete. We believe
that when taken further, and with more time and genera-
tions, the hybrid approach could allow for a continued in-
crease across the board in NLP problems. With our min-
imal settings, the system took 8 hours to run. Increasing
the population size and the generations would increase
the running time significantly on today’s computers. We
hope that some day this work can be tested on a parallel
or distributed system powerful enough to handle the large
memory and processor requirements.

2there are 32 bits in an integer, so to represent an integer as
a ”bitstring” in Meeden’s code would require 32 real integers!

8 Future Work

The original goal of the project was to try to improve TBL
using artificially intelligent techniques. We feel that we
have adhered to that goal. We are of the mind that lan-
guage and intelligence are very closely related, and that
in order for us to create systems that can use language
effectively, we will first need to have a better model of
intelligence. While the tools we have today in the AI
field are not powerful enough to be considered fully in-
telligent, they can be used to approximate what we might
be able to accomplish in years to come.

Work from others such as (Yang, 1999) tries to concen-
trate on the modelling of development, and argues that a
child’s developing language pattern cannot be described
by any adult’s grammar. Yang also states that develop-
ment is a gradual process, and cannot be described by
any abrupt or binary changes. The same sort of develop-
mental thinking is encompassed by the AI approach, with
a gradual (albeit hopefully faster) learning process based
on human intelligence itself.

As far as our project goes, there are many variables
that we did not have the time to explore. Firstly, our fit-
ness function for the GA was simply based upon the per-
centage correct. Another possible idea would be to have
a fitness function which takes the number of errors, ei-
ther present or created by the ruleset, into account. One
way to do this would be to return a fitness of the number
of correctly tagged words minus a fraction of the errors.
This would discourage the GA from having and causing
errors.

There are also variables associated with TBL for which
we chose values that made sense to us. The number of
rules in a ruleset and the number of predicates in a rule
could both be modified by a weight learning program like
a neural network which would watch over the entire pro-
cess. This way, we would have a more focused idea of
what the optimal size of these variables would be.

9 Acknowledgements

We would like to acknowledge the efforts of our professor
Rich Wicentowski of the Swarthmore College CS Dept.
His encouragement and feedback were invaluable to our
project.

Thanks also go out to Lisa Meeden of the Swarthmore
College CS Dept. for her genetic algorithm code. Our
task would have been much more complicated had we
needed to impliment a genetic search ourselves.

We would also like to extend our gratitude to Florian
and Ngai for their contribution to our project with fnTBL.
Without regard to the countless days, nights, and fol-
lowing mornings spent trying to get fnTBL to work for
us, the task at hand would have been prohibitively more
complicated had we needed to implement TBL ourselves.

26

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

Thanks!
Finally we would like to thank the entire robot lab crew

for being friends comrades, and cohorts throughout the
entire process. Konane!

References

Eric Brill. 1995. Transformation-based Error-driven
Learning and Natural Language Processing: A Case
Study in Part of Speech Tagging.

Qing Ma et al. 2000. Hybrid Neuro and Rule-Based Part
of Speech Taggers. Communication Research Labora-
tory, Iwaoka, Japan.

Radu Florian and Grace Ngai. 2001. Fast
Transofmration-Based Learning Toolkit. Johns Hop-
kins University.

Helmut Schmid. 1994. Part of Speech Tagging with Neu-
ral Networks. Institute for Computational Linguistics,
Stuttgart, Germany.

Charles D. Yang. 1999. A Selectionist Theory of Lan-
guage Acquisition. Massachusetts Institute of Tech-
nology, Cambridge, MA.

27

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

A Appendix

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 2

transform x

transform z

transform w

transform x

transform y

transform z

cond 1 transform z

cond 1

cond 1 transform x

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 4

cond 2

transform x

transform z

transform w

transform x

transform x

transform z

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 2

transform z

transform w

transform x

transform y

transform z

cond 1 transform x

cond 1

transform z

cond 1 transform z

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 4

cond 2

transform x

transform z

transform w

transform x

transform x

transform z

(CROSSOVER)

Figure 5: An example of a crossover operation

28

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

cond 1 transform x

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 4

cond 2

transform x

transform z

transform w

transform x

transform x

transform z

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 2

transform x

transform z

transform w

transform x

transform y

transform z

cond 1 transform z

cond 1

(MUTATION)

Figure 6: An example of a mutation operation

29

