Using Semantic Information from Neural Networks to Detect
Context-Sensitive Spelling Errors

Julie Corder
Swarthmore College CS97
Spring 2003

Abstract

This paper proposes a means of using the internal representations
of an artificial neural network to represent the semantic contexts in
which a word can appear. Once the network has been trained, its
hidden layer activations are recorded as a representation of the
average context in which a word can appear. This context can then
be compared to the contexts in which a word appears in novel text
to detect context-sensitive spelling errors. While no significant
results are found in the trials described here, several modifications
of the system are proposed that might prove promising in future
work.

Introduction

Context sensitive spelling correction is the process of identifying words in written
text that are spelled correctly but are used in the wrong context. Kukich (1992)
discusses various studies that show that between 25% and 40% of spelling
errors in typed text result in legal words. This category of spelling errors includes
word pairs that are easily mistyped (e.g. “form” and “from”), homophones (e.g.
“they’re”, “their” and “there”) and words with similar usages (e.g. “affect” and
“effect”). Because all of these errors result in words that are valid, an approach
that relies on just a dictionary look-up process will not detect them as spelling
errors. Further, Atwell and Elliott [1987] found that 20% to 38% of errors in texts
from a variety of sources resulted in valid words that did not result in local
syntactic errors. Since dictionary- and syntax-based approaches are not able to
detect most context-sensitive spelling errors, semantic clues must be taken into
account to determine if the correct word is being used in a given context.

Previous Work

Instead of relying on a comparison to a dictionary of valid words, researchers
interested in context sensitive spelling correction must find ways to represent the
semantic context in which a word occurs to determine if it is spelled correctly.
This approach may be as simple as calculating statistical probabilities of words
appearing in certain n-grams, or they may involve greater syntactic and semantic
analysis of a corpus. Jones and Martin [1997] report accuracy rates of 56% to
94% for various sets of confusable words using Latent Semantic Analysis.
Granger [1983], Ramshaw [1989] and others have used expectation-based
techniques. Their systems maintain a list of words that they expect to see next in

16

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 16-22
Computer Science Department, Swarthmore College



a corpus based on semantic, syntactic, and pragmatic information in the text. If
the next word that appears is not on the list of words that were expected, it is
marked as a spelling error. In this way, the systems can both detect spelling
errors and learn the meaning of new words (by comparing to the meanings of the
expected words when a novel word appears).

In all of these cases, though, the researcher must specify the level of information
that is relevant to the task. Jones and Martin [1997], for example, specifically tell
their system to look at a window of seven words before or after the word in
question to build the initial matrices for their analysis. They rely on the researcher
to determine how big the window should be. Further, since they look at words
before and after the word in question, their method is only useful with complete
texts.

These limitations can, perhaps, be avoided by a system that incorporates a
neural network. Artificial neural networks (ANNs) are well-suited to a variety of
NLP tasks; they can develop their own characterization of which features of a
problem are most significant. In addition, simple recurrent networks can store a
copy of their previous hidden layer activations. In this way, they are able to build
up abstract representations of patterns that occur throughout time [EIman et al.
1996]. Thus, a simple recurrent network should be able to develop an abstract
representation of the current context by looking at its internal representation of
any number of the words that come before the current word. Given this context,
an expectation-based system should be able to predict which words should be
able to come next in the text. If the actual next word is not on this list, it should be
marked as a spelling error. Further, this system can be combined with a shortest
path algorithm to select a word from the list as the correct word, as Wang and
Jean [1993] did to correct spelling errors resulting from character merging during
OCR. Because this method does not look at future words, it would be useful in
applications like word processing systems, where the most recently entered word
can be examined for a potential context-sensitive spelling error before more text
is entered.

Methods

One of the most limiting aspects of neural networks is the fact that the time
needed to train them increases rapidly as the size of the network increases. To
test my method, it was necessary to drastically limit the size of the input
representation for the network. Consequently, a very small vocabulary
represented in localist binary vectors was used to encode the corpus. Vocabulary
words were represented by vectors whose length was equal to the number of
words in the vocabulary. For a vocabulary of twenty-five words, then, only
twenty-five bits were needed to represent any given word. Each vector consisted
of exactly one bit that was “on,” and the rest of the bits were set to zero.

17

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 16-22
Computer Science Department, Swarthmore College



Training and testing data came from a part of speech tagged Wall Street Journal
corpus. Several categories of words were collapsed into a single “pseudoword”
based on part of speech as a means of decreasing the vocabulary size. In
particular, the part of speech categories of NN, NNP, NNS, JJ, VBD, VBN, VBZ,
DT, and MD were only recorded in the training data by their part of speech class.
Further, all punctuation marks were collapsed into the single pseudoword
PUNCT. Finally, all numerals and number words were changed to the pseudo
word CD since each number is relatively uncommon in the training text but
numbers can usually appear in the same positions in texts. The remaining words,
including most function words, were not collapsed into pseudowords at all.

Next, the 25 word vocabulary for this project was selected. The three words to be
looked at as possible context-senstive spelling errors were automatically added
to the vocabulary. In this trial, that meant that to, too and CD (which contains
two) were added to the vocabulary. The trianing corpus was then examined, and
the 22 most common words were added to the vocabulary. Sentences in the
corpus that contained words that were not part of the vocabulary were deleted
since they could not be encoded. To ensure that enough data was available
about the three target words, sentences that did not include one of those words
were also deleted; essentially, a new training and testing corpus was generated
by accepting the first sentence that could be encoded that included fo, then the
next sentence that included too, and then the next sentence that included cd until
fifty examples of each had been found. This corpus was encoded as described
above and passed to a neural network for training.

25

10

25

Figure 1: Architecture of recurrent neural network with 25 input and output nodes
and a 10-unit hidden layer.

A simple recurrent network was trained on the first half of the encoded corpus.
The network had 25 input nodes, corresponding to the 25-bit vector
representations of words in the corpus. It also had a 10 node hidden layer and a
25 output nodes. The hidden nodes fed into the output as well as back into the
hidden layer. The overall architecture of the network is shown in Figure 1. At
each time step, the network’s task was to predict the word that would come next.

18

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 16-22
Computer Science Department, Swarthmore College



The network was trained on the entire sequence for 50 epochs using back-
propagation.

Once training was completed, the network’s representation of the context in
which each word appeared was of more interest than the network’s prediction of
the next work in the corpus. This context representation is stored in the
activations of the network’s hidden nodes. One final pass through the entire
corpus was completed with learning turned off, and the activations of the hidden
nodes were recorded at each time step. The hidden layer is the place where the
network can establish its own categorization of inputs before having to generate
the correct output, so looking at the hidden layer activations gives an illustration
of the way that the network is categorizing words internally. The average
activation of the hidden layer nodes right before a word was presented was
recorded for each word in the training corpus. Because the hidden layer
represented the network’s representation of the semantic context in which a word
would be expected to appear, this vector will be referred to as the “expectation
vector” for a given word.

The expectation vectors for all of the words in the vocabulary can be mapped in
n-dimensional space; nodes that are closer together in this space can appear in
similar semantic contexts, while nodes that are further apart in this space appear
in more drastically different semantic contexts.

Context-sensitive spelling errors result, in general, when a word appears in the
wrong semantic context. That is, “form” is a spelling error in the sentence “The
letter arrived form Cleveland” because it does not appear in a valid location in the
sentence (and not because it is an invalid word in English). To detect context-
sensitive spelling errors, then, one need only compare the hidden layer
activations representing the current context of a network to the average hidden
layer activations when the next word is about to appear. If the two are
substantially different, the word should be marked as a spelling error, even if it is
a valid word in a dictionary.

For each word in the testing part of the corpus, the euclidean distance between
the expected context (that is, the average context in which the word appeared in
the training corpus) and the actual context (that is, the current hidden layer
activations) is calculated. If the current word is one of the target words, then the
current hidden layer activation is also compared to each of the expectation
vectors of the other target vectors. A large (order of magnitude) difference
between the distances for words found in the corpus and the alternative pairings
of target words would indicate that the use of the wrong target word somewhere
in a novel corpus could be identified by examining the euclidean distance
between its expectation vector and the current hidden layer activation.

19

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 16-22
Computer Science Department, Swarthmore College



Results

Unfortunately, there did not seem to be a clear distinction between expectation
vectors and the actual hidden layer contexts for different target words. The
average euclidean distance between the network’s hidden layer activations and
the expectation vector for the correct next word was 0.921. The average
euclidean distance between the hidden layer activations and the expectation
vectors of the other (wrong) target words’ expectation vectors was 0.975 (Figure
2). The distance values varied greatly from one word to the next; the standard
deviation for both sets of distances was over 0.19, so the difference between the
two is clearly not significant.

Mean distance | Standard Deviation
Correct Expectation Vector 0.921 0.191
Wrong Expectation Vector 0.975 0.196

Figure 2: Average Distance between actual hidden layer activations and
the average context for the same (left bar) or different (right bar) target
words. Standard deviation is .191 for same-target and .196 for different-
target words.

This is a disappointing result. Ideally, the distance to the correct expecation
vectors would be significantly smaller than the distance to the wrong expectation
vectors. Then the distance between the current hidden layer activation, for
example, and the next word typed in an application could be used to predict if
there was a context-sensitive spelling error in the current word in the document.
Latent semantic analysis could then be used to suggest words whose expecation
vectors more closely match the current hidden layer activation. Without a clear
distinction between correct and incorrect target words, though, no further
analysis can be conducted in terms of application of this process to an actual
instance of context sensitive spelling correction. These results do not, however,
mean that there is definitely not a way to use an approach of this sort; the
following section discusses some of the limitations inherent in this particular
study and ways that they might be addressed in future work in this area.

Discussion

One of the most substantial limitations of this project was the small vocabulary
size. By collapsing full part of speech categories into a single pseudoword, much
of the semantic content that might originally have been available in the text was
lost. While this simplified the search space, it also may have resulted in a loss of
information that would have been particularly useful to the network in its task.

The solution to this problem is not as simple as just increasing the number of
words in the vocabulary and the corresponding number of nodes in the

20

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 16-22
Computer Science Department, Swarthmore College



representation of each word. For very large networks, the cost of
backpropogating error can be prohibitably expensive. Consequently, a localist
representation quickly becomes unreasonable as vocabulary size increases.

One possible way to address this problem is through a more distributed
representation. Words can be represented, for example, as a binary
representation of their unigrams and bigrams. The first twenty-six nodes in the
representation vector correspond to the unigrams that may be present in a word.
If the current word contains a unigram, then the corresponding node in the input
vector is activated. The rest of the nodes correspond to potential bigrams.
Bigrams may contain any combination of the alphabetic letters, an end of word
marker, and a beginning of word marker. In total, this results in an input vector
whose length is 754. For example, in the representation of “two,” the nodes
representing “t”, “w”, “0”, “ t’, “tw”, “wo” and “o_" would have values of one, while
all other nodes would have values of zero. This representation is drastically
larger than the one used for the trials discussed in this paper. It has the
advantage, though, of scaling well for extremely large vocabularies. In fact, for a
corpus with a vocabulary of more than 754 words, this representation will actually
result in a smaller network than will a localist representation. Since 754 words is
not a very large vocabulary size for a real-life corpus, a representation of this sort
seems essential to further study in this area.

Another possibility is that error was inherent in the process of averaging the
context vectors for each word. If the contexts for a given word are clustered in
two or more drastically different locations, then averaging them together results
in a single vector that is not really representative of any of them. Once the
contexts for each step through the training corpus have been gathered, it may be
beneficial to conduct some sort of clustering analysis on the vectors. This could
avoid the creation of artificial and misrepresentative average vectors that are
currently used as the basis for comparison during testing. Unfortunately, only the
average contexts for each word were recorded in this experiment, so the
presence of this sort of error cannot be confirmed, but it seems like a likely
problem that is worth exploring before future work in this area is conducted.

The final possibility is that better results could be found by adjusting the learning
parameters of the neural network itself. The epsilon, tolerance and momentum
values can all be tweaked. In addition, changes to the number of hidden nodes or
the number of training epochs might provide interesting enhancements in the
overall system performance. Without any reliable means of predicting what sorts
of adjustments would be likely to be beneficial, it was not feasible to test
adjustments of these factors in this trial; varying these parameters on a smaller-
scale problem would not give a useful indication of how they would affect the
larger network or a longer training process, and training a large network takes
long enough that running multiple trials of the entire experiment was not possible.

21

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 16-22
Computer Science Department, Swarthmore College



References

Atwell, E. and S. Elliot. 1987. “Dealing with lll-formed English Text (Chapter 10).
In The Computational Analysis of English: A Corpus-Based Approach. R.
Garside, G. Leach, G. Sampson, Ed. Longman, Inc. New York.

Elman, Jeffrey L., Elizabeth A. Bates, Mark H. Johnson, Annette Karmiloff-Smith,
Domenico Parisi, and Kim Plunkett. Rethinking Innateness: A Connectionist
Perspective on Development. 1996: Massachusetts Institute of Technology

Granger, R.H. 1983. “The NOMAD system: Expectation-based detection and
correction of errors during understanding of syntactically and semantically ill-
formed text.” American Journal of Computational Linguistics 9, 3-4 (July-
Dec.), 188-196.

Jones, Michael P. and James H. Martin. “Contextual Spelling Correction using
Latent Semantic Analysis.” 1997.

Kukich, Karen. "Techniques for Automatically Correcting Words in Text." ACM
Computing Surveys Vol. 24, No. 4, December 1992.

Ramshaw, L. A. 1989. “Pragmatic knowledge for resolving ill-formedness.” Tech.
Rep. No. 89-18, BBN, Cambridge, Mass.

Wang, Jin and Jack Jean. "Segmentation of Merged Characters by Neural
Networks and Shortest-Path." ACM-SAC 1993.

22

Appeared in: Proceedings of the Class of 2003 Senior Conference, pages 16-22
Computer Science Department, Swarthmore College



