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Hebrew Vowe Restoration With Neural Networ ks

M. Spiegel and J. Volk
Swarthmore College
Computer Science Dept.
{spiegel,volk @cs.swarthmore.edu

Abstract translation.

) ) ) ) The problemis further complicated by the fact that He-
Modern Hebrew is written without vowels, presenting ,.o\ has twelve vowels, designated in our corpus (dis-
problem for those wishing to carry out lexical analysis, ,ssed below) aéA, F, E, ", I, O, U, W, &, ‘A, :E, B
on Hebrew texts. Althou.gh fluent spgakers can easily r&lowever, the number of vowels can sometimes be sim-
place vowels when reading or speaking from a text, ther&ified by using phonetic groupings. These are groups

are no simple rules that would allow for this task t0 b&y¢ \o\els for which all the vowels in the group produce
easily automated. Previous work in this field has '”VOIVe@quivalent (or near-equivalent) sounds. As will be dis-

using statistical methods to try to solve this problem. Ing ;sse |ater, in certain situations it is enough to produce a

stead we use neural networks, in which letter and mo(s,,e| from the phonetic group of the target vowel, rather

phology information are fed into & network as input angan having to produce the exact vowel. We have identi-
the output is the proposed vowel placement. Using a puls 4 the following phonetic groupsA, F, :A, :F}, each

licly available Hebrew corpus containing vowel and mor-¢ \ hich produce, roughly, the sound “ah” af, :E}

phological tagging, we were able to restore 85% of thg -1 of which produce, roughly, the sound “eh”.
correct vowels to our test set. We achieved an 87% suc- We believe that theré are two, main areas to which this

cess rate for restoring the correct phonetic value for ea‘Work could be applied, each of which demands somewhat
letter. While our results do not compare favorably to pregiga ant goals. The first is automated speech genera-
vious results, we believe that, with further experimentag -\ 0ich  of course requires vowel restoration. For

tion, our connectionist approach could be made viable. this task, we would only need phonetic group accuracy

i because the vowels within phonetic groups all make the
1 Introduction same sounds in spoken Hebrew. The second task is the
restoration of vowels to Hebrew texts for the purpose of

As would be expected from the lack of vowels, He- "7 : : .
brew text contains a large amount of ambiguous Wordél'dmg people who are learning the language, either chil-
dren learning it as their first language or adults. For this

Levinger et al. (1995) calculated, using a Modern He:- K Id not be able t bi honeti
brew newspaper corpus, that 55% of Hebrew words altgs » We would not be able to combine phonetic groups.

ambiguoud. This ambiguity can take several forms: dif- . K
ferent vowel patterns can be used to distinguish betweeén T €vIous Wor

multiple verb or noun forms, as well as between multiplgs e\ ioys relevant work falls into two main categories:
forms of other parts of speech, such as certain preposgjiork done in the field of Hebrew vowel restoration and

tions. Vowel patterns also distinguish between two Unq i gone using neural networks to solve lexical prob-
related words in certain cases. As an example of the folg

X X 5 > 'léms which could be similar to vowel restoration. Note
lowing, the consonant string SPBan be voweltaggedin ¢ these categories are mutually exclusive; to the best

one way such that it means “book” and another way suclk o, knowledge, no previous work has been done which
that it means “to count”. This consonant string also hag,q attempted to combine these fields as we are.

four other possible vowel patterns, each with a different This work makes use of a number of performance met-

Yt is unclear whether this refers to types or tokens. rics which are defined as follows: Word accuracy is the

2Throughout this paper we have used an ASCII representRercentage of words which have their complete vowel

tion in place of actual Hebrew letters and vowels. pattern restored exactly. Letter accuracy is the percentag
1
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of letters which are tagged with the correct vowel. W+the complete Tanakh (Hebrew Bible), tagged with both
phonetic group accuracy is word accuracy, allowing fovowels and morphological information. We would have
vowels to be substituted for others within a given phoideally used a corpus of Modern Hebrew, but to our
netic group. L-phonetic group accuracy is letter accuknowledge, there are no Modern Hebrew corpora which
racy, allowing for vowels to be substituted within pho-are vowel tagged. Throughout this paper we have used
netic groups. the codes from the Westminster Database in which ASCII
In the field of Hebrew vowel restoration, the most re-characters are substituted for Hebrew letters and vowels.
cent work can be found in Gal (2002). This paper atNormally, Hebrew is written with the vowels positioned
tempts to perform vowel restoration on both Hebrew andnderneath the consonant, with each consonant taking ei-
Arabic using Hidden Markov models. Using a bigramther one vowel or no vowels. In the Westminster notation,
HMM, Gal achieved 81% word accuracy for Hebrew and/owels are positioned to the right of vowels. For exam-
87% W-phonetic group accuracy. He did not calculatgle, the string 'RA’ represents what would be written in
letter accuracy, but we have to assume that it would hawdebrew as the consonant 'resh’ with the vowel 'qamets’
been higher than 81%. Gal also used the Westminstanderneath it.
Database as a corpus and calculated that approximately
30 3.1 Morphology

Similar work was also done in Ygrowsky (1994), whereg s mentioned above, the Westminster Database includes

He, like Gal, uses statistical methods - decision lists irﬁmrphologmal tags. We chose to run our main experi-

. . i . ment using th in for our neural network
this case. His descision lists rely on both local and ent using these tags as input for our neural network,

document-wide collocational information. While thisglven that vowel placement is often tied to morphology.

task is quite similar to ours, French and Spanish accehftthis system were o be applied to a corpus which had
q ' P n? morphology tags, we would assume that the corpus

patterns are much less ambiguous than Hebrew VOWEL 1 be first run through a morphology tagger. In ad-

patterns; Yarowsky cites baseline values in the 97—980»’ . . .

. . : . . ition, we ran our network once without morphological
range. Given this baseline, he is able to achieve 99% ac-, . .
curacy ihformation as a baseline of sorts.

Gal also cites a Hebrew morphological analyzer called The morphology tagging in the Westminster Corpus is

Nakdan Text (Choueka and Neeman 1995) which uses"Y broad and varied, although it has certain gaps, as

context-dependent syntactic rules and other probabilist[nentlone<j in our data anaIyS|.s section. There are Sev-
rules. Nakdan Text uses the morphological informatio ral layers of tags, each of which provides more specific

that it creates as a factor in vowel placement, meanin%ormat'on' The most basic level includes tags to dis-

that its results are most comparable to ours obtained usi guish _between particles, nouns, adjegtlves, and verbs.
morphology tags. Nakdan Text achieved 95% accuracy’ e particle tag is further broken down into tags for ar-

but the authors do not specify if this is word accuracy o cles, conjuncuonj, %r'ep?snmns, etck.)d"rhg tggbs f;)r pr(f)—
letter accuracy. nouns, nouns, and adjectives are subdivided by tags for

In the field of neural networks. networks have. in 6[gender, plurality distinctions, 1st/2nd/3nd person disti

number of past experiments, been applied to part-oF—onS' _etc. The verb tags have a_W|de range of sub-tags,
| Fludlng the standard ones mentioned above, but also in-

speech tagging problems, as well as used to solve other . ) i .
lexical classification problems. For example, Hasan an uding a variety of tags designed to differentiate between
! ifferent Hebrew and Aramaiwerb forms.

Lua (1996) applied neural nets to the problems of part-
of-speech tagging and semantic category disambiguation .

in Chinese. In Schmid (1994), the author describes hi | mplementation

Net-Tagger software which uses a connectionist approach _

to solve part-of-speech tagging. Schmid’s Net-Tagge‘}'1 Parsing the Corpus

software performs as well as a trigram-based tagger arthe raw data from our corpus is first run through a se-
outperforms a tagger based on Hidden Markov Modelsies of parsing scripts before becoming input for our neu-
Given these results, it seems likely that a connectiorral network. First we remove the initial part of the tag
ist approach would produce satisfactory results when ap¢hich corresponds to the location in Tanakh (book, chap-
plied to vowel restoration in Hebrew, given that vowelter, verse, etc.). We then run the following series of pars-
restoration is closely linked with lexical categorization ing tools as necessary:

3 Corpus 3Aramaic is an ancient Semitic language closely related to

. . Hebrew. Portions of the Hebrew Bible are written in Aramaic,
We used the Westminster Hebrew Morphologicakithough Genesis, the only section we examined, contailys on
Database (2001), a publicly available corpus containingebrew.
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e We recombine words which are written as one wort

in standard Hebrew but which our corpus splits into mul 0 Hidden Nodes
tiple words for morphological purposes. These are quit 300 rddonNodos -
often particles which can be attached to nouns as pr
fixes. These include the conjunction W, the preposition 2000 :
B,K,L,M, the relative particle $, the definite article H, etc
The combined word has the morphological tags of bot 2000
of its components. To illustrate the way this works, con i
sider the Hebrew word “R*)$IYT"” meaning “beginning.” 1800 |- . ]
The prefix “B.:” meaning “in” can be added to form the
compound “B.:R*)$IYT” meaning “in the beginning’
In the Westminster Database, the two parts of this wor
are included as two separate words, the first of which i
tagged as a preposition and the second of which is tagg
as a noun. For our purposes, we recombine these pa
into one word which is tagged as both a preposition an
a noun.

e The corpus contains certain word pairs which ar
slightly modified versions of each other and which oc: 800 . . . . ‘
cupy a single morphological position within the sentence 0 &0 100 C*ZZS 200 260 #oc
One of these words is tagged as the Ketiv version (*) anu 4

one is tagged as the Qere version (**). For our purposesFigure 2: Network Error Based on Hidden Layer Size
we have eliminated the archaic and unvoweled Ketiv ver- ’

siorp.

_® In some cases, two words are joined together witlye 2) e used a standard feed-forward, fully connected
either a Maqgqef (-) or a compound joint (7). In these cas&geqwork. The input matrix consists of a single word with
we have spllt the_word into two words, given that they Car?norphological tags. Before being used as input, the word
both function as independentwords. is stripped of vowels, so only the consonants are used.

* While the dagesh (.) could be considered a vowelach \word is represented as a two-dimensional array of
we chose not to attempt to restore it. The dagesh is g by 15 nodes, where 24 is the number of letters in the
character which can be used to distinguish between claprew alphabet plus one null character and 15 is the
tain consonant pairs. For example, the string ‘B’ is Projgngih of the longest word in the corpus. In addition,
nounced like the English consonant V', while the stringaach has 104 nodes which represent morphological tags,
'B." is pronounced like the English consonant 'b’. The g giscussed above. The output matrix consists of a 14 by
dagesh is placed inside the consonant, rather than ungef node array. Each node in the output matrix represents
it, as with vowels, and a consonant can have both a vowgl ysssiple vowel with one additional node correspond-
and a dagesh. Thus, using it would force us to modify 04 (6 the consonant having no associated vowel and one
system, which is currently designed to handle one vowelyitional node corresponding to the null letter. The ac-

per consonant. Furthermore, our system does not needighted node in each row signifies the proposed vowel for
deal with the dagesh, as its placement always follows @ corresponding consonant.

set of simple rules. Rather than using the entire Bible as input, we chose to
e All other extraneous characters are thrown out: aGge haf of the Book of Genesis to cut down on computa-

cents (), affix/suffix separators(/), etc. tion time. This consisted of 10306 words, of which 90%

4.2 1mplementing the Neural Network were used for training and 10% for testing.

The neural network consists of an input matrix, an out- Although previou; Iiteraturg §uggested thathidden

put matrix, and, in some cases, a hidden Iayer7(see I:inpdes were n.otd(_aswable forS|m|I§1r tasks, we ran a num-

' ’ ' Ber of tests with hidden layers of different sizes, one con-

“Technically, a more precise translation would be “in a betaining 150 nodes, one with 300, and one with 900.

ginning” or “at first,” but “in the beginning” is the generall

accepted translation. \; Results

®During the period when vowels were added to the Hebre

Bible (1st century CE), occasionally grammatical cori@usi A . .
were added to “fix” portions of the text. The original unvoee| As shown in Figure 2, the neural network with 300 hid-

text has been preserved as the “ketiv,” and the modified vvel den nodes outperformed all the other network configu-
text is called the “gere.” rations. Therefore, all of our results are based on that

Gomparison of Hioden Node Size for the Network

1800 E

. ™,
1400 [ 4 IR R

1200 % .

Sum-Squared Error of Validation Data
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13 vowels + no vowel + null character
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Figure 1: Neural Network Configuration
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S19119| GT

| | A]F]E]

| O JU[W. |

|:AJE[F] _ |

| Correct Vowels|| 356 | 352 216 | 155[ 277 224 2 | 65[381] 70| 12| 0 [ 1193

Table 1: Neural Network correct vowel recognition, with mlology information.

L JATFIE[* JV]OJUJW][:[AA[:EJ:F] - [e]
16| 4 [11|16]10| 0] 0 [23] 2] 0|0 5|2

F |22 17| 4 |10|14| 0| 1 |33 3|00 |11]|2
E (1111 10[11|13| 0] 0 |73 0|0 4]0
7 [17] 9 8§ 60030 |1][1]3]0

[ 7745 10010/ 00021
O 7|12 7|14 0] 0]6|0]|0]0][13]0
U 1[2[1]0]1]2 01]0][0]0][0]0
W | 1]2][0][0[0][0]0 5 0]0]0]19]0
12|19 8|4 |6 |8 |11 0[0]0] 91
A6]3|0[3]|2][5]0][0]8 3[0[0]0
E|1]0]0|2|0]0|0[0[0]0 0] 00
F|0]0]0]0]0]0|0[0|1][0]0 0|0
53[0 2[3][6]0[1][2]0][0]0 2

Table 2: Neural Network error distribution, with morphojagformation.

Appeared iniProceedings of the Class of 2003 Senior Conferepages 17
Computer Science Department, Swarthmore College



| [AJTFJE] " JUT]JOJUIW][ : JA[EJF[] _ |
| Correct Vowels|| 355 334 230 | 141 [ 242]201] 4 [ 69 [ 363] 72| 14| 0 [ 1190

Table 3: Neural Network correct vowel recognition, withoudrphology information.

L [AJFIE[" [T ]OJU[W [ [:AJE[F]_ [e]
A 22(10]13]15] 1 | 3] 1 [16] 3] 1[0 3 ]2
F 17 19/20] 9 |12]| 3| 2 |34 3 1] 2]12[1
E 12|12 769|006 [4[0]0]0]0
11| 20| 12 10 70| 0|6]2]0][0][1]0
I | 18]10]| 8 | 8 6 0] 0|14 0|1 [1]6]0
0 |10]18|11] 5| 3 1] 28| 2]0]|0][13]0
U|1|3|2][0]0]0 0/0[0[0[0[0]0
W[ 1]2]0]0[1]0]0 2[00 0[17]0
(2624 6| 49| 71| 1 0[1]0]|8]0
A 7|8 |3 112|202 00|11
E|1][0]0[0[0][0[0[0[0]0 000
F][0][0][0]0]0|0][0][0]1][0]0 00
3|3 [2][0]|1|7|0[8[2]0]0]0 1

Table 4: Neural Network error distribution, without morpbgy information.

configuration. We achieved 85% letter accuracy, gettinture of Hebrew: prepositions and articles are attached to
3306 vowels correct out of 3883 total vowels. By mergnouns as prefixes and these preposition and article tags
ing phonetic groups, we achieved 87% L-phonetic groupan often be combined to form a single prefix. For exam-
accuracy, getting 3363 vowels correct. Table 2 shows thae, the prefix “L:-” means “to” or “to &” as in “l went to
error distribution for this experiment and Table 1 shows party.” It can then be combined with the definite article
the distribution of correct results. In these tablesgp- “HF-" to form the prefix “LF-" meaning “to the,” as in “I
resents a consonant with no vowel attached to it, andwent to the party.” Several other examples exist that fol-
represents a null consonant. Further results are forthcomaw the same pattern; a complete list of prefixal particles
ing, including word accuracy, the average percentage & included in the section on parsing the corpus. However,
correct vowels per word, and results which look at théhere is no morphological information in the Westminster
type level, rather than at the token level. corpus that would distinguish between these two prefix
We also trained a network on the same data set, bfdrms. Given that these prefixes occur in very similar sit-
without including morphological information. The hopeuations, the network was not able to determine the correct
was that this would let us achieve a baseline, to whickiowel to be used in such situations, leading to errors of
our later results could be compared. This experimerthe type that we found.
achieved a letter accuracy of 74%. Thus, using morphol- We also observed that the vowels “patah” and
ogy allowed us to increase our results by 11%. Table Zjamets,” designated in the Westminster corpus as A and
shows the error distribution for this no-morphology ex+, respectively, were frequently confused. We believe that
periment and Table 3 is the distribution of correct resultghis is due to the similarity of these vowels. While more
detailed analysis of the Hebrew language would be nec-
6 DataAnalysis essary to determine this for sure, we believe that this sim-
ilarity exists given that, in spoken Hebrew, these vowels
e sk he same sound (et 1 he Enlsh vovel
. . : 'a’). These errors are removed when phonetic group ac-
tains the number of times that the vowel on the row wag . ) .
expected but the vowel on the column was placed insteat%."acy 1S galculated, angl we believe that using a larger
L ) st set might help to minimize these errors. The large
Based on this information, several trends emerge. The

o . ) mount of errors where A was confused with : presum-
first is related to the high level of confusion between Ii’Jl P

) ably result from the combination of these two problems,
and : (33 errors) and vice versa (19 errors). By exam- y P

ining our data, we were able to determine that the vast ®goth of these meanings are valid because Hebrew has no
majority of these errors were due to a morphological feandefinite article.
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and would be solved if the other problems were solved. Modern Hebrew text, such as that from an Israeli newspa-
Note the far-right column in Table 2. These were iner archive. The results obtained from such a test would
stances in which the network suggested thatas the certainly be poor, given the fairly major differences be-
vowel to be placed under the current consonant. This, #fveen Biblical and Modern Hebrew. In a Modern He-
course, makes no sense, given thagpresents the null- brew corpus, we would certainly encounter words that
consonant vowel, in other words, the vowel that is to béo not appear in the Bible, as well as words which were
placed with a null consonant. We have no idea why theds the Bible but have since been modified in some way.
cases exist, other then that it is simply a quirk of the neuour morphological information would also potentially be
ral network. Luckily, there are very few of these cases faulty due to changes in the language over the years. If we

it is not a major problem. wanted to optimize our system for Modern Hebrew we
would definitely have to obtain a Modern Hebrew vow-
7 FEuture Work eled corpus, either by finding one or by creating one by

having native speakers tag an unvoweled corpus.
There are several areas in which we believe our approach
could be improved to hopefully produce results compa8 Conclusions
rable to those obtained through other means. First, we

could use more input text. For our results presented her, fom our results, we have to confront the apparent fact

. t%’at neural networks are not ideal for solving Hebrew
we chose not to use a larger data set due to a desire 10 . . : i
yowel restoration. Given that we were including mor-

minimize time spent running the network rather than due o .
. ) e phological information, we would hope that our results
to a lack of data. This would potentially minimize errors

roduced due to the network never having seen certaWOUId be comparable to those achieved by Nakdan Text,
b 9 e only other Hebrew vowel restorer which takes mor-

words in the testing corpus. phology into account. However, our results are a full 10%

Second, we could experiment more with hidden layefe yin Nakdan Text, assuming that Nakdan is citing a let-

SIZ€s. We only tried running the th_ree variations meng, accuracy (if they are citing a word accuracy, the dif-
tioned above; perhaps if we had tried others we WOU'.?Erence would be even greater). This data, combined with
have COME across one that outperformed the networkwq e Gal results, certainly seems to suggest that a statisti-
300 hldden nodes. . ) cal approach to the problem may be superior. However,
Third, we could expand our network input to includegen the possible improvements to our methods as well
a broader context of text, perhaps one word on eithe(s the fact that our results were at least promising, we be-
side of the target word. Given that a bigram model hage, e that it might be possible to develop a connectionist

been shown to work, there is clearly a correlation betweegystem that could perform equally well as, or even out-
word context and vowel placement. However, it is pOSSir)erform a statistical system. ’

ble that the morphological information that we provide
performs a similar role to the role that would be playedy References
by context information. In addition, if we wanted to in-
clude such information, we would have to find some waRefer ences
of representing it within the context of the network. A
problem arises because the network is letter-based, so \XreChoeka and . Neeman. 1995. Nakdan Text, (an In-
would have to figure out how to use words as input. One context Tgxt-Vocahzer for Moqlern Hebrg\(\la}ISFAl- .

) ) e 95, The Fifth Bar llan Symposium for Artificial Intelli-
solution would be to include only the morphological in- gence
formation for the preceding and following words, possi-
bly only the part-of-speech tag. It seems possible that thiéa’akov Gal. 2002. An HMM Approach to Vowel
morphology would be the crucial element in determining Restoration in Arabic and Hebre@emitic Language
the vowel placement for the word in question. Workshop

_Finally, we could modify the corpus to include tags thaty) | einger, U. Ornan, A. Itai. 1995. Learning Morpho-
distinguish between definite and indefinite article-prefix | axical Probabilities from an Untagged Corpus with
compounds. The Westminster Database does not includean Application to HebrewComputational Linguistics
such tags presumably because this distinction does not21(3): 383-404.
arise outside of these compounds, given the lack of an ]
indefinite article in Hebrew. This would hopefully solve Md Maruf Hasan and Kim-Teng Lua. 1996. Neural Net-

the problem mentioned earlier that was accounting for a WOrks in Chinese Lexical Classification
large amount of our vowel placement errors. Westminster Hebrew Institute. 2001. The Groves-

In addition to applying these measures to improve our Wheeler Westminster Hebrew Morphology Database,
results, a further test of our system would be to apply itto Release 3.5
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David Yarowsky. 1994. Decision Lists for Lexical Am-
biguity Resolution: Applications to Accent Restora-
tion in Spanish and FrenctProceedings of the 32nd
Annual Meeting of the Association for Computational
Linguistics
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One sense per collocation for prepositions

Hollis Easter & Benjamin Schak

May 7% 2003

Abstract

This paper presents an application of the one-sense-per-collocation hypoth-
esis to the problem of word sense disambiguation for prepositions. The hy-
pothesis is tested through translation using a bilingual French-English cor-
pus. The paper shows that one-sense-per-collocation does hold for prepo-

sitions.

1 Introduction

The one-sense-per-collocation hypothesis (Yarowsky 1993) states that words!
tend to occur with only one sense within different instances of the same col-
location. Yarowsky (1993) tested this hypothesis with strong results on coarse-
grained senses of ambiguous nouns, verbs, an adjectives. Although Martinez
and Agirre (2000) achieved weaker results for fine-grained sense distinctions,
the hypothesis can help a wide range of natural language processing tasks.
Since the one-sense-per-collocation hypothesis is implicit in much of the previ-
ous work, such as (Japkowicz, 1991) on translating prepositions, an evaluation
of the Hypothesis could yield improvement in translation systems. This paper
discusses compelling reasons for why the Hypothesis should hold, and tests
the Hypothesis on a bilingual English-French corpus.

Our first problem is how to define senses for prepositions. Yarowsky (1993)
gives several ways to approach this. One way is the “hand-tagged homograph
method,” in which one uses a corpus tagged with the correct senses of each
word. This won’t work for us because no corpus known to us has reliable

sense distinctions for prepositions. We also want to avoid methods based on

!Words with more than one sense are polysemes.
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homophones, ambiguities in online character recognition, and pseudo-words
because the closed class of prepositions is too small. So, we equate the notion

of a sense with that of a French translation.

1.1 Subcategorization

As noted above, there are two linguistic observations that recommend the one-
sense-per-collocation hypothesis. The first of these is subcategorization, the no-
tion that every noun, verb, and adjective selects (or “takes”) certain types of
phrases for complements, and can determine the heads of those complements.
For example, consider the English adjective interested, translated into French
as interessé. Sentences (1) and (2) show that interested must take a prepositional
phrase headed by the preposition in as its complement, while interessé must

take a prepositional phrase headed by par.

(1) John is interested *math / in math / *for math / *to math /
*mathematic / *to do math.

(2) Jacques est interessé *les maths / par les maths / *pour les maths / *

aux maths / *mathématique / *faire les maths.

It should be clear that there is nothing about mathematics per se that requires
one preposition or another; while one can be interested in math, one can also

rely on math or be afraid of math or look fo math.

1.2 Noun-complement specificity

The second encouraging observation, used by Japkowicz and Wiebe (1991), is
that many nouns may only be complements of certain prepositions. They as-
sert that most nouns may only be used with particular prepositions, and that
analogous nouns in different languages (English and French, for example) ad-
mit different propositions because the languages conceptualize those nouns
differently. For example, in saying on the bus but dans I’autobus (literally “in the
bus”), “English conceptualizes the bus as a surface that can support entities, by
highlighting only its bottom platform, while French conceptualizes the bus as
a volume that can contain entities, by highlighting its bottom surface, its sides,

and its roof altogether.” (Japkowicz, 1991)?

2Readers may wonder when prepositions are determined by a preceding word and when they

are determined by a complement. We suspect that adverbial prepositional phrases, such as Jap-
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1.3 Local collocations

In testing one-sense-per-collocation for nouns, verbs, and adjectives, Yarow-
sky (1993) tested only local collocations. That is, he ignored the possibility that
distant content words could give reliable information sense disambiguation.
We do the same here, and with better cause. While it is somewhat plausible
that senses of nouns, verbs, and adjectives—categories whose words are re-
plete with meaning—could be inferred from distant context, such a situation

seems unlikely for prepositions.

1.4 Potential problems

Given these sensible arguments for the Hypothesis, why bother testing it? Tru-
jillo (1992) provides examples where the one-sense-per-collocation hypothesis
fails. He presents an English sentence (3) with three plausible Spanish transla-
tions (4).

(3) She ran under the bridge.
4) Corri6 debajo / por debajo / hasta debajo del puente.

The first translation implies that she was running around under the bridge,
the second that she ran on a path that went under the bridge and kept going,
and the third that she ran up to a position under the bridge and stopped. We
hope, however, that this example is of an infrequent special case, and can be
overcome. Sentence (3) usually translates best with por debajo, and the same
sentence with the verb rested translates best with debajo de.

Another possible problem is that individual speakers may use different pre-
positional phrases for essentially the same concept. While one speaker may
use on top of, another may use atop, another on, and so on. Given these issues,

additional testing is warranted.

2 Methods

To test the Hypothesis, we used the sentence-aligned Hansards of the 36" Par-
liament of Canada, a French-English bilingual corpus. (Hansards, 2001) Our

kowicz and Wiebe’s locatives, are determined by their complements, while prepositional phrases

governed by a preceding noun, verb, or adjective are determined by their governor.

10
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analysis takes four steps:

1. We preprocess the French sentences, changing au to a le, aux to a les, du to
de le, des to de les, and d’ to de.

2. We create a database, for each preposition in our list®, with one record
for each appearance in the training corpus (36.5 million words). Each
record contains the surrounding four English words and the preposi-

tion’s French translation.

3. We create a list, for each preposition, of English context words, along
with the most frequent translation for the preposition given each context

word.

4. We test our list’s predictions on a held-out portion (4.5 million words) of
the Hansard corpus. We also test the performance of a naive translation

algorithm for a baseline.

The first step is justified because in French a word like au is equivalent to the
preposition @ combined with the article /e. Since combination with an article
doesn’t affect the sense of a preposition, this is fine to do.

In the second and fourth steps we need the correct translation of each English
preposition. Since the Hansards are not word-aligned, this is difficult to do

accurately. Consider the following sentence pair:

I went to a library yesterday.

Je suis allé a la bibliotheque hier.

We make the (rather large) assumption that if an English preposition is found
n% of the way through a sentence, then its translation will be found 1% of the
way through its sentence as well. Since to is word number 2 (starting counting
from 0) out of six words, and since the French sentence has seven words, our
initial guess is that the translation of fo is at position 2(7 — 1) /(6 — 1) ~ 2. We
find the word allé in that position, which is not an acceptable translation (taken
from the Collins-Robert French-English English-French Dictionary (Atkins, 1996)

of to. So, we look in the positions surrounding allé, and find 4, an acceptable

3We use the prepositions against, around, at, before, by, during, for, from, in, like, of, off, on, out,
through, up, and with. These were chosen because some are polysemous and some are monosemous,
thereby providing a diverse set of test cases.

11
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translation, and halt. (In fact, we give up after searching four words ahead
and behind.) This approach seems to work fairly well for the Hansard corpus,
in large part because of the stilted, literal translations in it. Clearly, a word-
aligned corpus would make better predictions here, particularly in instances
where either English or French uses a multi-word preposition (e.g., off of or
autour de).

In the fourth step, we get a baseline by measuring how a naive word-for-
word translation does on our held-out corpus. We simply translate each En-
glish preposition with its most common (or at least most canonical) French

translation: at to 4, in to dans, and so on.

3 Results

We tabulated results for each preposition. The following are typical of our re-

sults:
for
Context Precision | Accuracy
Two before 9625 .6886
One before 9564 7027
One after 9683 .6842
Two after .8880 6938
None 1.0000 2857
of
Context Precision | Accuracy
Two before 9817 9169
One before .9795 9175
One after 9826 9172
Two after .8993 9155
None 1.0000 9181

The precision is the number of times our translation list made a prediction
divided by the number of prepositions encountered in the testing corpus. The
accuracy is the number of times our translation list made a correct prediction
divided by the number of times it made any prediction. Clearly, the improve-
ments are much greater for some prepositions than for others. The results for

all prepositions combined are:

12
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Total

Context Precision | Accuracy
Two before 9457 7936
One before 9394 .8084
One after 9510 .8190
Two after .8618 .8166
None 1.0000 .6140

The results show that surrounding context includes sufficient information
to improve translation of most prepositions into French. In general, context
words closer to the preposition give better information. We find this somewhat
strange, since the word directly after a preposition is often an article, which
should contribute little sense information.

Different prepositions give much different results, as shown in the sample
data above. Why, in particular, are our results for of so poor compared with the
baseline? Suppose we are testing the +1 position for of. If the word after of in
our testing corpus is Parliament, for example, our system will guess whatever
the most common translation of of before Parliament was during training. Since
of almost always translates as de, the guessed translation will be de for almost
any context word, and therefore our accuracy results will be much like the

baseline accuracy for de.

4 Conclusion

All four context positions (two before, one before, one after, and two after the
English preposition) were helpful in translation, giving clear benefits over the
baseline. However, the best results came from the word immediately after the
preposition.

There are several ways to improve on these results. First, a word-aligned cor-
pus would erase the error introduced by our translation-guessing algorithm.
Second, we might improve results by looking at more than one context word
at a time, or by weighting the predictions based on some context words higher
than others. However, even our limited results show that the one-sense-per-
collocation hypothesis is often reliable for English prepositions.

It is possible that idiomatic usage occurs in the Hansard corpus enough to

throw off the results. Therefore, it would be interesting to see the preposition-
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translation model applied to a number of different languages in parallel. At
present, the lack of multilingual aligned corpora makes this infeasible, but

should they become available, that experiment would have stronger results.
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The Structure, Computational Segmentation, and Translation to English of

German Nominal Compounds

Nori Heikkinen
Computer Science Department
Swarthmore College
Swarthmore, Pennsylvania, USA
nori @ccs. swart hnore. edu

Abstract

Among the most daunting words in
German to a non-native speaker are
the longest ones — those that near forty
characters in length, and are comprised
of many smaller words. A problem
posed by these words is that of automatic
segmentation into pieces in order to glean
the meaning of the entire word. It is
vital that these words be correctly parsed,
interpreted, and translated as part of the
ongoing work in multilingual computa-
tion linguistics, such as incorporation into
German language spell-checkers.

Here, | describe the problem posed to mor-
phological disambiguation in compound-
ing languages, concentrating on the struc-
ture of German nominal compounds. Us-
ing regularities about their structure, | then
devise a computational model for both de-
termining linking elements of morphemes,
and segmenting the words correctly. | dis-
cuss the inherent problems with such a
model, and speculate about alternative ap-
proaches.
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Using Semantic Information from Neural Networks to Detect
Context-Sensitive Spelling Errors

Julie Corder
Swarthmore College CS97
Spring 2003

Abstract

This paper proposes a means of using the internal representations
of an artificial neural network to represent the semantic contexts in
which a word can appear. Once the network has been trained, its
hidden layer activations are recorded as a representation of the
average context in which a word can appear. This context can then
be compared to the contexts in which a word appears in novel text
to detect context-sensitive spelling errors. While no significant
results are found in the trials described here, several modifications
of the system are proposed that might prove promising in future
work.

Introduction

Context sensitive spelling correction is the process of identifying words in written
text that are spelled correctly but are used in the wrong context. Kukich (1992)
discusses various studies that show that between 25% and 40% of spelling
errors in typed text result in legal words. This category of spelling errors includes
word pairs that are easily mistyped (e.g. “form” and “from”), homophones (e.g.
“they’re”, “their” and “there”) and words with similar usages (e.g. “affect” and
“effect”). Because all of these errors result in words that are valid, an approach
that relies on just a dictionary look-up process will not detect them as spelling
errors. Further, Atwell and Elliott [1987] found that 20% to 38% of errors in texts
from a variety of sources resulted in valid words that did not result in local
syntactic errors. Since dictionary- and syntax-based approaches are not able to
detect most context-sensitive spelling errors, semantic clues must be taken into

account to determine if the correct word is being used in a given context.
Previous Work

Instead of relying on a comparison to a dictionary of valid words, researchers
interested in context sensitive spelling correction must find ways to represent the
semantic context in which a word occurs to determine if it is spelled correctly.
This approach may be as simple as calculating statistical probabilities of words
appearing in certain n-grams, or they may involve greater syntactic and semantic
analysis of a corpus. Jones and Martin [1997] report accuracy rates of 56% to
94% for various sets of confusable words using Latent Semantic Analysis.
Granger [1983], Ramshaw [1989] and others have used expectation-based
techniques. Their systems maintain a list of words that they expect to see next in
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a corpus based on semantic, syntactic, and pragmatic information in the text. If
the next word that appears is not on the list of words that were expected, it is
marked as a spelling error. In this way, the systems can both detect spelling
errors and learn the meaning of new words (by comparing to the meanings of the
expected words when a novel word appears).

In all of these cases, though, the researcher must specify the level of information
that is relevant to the task. Jones and Martin [1997], for example, specifically tell
their system to look at a window of seven words before or after the word in
question to build the initial matrices for their analysis. They rely on the researcher
to determine how big the window should be. Further, since they look at words
before and after the word in question, their method is only useful with complete
texts.

These limitations can, perhaps, be avoided by a system that incorporates a
neural network. Artificial neural networks (ANNs) are well-suited to a variety of
NLP tasks; they can develop their own characterization of which features of a
problem are most significant. In addition, simple recurrent networks can store a
copy of their previous hidden layer activations. In this way, they are able to build
up abstract representations of patterns that occur throughout time [EIman et al.
1996]. Thus, a simple recurrent network should be able to develop an abstract
representation of the current context by looking at its internal representation of
any number of the words that come before the current word. Given this context,
an expectation-based system should be able to predict which words should be
able to come next in the text. If the actual next word is not on this list, it should be
marked as a spelling error. Further, this system can be combined with a shortest
path algorithm to select a word from the list as the correct word, as Wang and
Jean [1993] did to correct spelling errors resulting from character merging during
OCR. Because this method does not look at future words, it would be useful in
applications like word processing systems, where the most recently entered word
can be examined for a potential context-sensitive spelling error before more text
is entered.

Methods

One of the most limiting aspects of neural networks is the fact that the time
needed to train them increases rapidly as the size of the network increases. To
test my method, it was necessary to drastically limit the size of the input
representation for the network. Consequently, a very small vocabulary
represented in localist binary vectors was used to encode the corpus. Vocabulary
words were represented by vectors whose length was equal to the number of
words in the vocabulary. For a vocabulary of twenty-five words, then, only
twenty-five bits were needed to represent any given word. Each vector consisted
of exactly one bit that was “on,” and the rest of the bits were set to zero.
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Training and testing data came from a part of speech tagged Wall Street Journal
corpus. Several categories of words were collapsed into a single “pseudoword”
based on part of speech as a means of decreasing the vocabulary size. In
particular, the part of speech categories of NN, NNP, NNS, JJ, VBD, VBN, VBZ,
DT, and MD were only recorded in the training data by their part of speech class.
Further, all punctuation marks were collapsed into the single pseudoword
PUNCT. Finally, all numerals and number words were changed to the pseudo
word CD since each number is relatively uncommon in the training text but
numbers can usually appear in the same positions in texts. The remaining words,
including most function words, were not collapsed into pseudowords at all.

Next, the 25 word vocabulary for this project was selected. The three words to be
looked at as possible context-senstive spelling errors were automatically added
to the vocabulary. In this trial, that meant that to, too and CD (which contains
two) were added to the vocabulary. The trianing corpus was then examined, and
the 22 most common words were added to the vocabulary. Sentences in the
corpus that contained words that were not part of the vocabulary were deleted
since they could not be encoded. To ensure that enough data was available
about the three target words, sentences that did not include one of those words
were also deleted; essentially, a new training and testing corpus was generated
by accepting the first sentence that could be encoded that included fo, then the
next sentence that included too, and then the next sentence that included cd until
fifty examples of each had been found. This corpus was encoded as described
above and passed to a neural network for training.

25

10

25

Figure 1: Architecture of recurrent neural network with 25 input and output nodes
and a 10-unit hidden layer.

A simple recurrent network was trained on the first half of the encoded corpus.
The network had 25 input nodes, corresponding to the 25-bit vector
representations of words in the corpus. It also had a 10 node hidden layer and a
25 output nodes. The hidden nodes fed into the output as well as back into the
hidden layer. The overall architecture of the network is shown in Figure 1. At
each time step, the network’s task was to predict the word that would come next.

18

Appeared iniProceedings of the Class of 2003 Senior Conferepages 16—-22
Computer Science Department, Swarthmore College



The network was trained on the entire sequence for 50 epochs using back-
propagation.

Once training was completed, the network’s representation of the context in
which each word appeared was of more interest than the network’s prediction of
the next work in the corpus. This context representation is stored in the
activations of the network’s hidden nodes. One final pass through the entire
corpus was completed with learning turned off, and the activations of the hidden
nodes were recorded at each time step. The hidden layer is the place where the
network can establish its own categorization of inputs before having to generate
the correct output, so looking at the hidden layer activations gives an illustration
of the way that the network is categorizing words internally. The average
activation of the hidden layer nodes right before a word was presented was
recorded for each word in the training corpus. Because the hidden layer
represented the network’s representation of the semantic context in which a word
would be expected to appear, this vector will be referred to as the “expectation
vector” for a given word.

The expectation vectors for all of the words in the vocabulary can be mapped in
n-dimensional space; nodes that are closer together in this space can appear in
similar semantic contexts, while nodes that are further apart in this space appear
in more drastically different semantic contexts.

Context-sensitive spelling errors result, in general, when a word appears in the
wrong semantic context. That is, “form” is a spelling error in the sentence “The
letter arrived form Cleveland” because it does not appear in a valid location in the
sentence (and not because it is an invalid word in English). To detect context-
sensitive spelling errors, then, one need only compare the hidden layer
activations representing the current context of a network to the average hidden
layer activations when the next word is about to appear. If the two are
substantially different, the word should be marked as a spelling error, even if it is
a valid word in a dictionary.

For each word in the testing part of the corpus, the euclidean distance between
the expected context (that is, the average context in which the word appeared in
the training corpus) and the actual context (that is, the current hidden layer
activations) is calculated. If the current word is one of the target words, then the
current hidden layer activation is also compared to each of the expectation
vectors of the other target vectors. A large (order of magnitude) difference
between the distances for words found in the corpus and the alternative pairings
of target words would indicate that the use of the wrong target word somewhere
in a novel corpus could be identified by examining the euclidean distance
between its expectation vector and the current hidden layer activation.
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Results

Unfortunately, there did not seem to be a clear distinction between expectation
vectors and the actual hidden layer contexts for different target words. The
average euclidean distance between the network’s hidden layer activations and
the expectation vector for the correct next word was 0.921. The average
euclidean distance between the hidden layer activations and the expectation
vectors of the other (wrong) target words’ expectation vectors was 0.975 (Figure
2). The distance values varied greatly from one word to the next; the standard
deviation for both sets of distances was over 0.19, so the difference between the
two is clearly not significant.

Mean distance | Standard Deviation
Correct Expectation Vector 0.921 0.191
Wrong Expectation Vector 0.975 0.196

Figure 2: Average Distance between actual hidden layer activations and
the average context for the same (left bar) or different (right bar) target
words. Standard deviation is .191 for same-target and .196 for different-
target words.

This is a disappointing result. Ideally, the distance to the correct expecation
vectors would be significantly smaller than the distance to the wrong expectation
vectors. Then the distance between the current hidden layer activation, for
example, and the next word typed in an application could be used to predict if
there was a context-sensitive spelling error in the current word in the document.
Latent semantic analysis could then be used to suggest words whose expecation
vectors more closely match the current hidden layer activation. Without a clear
distinction between correct and incorrect target words, though, no further
analysis can be conducted in terms of application of this process to an actual
instance of context sensitive spelling correction. These results do not, however,
mean that there is definitely not a way to use an approach of this sort; the
following section discusses some of the limitations inherent in this particular
study and ways that they might be addressed in future work in this area.

Discussion

One of the most substantial limitations of this project was the small vocabulary
size. By collapsing full part of speech categories into a single pseudoword, much
of the semantic content that might originally have been available in the text was
lost. While this simplified the search space, it also may have resulted in a loss of
information that would have been particularly useful to the network in its task.

The solution to this problem is not as simple as just increasing the number of
words in the vocabulary and the corresponding number of nodes in the
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representation of each word. For very large networks, the cost of
backpropogating error can be prohibitably expensive. Consequently, a localist
representation quickly becomes unreasonable as vocabulary size increases.

One possible way to address this problem is through a more distributed
representation. Words can be represented, for example, as a binary
representation of their unigrams and bigrams. The first twenty-six nodes in the
representation vector correspond to the unigrams that may be present in a word.
If the current word contains a unigram, then the corresponding node in the input
vector is activated. The rest of the nodes correspond to potential bigrams.
Bigrams may contain any combination of the alphabetic letters, an end of word
marker, and a beginning of word marker. In total, this results in an input vector
whose length is 754. For example, in the representation of “two,” the nodes
representing “t”, “w”, “0”, “ t’, “tw”, “wo” and “o_" would have values of one, while
all other nodes would have values of zero. This representation is drastically
larger than the one used for the trials discussed in this paper. It has the
advantage, though, of scaling well for extremely large vocabularies. In fact, for a
corpus with a vocabulary of more than 754 words, this representation will actually
result in a smaller network than will a localist representation. Since 754 words is
not a very large vocabulary size for a real-life corpus, a representation of this sort
seems essential to further study in this area.

Another possibility is that error was inherent in the process of averaging the
context vectors for each word. If the contexts for a given word are clustered in
two or more drastically different locations, then averaging them together results
in a single vector that is not really representative of any of them. Once the
contexts for each step through the training corpus have been gathered, it may be
beneficial to conduct some sort of clustering analysis on the vectors. This could
avoid the creation of artificial and misrepresentative average vectors that are
currently used as the basis for comparison during testing. Unfortunately, only the
average contexts for each word were recorded in this experiment, so the
presence of this sort of error cannot be confirmed, but it seems like a likely
problem that is worth exploring before future work in this area is conducted.

The final possibility is that better results could be found by adjusting the learning
parameters of the neural network itself. The epsilon, tolerance and momentum
values can all be tweaked. In addition, changes to the number of hidden nodes or
the number of training epochs might provide interesting enhancements in the
overall system performance. Without any reliable means of predicting what sorts
of adjustments would be likely to be beneficial, it was not feasible to test
adjustments of these factors in this trial; varying these parameters on a smaller-
scale problem would not give a useful indication of how they would affect the
larger network or a longer training process, and training a large network takes
long enough that running multiple trials of the entire experiment was not possible.
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Part Of Speech Tagging Using A Hybrid System

Sean Finney Mark Angelillo
Swarthmore College Swarthmore College
finney@s. swarthnore. edu mar k@s. swar t hnor e. edu
Abstract
cond 1 transform x
A procedure is proposed for tagging part of
speech using a hybrid system that consists of cond 2 transform y
a statistical based rule finder and a genetic al-
gorithm which decides how to use those rules. cond 3 transform X
This procedure will try to improve upon an al-
ready very good method of part of speech tag- cond 1 transform z
ging.
cond 4 transform w
1 Introduction
cond 5 transform x
The tagging of corpora is an important issue that has been
addressed frequently in computational linguistics for dif cond 3 transform z
ferent types of tags. Transformation-Based Learning
(Brill, 1995) is a successful statistical method of tagging cond 2 transform X

corpus. It has been useful in part of speech tagging, word
sense disambiguation, and parsing among other things.
This paper describes a hybrid method for tagging part
of speech. The method employs an implementation of
Brill's Transformation-Based Learning (TBL) as the sta-

tistical part of the system, and a Genetic Algorithm whicﬁhe rules are learned, they are applied in an order deter-

tries to modify the transformation ruleset in a way tha{mned by a greedy search. The rules are applied to the
. corpus to see how many errors they correct. The rule that
will produce better results.

Part of speech taggers are very useful in modern Natglgjlrer:gzs_lt_ufs rgrc())sc;[eesrst?;sir:igrhe%stg/nsazrttr;?gEteei:ti rule in the
ral Language Processing, and have potential applications : . )
guag g P bp The issue here is the greedy search. As rules are ap-

in machine translation, speech recognition, and informa-,. ) )
P 9 lied, the number of errors corrected in the text is always

i i i R
tion retrieval. They are usually used as a first step on t%e largest. However, the transformation rules do tend to
block of text, producing a tagged corpus that can then

be woret with. Of course, th bete thetagger i, HE1° 51, 17 2 ey are fng ofrs T procese
more accurate overall results will be. While TBL is a P ’ y

very successful part of speech tagger, it does still crea\f‘é'" be corrected later on in the ruleset. This assumption

X : IS made by TBL, and we are hoping to fix this potential

some errors. It might be possible to tag a corpus perfectl . . o

o . . - roblem. With a careful reordering of the rules, it might
and it might be possible to use TBL, slightly modified, tobe ossible to create a tagged corpus without any errors
acheive that goal. P 99 P y '
_ During Transformaﬂon_—Base_d Learning, transformaz Related Work
tion rules are learned which will correct errors in an in-
correctly tagged corpus. The incorrectly tagged corpus Bther workers in the field have produced non-statistical
compared to the truth in order to learn these rules. Onaystems to solve common NLP problems. There appears

Figure 1: A Sample Ruleset for TBL
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to be a number of methods that produce varying results.
The Net-Tagger system (Schmid, 1994) used a neural net- C
work as its backbone, and was able to perform as well as /\

a trigram-based tagger.

TBL
A group working on a hybrid neural network tagger for >

Thai (et al., 2000) was able to get very good results on a L_/y
relatively small corpus. They explain that while it is easy

to find corpora for English, languages like Thai are less Compilable

likely to have corpora on the order of 1,000,000 words. Ruleset | == chromosome
The hybrid rule-based and neural network system they
used was able to reach an accuracy of 95.5(22,311 am-
biguous word) corpus. It seems that the strengths of rule-
based statistical and linguistic methods work to counter-

act the inadequacies of a system like a neural network, Figure 2: A Sample Flowchart for Our System
and vice versa. It seems logical to combine the learning

capabilities of an Al system with the context based rule

creation capabilities of a statistical system. 4 Representing the Problem

Given that we are trying to produce the optimal set of
rules, and the order in which to use them, our chromo-
3 Genetic Algorithms somes are best represented as a set of rules in order. The
first parent from which all successive generations grow is
collected directly from TBL. We let TBL find the rules

The Genetic Algorithm (GA) takes its cue directly fromthat it finds useful, trim that set of rules to a satisfactory
modern genetic theory. This method entails taking 5ength,_and run that through as the first parent of our GA.
problem and representing it as a set of individual chro- One issue that we ran across was how we would repre-
mosomes in a population. Each chromosome is a strirﬁf”t each TBL rule as a bitstring. A rule in TBL consists
of bits. The GA will go through many generations ofO! @ series of predicates acting on the words before and
chromosomes. One generation consists of a fitness <ter the word in question, and a trigger that changes the
lection to decide which chromosomes can reproduce, ré299ed part of speech on the word if all of the predicates
production itself, and finally a chance for post reproduc@r® met. A predicate can be either a matching of a part of
tion defects. The GA generates successive populatio§B€€Ch, or one of a number of string matching rules. The
of chromosomes by taking two parent chromosomes s8St of these is a pre or postfix matcher. The second adds
lected by a monte carlo approach and applying the basiPre or postfix and chec_ks to see if the resulting st.rlng is
genetic reproduction function to them. The chromosome Separate word. The third removes a pre or postfix, and
are ranked by a fitness function specific to the problen?.heCkS if the resulting string is a word. The fourth checks

The monte carlo approach assures that the two best chig-see if a certain string is contained within the word. The
mosomes are not always chosen. fifth checks if the word in question appears to the left or

right of a specified word in a long list of bigrams.
The reproduction function isrossover, in which two
chromosome parents are sliced into two pieces (See Fig- TBL Rule i TBL Rule i+1
ure 5 in the appendix). The pieces each take one of the! '
pieces from the other parent. The resulting two chromo- | | | | | | | | | | | | | |
some children have part of each of the parénts ‘ : U

L
After reproduction, there is a chance thattation will t _ t
occur, in which some part of the child chromosome is Pred#,0 Pred
randomly changed (see Figure 6 in the appendix).

#i,n Action#i

. _ . _ Figure 3: A sample TBL ruleset embbedded in a chromo-
When selection, reproduction, and mutation have finggme

ished, the generation is completed and the process starts
again. The genetic algorithm is a good way to try many
probable solutions to a problem. After a few generations
of a genetic search, itis likely that the solution generated 1an exception is where the crossover consists of an entire
will already be very good. chromosome from one parent and none from the other

In our actual implementation, every C structure con-
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index | lexical meaning contextual meaning integers, where each integer was set to either 1 or 0. The
1 type of predicate | type of predicate author hopes that the reader can understand how this will
2 extra info for predi-| whether or not the become prohibitively large for any kind of complex repre-
cate type predicate is a range sentation. We therefore modified Meeden’s code to have
3 not used if a range, the each integer be a random value, and therefore saved the
start and stopping memory resources required by this program by a factor
bounds of 322,
4 index into a ta-| index into a ta- . .
ble of observed ble of observed The GA then loops on |ts_elf for as many generatm_ns as
strings/POS’s Strings/POS's we deem necessary. The final ruleset chromosome is then

converted back into a file in the form that TBL likes, and
Table 1: Meaning of chromosome values to a predicatdhe results are also written to a file.

The TBL implementation we used is Florian and

tained member variables that could be easily converted A fnTBL(Florian and Ngai, 2001). We worked hard

and from a genetic bitstring. In our population of individ- C integrate our scripts and code with their implementa-

tion of TBL, which trying to keep their code as intact as
ual chromosomes, each chromosome represented a lexi-

cal and contextual ruleset, such that any individual couIBOSS'ble'

be output via a helper function into the files necessary for As it is implemented, fnTBL has two parts, the first

fnTBL to run. being a script that trains the ruleset, and the second be-
Each chromosome is first divided in half, with one halfing the ruleset applicator. It was fortunate for us that

representing the lexical portion (prefixes, suffixes, et cinTBL was broken up in this way, because we were able

of the fnTBL tagging rules, and the other representing thi take the learned ruleset and run it through our GA, pro-

contextual (ngram) portion of the rules. ducing another ruleset which could then be given to the
Both of these halves are then divided into severdhTBL rule applicator. The results are placed in another

smaller parts of equal length, each part representing a sifile which can then be tested for accuracy.

gle rule (see Figure 3). If the reader will recall, a rule

consists of a series of predicates and a resulting action to

execute if t_he _predlcates are all matching. The actionis ac? Annealing the M utation Rate

integer which is computed via a modulo operation agains

the number of possible actions, such that it will always

evaluate to the value of an enumerated part of speech. |, grder to make sure that we would get enough varia-
A predicate is in fact one of two kinds of data struc+jon in our populations , we used a bit of the methods of
tures, depending on whether it is found in the lexical or ilynnealing on our mutation rate. For the first few gener-
the contextual portion of the gene sequence. They are gfions of running, the mutation rate is very high so that
the same length (16 bytes), but but each 4 byte sequengR children will show a lot of difference from the par-
may have a different meaning (See Table 1). ents. Over time, we bring this mutation rate down so we
Our genetic "fitness” heuristic takes a chromosomespnverge on a good solution without jumping around as
and converts itinto a structure that conforms to the heirafnych. We feel that this method further reduces the risk

chy discussed above. this structure is then used to outpftthe solution being the greedy path to the goal.
the necessary data files, which are then used to determine

the error rate, which is then returned as the fitness to the ONe potential point of contention arises here. It is im-
genetic algorithm. possible for us to guess what the best place to begin our

mutation rate is. We also need to pick the decay function,
and we cannot choose whether a linear or logarithmic or
exponential decay function would be better without try-
Our GA process works in series with TBL. We start withing them all first. We did speculate that the rate should
a corpus which gets passed through TBL, but only fastart high and follow an exponential decay function. We
enough to output the ruleset to a file. We then run a scriptant the chaos in the system to start high and come down
that generates a compilable chromosome representatifast, so the system has a lot of time to work out all of the
from the TBL ruleset file. That chromosome representachaos that was introduced in the first few generations of
tion is then passed to a GA program written in C by Lisahe GA. We chose to try a linear decay first, with a high
Meeden of the Swarthmore College Computer Sciencgarting mutation rate. The idea here is that much chaos
Department, and severely hacked by us. In the originalver a long period of time will produce a ruleset that is
implementation, a chromome "bitstring” was an array ofadically different from the parent.

5 TheProcess
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8 FutureWork

83800

The original goal of the project was to try to improve TBL
using artificially intelligent techniques. We feel that we
have adhered to that goal. We are of the mind that lan-
guage and intelligence are very closely related, and that
in order for us to create systems that can use language
effectively, we will first need to have a better model of
intelligence. While the tools we have today in the Al
field are not powerful enough to be considered fully in-
telligent, they can be used to approximate what we might
be able to accomplish in years to come.

Work from others such as (Yang, 1999) tries to concen-
trate on the modelling of development, and argues that a
child’'s developing language pattern cannot be described
by any adult's grammar. Yang also states that develop-
7 Resultsand Discussion ment is a gradual process, and cannot be described by
any abrupt or binary changes. The same sort of develop-

After 100 generations without an annealed mutation rat8?€ntal thinking is encompassed by the Al approach, with
we had a success rate of 84.45%. When compared gu9radual (albeit hopefully faster) learning process based
fnTBL's 94.57% success rate, we actually took a los§" human intelligence itself. _

on the performance of the system. This does make AS far as our project goes, there are many variables
sense, seeing as how the mutation rate was very lothat we dlq not have the time to explore. Firstly, our fit-
about 0.001. Essentially the only process being run wakSs function for the GA was simply based upon the per-
crossover, and when a set of rules is crossed over, mdigntage correct. Another possible idea would be to have
that likely the better rules at the beginning of the rulese? fitness function which takes the number of errors, ei-

will be moved to the end. It certainly does not make sendg€r present or created by the ruleset, into account. One
to run the less successful rules first. way to do this would be to return a fithess of the number

of correctly tagged words minus a fraction of the errors.

We experienced much better results once we annealeglis \ o4 discourage the GA from having and causing
the mutation rate and ran the GA for 100 generationgy o

Our success ra_te on this run was 89.96better resglts. One’I'here are also variables associated with TBL for which
problem with this approach was the way the mutation ral%e chose values that made sense to us. The number of

was anngaled, a strictly linear decay. We hope with 4lles in a ruleset and the number of predicates in a rule

exponential decay rate, our results will be even better. could both be modified by a weight learning program like
Another run with an annealed mutation rate used a neural network which would watch over the entire pro-

starting mutation rate of .1 instead of the .8 used in theess. This way, we would have a more focused idea of

result above. 100 generations produced a success ratapfat the optimal size of these variables would be.

89.7even reached the level acheived already by TBL. The

inherent nature of the GA approach is to need many ge® Acknowledgements

erations, and a large population size. Unfortuantelyghes )

runs both took close to 8 hours to complete. We believii/e would like to acknowledge the efforts of our professor

that when taken further, and with more time and generd?ich Wicentowski of the Swarthmore College CS Dept.

tions, the hybrid approach could allow for a continued inj—hs_encouragement and feedback were invaluable to our

crease across the board in NLP problems. With our mirroJect. _

imal settings, the system took 8 hours to run. Increasing Thanks also go out to Lisa Meeden of the Swarthmore

the population size and the generations would increaéeP!lege CS Dept. for her genetic algorithm code. Our

the running time significantly on today’s computers. Wdask would have been much more complicated had we

hope that some day this work can be tested on a paralR¢eded to impliment a genetic search ourselves.

or distributed system powerful enough to handle the large W& would also like to extend our gratitude to Florian

Without regard to the countless days, nights, and fol-
lowing mornings spent trying to get fnTBL to work for
2there are 32 bits in an integer, so to represent an integer H§, the task at hand would have been prohibitively more
a "bitstring” in Meeden’s code would require 32 real integler complicated had we needed to implement TBL ourselves.

83400

83200

83600

Figure 4: If only we had a month of cpu time...
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Thanks!

Finally we would like to thank the entire robot lab crew
for being friends comrades, and cohorts throughout the
entire process. Konane!
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A Appendix

cond 1 transform x
cond 2 transform y
cond 3 transform x
cond 1 transform z
cond 4 transform w
cond 5 transform x
cond 3 transform z
cond 2 transform x
cond 1 transform z
cond 2 transform y
cond 3 transform x
cond 1 transform z
cond 2 transform w
cond 5 transform x
cond 3 transform z
cond 1 transform y
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(CROSSOVER) cond 1 transform z
cond 2 transform y
cond 3 transform x
cond 1 transform z
cond 4 transform w
o
cond 5 transform x
cond 3 transform z
cond 2 transform x
cond 1 transform x
cond 2 transform y
cond 3 transform z
cond 1 transform z
cond 2 transform w
- cond 5 transform x
cond 3 transform z
cond 1 transform y

Figure 5: An example of a crossover operation
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(MUTATION)

cond 1 transform x
cond 2 transform y
cond 3 transform x
cond 1 transform z
cond 4 transform w
cond 5 transform x
cond 3 transform z
cond 2 transform x
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cond 1 transform z
cond 2 transform y
cond 3 transform x
cond 1 transform z
cond 2 transform w
cond 5 transform x
cond 3 transform z
cond 1 transformy

Figure 6: An example of a mutation operation
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Disambiguating between ‘wa’ and ‘ga’ in Japanese

Yoshihiro Komori
500 College Avenue
ykonori 1@wart hnor e. edu

Abstract

This paper attempts to distinguish when to use
‘wa’ and ‘ga’ in Japanese. The problem is
treated as one of word sense disambiguation,
regarding both ‘wa’ and ‘ga’ as a prototype par-
ticle that indicates the subject of the sentence.
Various statistical and linguistic techniques are
employed to disambiguate the sense, such as
ngram and syntactic analysis. The program
scored 100% recall rate and 83.8% using the
syntactic model.

1

The distinction between ‘wa’ and ‘ga’ in Japanese
has been notoriously hard for both Japanese linguists
and those who attempt to learn Japanese as a foreign
language. Both ‘wa’ and ‘ga’ are particles to indicate
the subject but with slightly different connotations. For
example, the English sentence

I ntroduction

| am Yoshi.

can be translated to Japanese as

watashi wa  yoshi desu.
| (null)  Yoshi  am.
or
watashi ga yoshi desu.
| (null)  Yoshi  am.

Whether we should use ‘wa’ or ‘ga’ cannot be deter-
mined locally in many cases, such as in this example.
Those two Japanese sentences are syntactically valid and
commonly used. To determine which particle to use, we
need first determine the semantics of the sentence from
its context.

30

There are several areas where having a machine that
distinguishes ‘wa’ and ‘ga’ can be helpful. Those include
translation to Japanese from various languages (given a
sentence in a foreign language, should we use ‘wa’ or
‘ga’), Japanese sentence generation (given what we want
to say, should we use ‘wa’ or ‘ga’), and Japanese linguis-
tic theory (what are the conditions that require the use of
‘wa’ or ‘ga’?).

2 Linguistic Theory

Karita Shuji, a Japanese linguist, summarized the works
of recent linguists on the usage of ‘wa’ and ‘ga’. Accord-
ing to Karita, the usage of ‘wa’ and ‘ga’ can be catego-
rized in the following manner:

2.1 Substitution by 'no’

In some cases ‘wa’ can be substituted by ’no’ without
changing the meaning of the sentence, but ‘ga’ can never
be. This is due to the fact that the noun preceded by ‘wa’
does not have to be the actor in the sentence.

2.2 Novelty of the subject

One sense of ‘wa’ and of ‘ga’ is dependent on whether
the subject is novel to the listener. While ‘wa’ is used
when the subject is novel, ‘ga’ is used when the subject
is known, previously mentioned or implied. Even when
the subject is a novel topic in the discourse, ‘ga’ might be
used if the information is implied by information outside
of the discourse. An instance of such cases is:

watashi ga senjitsu email shita
| (null) the otherday email did

gakusel  desu.

student  am.

(I am the student that emailed you the other day.)
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The fact of the subject’s emailing the listener makes
the subject a familiar topic even though it may be the first
time it is introduced in the discourse.

2.3 Description vs Judgment

Karita argues that in some cases ‘ga’ is used for describ-
ing a phenomenon, while ‘wa’ is used for expressing a
judgment. For example,

futte  iru
raining is

ame ga
rain  (null)

(Rain is falling.) (description)

ume da
plum is.

are ga
that  (null)

(That is a plum.) (judgment)

In the first case we use ‘ga’, and in the second case
‘wa’. The difference, however, is slight and is hard even
for a native speaker to distinguish.

2.4 Sentence Structure

We use ‘wa’ if the subject specified is the subject of the
entire sentence, and we use ‘ga’ if the subject is only the
subject of a phrase in the sentence. so, for example:

tori ga tobu toki ni wa
bird  (null) fly when  (null)  (null)
kuuki ga  ugoku.

air ~ (null) move.

(When a bird flies, the air moves.)

tori wa tobu toki ni

bird  (null) fly when  (null)

hane wo konna fuu ni suru.
wing (null) likethis way (null) do.

(A bird moves its wings like this when it flies.)

The bird in the first sentence is a subject only in a
phrase, where the second bird is the subject of the
entire sentence. Note that being the subject of an entire
sentence is not a necessary condition for using ‘wa’.
However, being a subject inside a phrase is a necessary
condition for using ‘ga’. Therefore, if ‘wa’ or ‘ga’ is to
be used inside a phrase, ‘ga’ must be used all the time.

2.5 Contrast and Exclusion

Karita argues that we use ‘wa’ to indicate contrast and
‘ga’ to indicate exclusion. Two exampler sentences:

ame wa futte iru ga
rain  (null) fall (-ing) but
yuki wa futte inai.

snow (null) fall (not-ing)

(Rain is falling but snow isn’t)

seito desu
student is.

yoshi ga
Yoshi  (null)

(Yoshi is the student.)

In the first sentence, ‘wa’ is used to express the contrast
between ‘rain” and ‘snow,” while in the second sentence
‘ga’ is used to imply that Yoshi is the only student in the
context.

2.6 Specimen
Two sentences:

chou wa mushi da
butterfly  (null) insect is.
(A butterfly is an insect.)

chou da.
butterfly is.

kore ga  kimino
this  (null)  your
(This is your butterfly.)

In the first sentence ‘wa’ is used, and ‘ga’ is used
for the second case. The difference between the two
cases is that in the first sentence, a butterfly is a specimen
of the class insect, where in the second case ‘this’ and
‘butterfly’ are in the same class.

2.7 Implication for the project

Karita’s linguistic analysis on the usage of ‘wa’ and ‘ga’
has two implications for this project. First, these charac-
terizations imply that the usage of ‘wa’ and ‘ga’ are deter-
mined by a mixture of syntactic and contextual informa-
tion. Therefore, in order to capture the usage of ‘wa’ and
‘ga’, both syntactic and contextual approach must be em-
ployed. Second, from these characterization one could ar-
gue that both ‘wa’ and ‘ga’ have several different senses.
This implies that in order to achieve the competence of a
native speaker, the problem has to be understood as dis-
ambiguating the sense of the prototype subject indicator
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into a dozen senses. However, such a project would re-
quire a huge tagged corpus where each instance of ‘wa’
and ‘ga’ is disambiguated from several senses. Employ-
ing humans to hand-tag such a corpus would be expen-
sive. Thus we will attempt to disambiguate the prototype
subject indicator into only two senses, ‘wa’ and ‘ga’.

3 Reated Works

The task of word sense disambiguation has been tack-
led by many NLP researchers, such as Yarowsky (1992,
1993 and 1995). However, the two key assumptions of-
ten made in the task of word sense disambiguation do
not hold in this particular task. The assumption of one
sense per discourse’ clearly does not hold here because
both ‘wa’ and ‘ga’ occur in discourses with any topic and
style. The other key assumption, *one sense per colloca-
tion,” does not hold here as well as it does in other places,
since both ‘wa’ and ‘ga’ can follow any noun. On the
other hand, the idea of "one sense per collocation’ can be
useful if we take the collocation to be mainly syntactic
and use it loosely to aid other algorithms.

4 Task Description

The input to this program consists of Japanese copra
tagged with the POS. The tags are produced by a GPL
engine “mecab” developed by Kudo Taku, which claims
to achieve 90% accuracy. At the preprocessing stage we
replace every instance of ‘wa’ and ‘ga’ that are particles
to indicate the subject, determined by the POS, with a
prototype particle *prt*. The output of the program is
‘wa’ or ‘ga’ for each instance of *prt*. The performance
is measured by the ratio of correct determination of ‘wa’
and ‘ga’.

The training corpus consists of three novels by a
Japanese novelist Dazai Osamu, NingenShikkaku, Jo-
seito and Shayou. The testing corpus consists of two
other short stories by the same author, Haha and Hashire
Merosu. The size of each corpus was about 130,000
words and 11,000 words respectively.

5 Algorithms

The algorithms employed in this project can be broadly
divided into three parts: word based, syntactic based and
context based. For word based analysis, simple ngrams
are used to get as much information out of words that
surround *prt*. For syntactic analysis, both ngrams with
POS and sentence-level syntactic analysis are employed.
Finally for context, we will test whether the word preced-
ing *prt* is novel in the discourse.

5.1 Word Ngrams

First we used unigram on ‘wa’ and ‘ga’ on our training
corpus to obtain the ratio between the occurrence of ‘wa’
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and ‘ga’. This ratio was used as the baseline in the deter-
mination of the particles. That is, if there are no further
information available on the particular instance of *prt*,
we will put whichever particle that has the higher ratio of
occurrence.

We also use word based bigrams to get information as
to whether ‘wa’ and ‘ga’ are likely to be preceded by cer-
tain words. Upon each instance of *prt*, we see what the
preceding word is, and check how many times ‘wa’ and
‘ga’ have occurred in the particular context. If there is a
difference in the number of occurrences, we will pick the
one with the higher occurrence.

5.2 Syntactic Ngrams

Similar to the word based ngrams, we first compile POS
based ngrams on training copra. Then for each instance
of *prt* in the testing corpus, find the ratio of ‘wa’ and
‘ga’ in that particular POS surroundings. So far we have
only considered the word preceding and the word follow-
ing *prt*. A wider ngram may be employed in the future
work.

5.3 Threshold for ngrams

In combining these two ngram methods, we used a
threshold to increase precision and also to minimize the
effect of infrequent ngrams. The algorithm used for the
threshold is the following:

if (countwa +3 > 2 * (countga + 3) )
return wa
else if (countga+ 3 > 2 * (countwa +3))
return ga
else
return (no answer)
(countwa and countga are the counts of the particular
contexts for ‘wa’ and ‘ga’ in the corresponding ngram
data.)

We first added 3 to both the count of ‘wa’ and ‘ga’ so
that contexts with low counts will not produce extreme
ratio. For example, while the ratio between 0 and 1 is
infinity, by adding 3 to both we get a more reasonable
ratio of 3/4. For either ngram method to return an answer,
we required that the count of the more frequent ngrams
has to be greater than twice the count of the less frequent
ngrams.

5.4 Syntactic Analysis

From Karita’s work we know that if the subject is the sub-
ject of a phrase but not of the sentence, then ‘ga’ is always
to be used and not ‘wa’. We will implement this model by
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| recall | precision |

wa | 67.5% | 86.2%
ga | 60.4% | 60.5%
total | 65.7% | 80.4%

Table 1: Performance with word based bigram analysis

sentence level syntactic analysis. Finding sentence struc-
tures requires a full blown syntactic analyzer, which is
difficult and complex enough to dedicate a whole project.
Therefore, instead of designing a thorough syntactic ana-
lyzer, we will use a simple heuristic to determine a phrase
in a given sentence. The heuristic exploits the fact that a
phrase in Japanese is often segmented by a comma and
always contain a verb phrase. Therefore, a prototype is
considered to be inside a phrase if and only if a verb
phrase occurs after the prototype and before a comma.

5.5 Contextual Analysis

One sense of ‘ga’ indicates the fact that the subject is not
a novel topic. Thus by searching through the corpus and
testing to see whether the subject has been mentioned pre-
viously, we can bias the output towards ‘ga’.

6 Results

We counted the occurrences of ‘wa’ and ‘ga’ to obtain the
baseline for this project. In our corpus of 130,000 words,
‘wa’ occurred 3439 times and ‘ga’ occurred 2138 times.
Therefore, if the program guessed ‘wa’ for all instances
of *prt*, we can expect it to be correct 62% of the time.
The baseline in this project is thus considered to be 62%.

The word based bigram model yielded results with
poor recall of 65.7% but precision at 80.4% which is
significantly better than the baseline. The syntactically
based trigram analysis achieved slightly better precision
of 81.1% and huge improvement on recall of 92.6%.
Guessing was not allowed for these tests. Therefore, if
the context of *prt* did not match any ngram in the data,
the program did not return an answer. Thresholds are
not used for these tests, either. The recall rate here is
calculated as the ratio between the count of guesses for
‘wa’ and ‘ga’ and the count of the occurrences of either
particle in the corpus. The precision rate is the ratio be-
tween the count of correct guesses and the count of total
guesses. For example, if ‘wa’ occurred 10 times in the
corpus, the program returned 6 guesses for ‘wa’, and 4 of
them were correct, the recall rate would be 6/10 and the
precision would be 4/6. These results are summarized in
Table 1 and Table 2 respectively.

Two models gave the same answer 88.4% of the time.
When the answers were in conflict, the syntactically
model was correct 55.9% of the time.
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| recall | precision |

wa | 92.2% | 87.0%
ga | 94.0% | 63.5%
total | 92.6% | 81.1%

Table 2: Performance with syntactically based trigram
analysis

| | recall | precision |

wa | 82.6% | 88.4%
ga | 65.7% | 76.1%
total | 78.4% 85.9%

Table 3: Performance with both syntactically and word
based ngram analyses

These two ngram methods combined with the thresh-
old algorithm described above yielded results that are bet-
ter in precision but worse in recall compared to the re-
sults from syntactic ngrams alone. The improvement on
the precision rate on ‘ga’ is significant, changing from
63.5% in the syntactic ngrams approach to 76.1% in the
combined methods. When two models gave different an-
swers, the answers given by the syntactic method was al-
ways chosen. The results are summarized in Table 3.

The same algorithm but with random guesses produced
results only slightly poorer in precision. Note that the
precision rates for the models with and without random
guesses are exactly the same. This is due to the fact that
all random guesses were ‘wa’ since ‘wa’ generally occurs
more frequently. The results are in Table 4.

The syntactic method based on the analysis of phrases
in a sentence gave poor results. When used alone, it pre-
dicted correctly the instances of ‘ga’ 56.2% of the time.
When used to disambiguate the cases where the word
based and the syntactic based gave conflicting answers,
the precision dropped to 28%.

The contextual method was a complete failure. It
turned out that in almost all cases, the word preceding
*prt* is introduced prior in the corpus in other contexts.
In the testing corpus, only one word preceding *prt* was
a novel word in the discourse. Because of this unexpected
result, no further analysis was possible concerning the
distinction between a novel and a familiar topic.

| | recall | precision |

wa | 100% | 85.2%
ga | 100% | 76.1%
total | 100% | 83.8%

Table 4: Performance with both syntactically and word
based ngram analyses with random guesses
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7 Discussion

The poor recall rate of word based bigram model can be
attributed to the fact that the bigram data compiled from
the training corpus did not contain most of the proper
nouns that occurred in the testing corpus. This is an ir-
redeemable flaw with the word based model. Because
both ‘wa’ and ‘ga’ can follow any proper noun, it is inher-
ently impossible to capture a significant portion of them.
The precision rate for the case of ‘wa’ was surprisingly
high. A closer look at the bigram data revealed that ‘wa’
uniquely followed two common particles, ’de’ and ’ni’,
both of which combined with ‘wa’ indicate topic intro-
duction. The precision was high due to the fact that if the
preceding word were ’de’ or 'ni’, the prediction of ‘wa’
yields almost 100% accuracy.

The higher recall rate for the syntactic model was ex-
pected, since the part of speech tags are vastly more gen-
eral than words. It was interesting to see that its precision
rate was also higher than the word based model, which is
contrary to the expectation regarding its generality. We
can attribute the unexpected precision rate to the fact that
this simple trigram model embodies many of the charac-
terizations put forth by Karita. First, the rule of substitu-
tion by ’no’ is reflected in the trigram model because 'no’
in this sense happens only between two nouns. Second,
it is seen in the trigram data that ‘ga’ is much more likely
to be followed by a verb, which is perhaps due to the fact
that ‘ga’ happens inside a phrase where ’noun-ga-verb’
phrase is common.

The precision rate of 56.2% for the sentential syntactic
analysis is statistically significant even though its abso-
lute value is low. If we recall that the percentage of the
occurrence of ‘ga’ among all occurrences of *prt* is only
25%, answering correctly 56.2% implies that the imple-
mentation captured at least some part of what Karita ar-
gues about ‘ga’ inside a phrase.

It is also worth noting that the testing corpus had an
unusual distribution of ‘wa’ and ‘ga’. Where the distribu-
tion in the much larger training corpus was about 3 to 2,
the distribution in the testing corpus was 3 to 1. This un-
usual trend might have affected the result one way or the
other. Further testing with a different corpus is required
to examine the effect.

8 Conclusion

With the combination of word ngrams, syntactic ngrams
and phrase analysis alone, we have achieved 83.8% preci-
sion with 100% recall. This is promising considering the
fact that we did not use a syntactic analyzer outside of
our heuristics. With such an aid, we can perform a com-
plete analysis of sentential structure, which will probably
boost the precision to the high 80’s. With further work
with a syntactic analyzer, we will perhaps be able to dis-
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ambiguate all instances of ‘wa’ and ‘ga’ that have distinct
syntactic contexts.

The project did not succeed in disambiguating the
cases where deeper contextual analysis is required. The
problem of contexts and semantics beyond pure statis-
tics of words is a notoriously difficult one across all NLP
fields. Thus we do not expect that we will be able to solve
the problem without employing an entirely novel method
yet undiscovered in the field of NLP. However, we do
believe that using implementations similar to the cur-
rent one can contribute to practical applications such as
machine translations and grammar checking in Japanese.
Even though by word based ngrams and syntactic analy-
sis alone cannot capture all occurrences of ‘wa’ and 'ga,’
they can give correct answers most of the time for most
of the cases.
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David Yarowsky, 1992. Wbrd-Sense Disambiguation
Using Satistical Models of Roget's Categories Trained
on Large Copra

references

David Yarowsky, 1993. One Sense Per Colloca-

tion

David Yarowsky, 1995. Unsupervised Word Sense
Disambiguation Rivaling Supervised Methods

Karita Shuji, ‘wa’ to ‘ga’ wo meguru shomondai ni
tsuite, (http://bakkers.gr.jp/ karita/report/reportyanyou —
j-html)

KudoTaku(http : [/cl.aist — nara.ac.jp/ taku —
ku/software/mecab/)
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Machine Trandation Evaluation by Document Classification and
Clustering

Feng He and Pascal Troemel
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Abstract

We propose a Machine Trandation evaluation
system which does not require human-translated
reference texts. The system makes use of a comparison
between the performance of a computer’s execution
of NLP tasks on source text and on translated text to
judge how effective the tranglation is. The difference
in accuracy of the NLP task exectutions is used as
a gauge for judging the competence of the Babelfish
online translation system.

Keywords: Machine Translation Evaluation, Doc-
ument Classification, Clustering.

1 Introduction

1.1 Machine Trandation Evalutation

Machine translation research has been going on for
severa decades, and there are a number of systems
available for use, mostly between English and a Euro-
pean or Asian language. Notable examples are prod-
ucts from Systran, which are used in Altavista's Ba-
belfish online tranglation service. Machine translation
evaluation has long been an extremely arduous task
which requires much human input; more recently, the
BLEU evaluation system [3] has made use of a much
more automated, and thus more practical, approach.
However, the BLEU system still requires the presence
of several correct, human-translated reference texts
(see Section 2.1 for an overview on the BLEU sys-
tem). We propose a system which does not have this
requirement, a system that is capable of judging the
competence of a translation simply by comparing the
source and target texts. We believe that this freedom
from human input isimportant; human trandation isa
time-consuming and costly task in the MT evaluation
process, and to cut it out alltogether will undoubtedly
Save resources.
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We attempt to either prove or disprove the notion
that although a machine translation may seem ineffec-
tive to a human reader, it still holds sufficient correct
information to allow acomputer to adequately perform
the NLP tasks of text classification and clustering on
it. If thisisindeed the case, then even though machine
trandlations may not yet be acceptable as accurate rep-
resentations of works of literaturein their original lan-
guage, they may be far from useless to a computer ca-
pable of interpreting (“understanding”) them.

Ultimately, a trandation should be judged on how
much information it retains from the original text. Fol-
lowing this notion, we judge the effectiveness of a
trandation system by comparing the accuracy results
of acomputer’s NLP task execution on the source text
and the target text. We expect a drop in performance
that can then be interpreted as “acceptable” or “unac-
ceptable,” which serves as an evaluation of the system.
Indeed the drop in performance gives us a quantitative
measure of the trandlation’s effectiveness.

In Section 2, we discuss afew relevant examples of
previous work in the area of machine trandation eval-
uation. Section 3 serves to describe how we collect
data. The various experiments we performed are dis-
cussed in Section 4. In Sections 5 and 7 we share our
results and conclusions.

1.2 Text Classification and Clustering

Text classification and clustering are two common
NLP tasks that have been shown to obtain good re-
sults with statistical approaches. Classifications refers
to the assigning of new documents to existing classes.
The models for existing classes are built from docu-
ments known to belong to the classes. Usually adocu-
ment isassigned to asingle class, but it isalso possible
that a document has multiple class-tags.

Clustering refers to the dividing of a collection of
documents into groups (clusters). These clusters are
not pre-defined, although the number of clusters can
be specified. It is also possible to create a hierarchy
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of clusters, in which a cluster is further divided into
sub-clusters.

Classification and clustering have long been stud-
ied, and there are many effective toolkits for both
tasks. These two NLP tasks are natural choices for
our experiments because they can be effectively per-
formed on our data sets.

2 Reated Work
2.1 MT Evaluation

The BLEU machine translation evaluation system
[3] proposed in 2002 produced very respectable re-
sults, effectively emulating a human trandation judge.
The system produced a score for agiven transation by
comparing it to agroup of “perfect” human-translated
reference texts using n-gram precision values. After
a few necessary details such as a brevity penalty had
been added, the BLEU system’s scores were found
to correlate closely with those given by a variety of
human judges on a group of test data. The main
weakness of this system is its dependency on human-
trandated referencetexts. Althoughit isfar more auto-
mated than older, completely human-dependent “sys-
tems,” which relied completely on human evaluation,
the BLEU method still requires severa correct trans-
lations. This means that, for every new text that the
MT system is tested on, the BLEU evaluation sys
tem must first be presented with good reference texts,
which must be produced by a group of humans. This
can get expensive when a machine trandlation system
is tested on numerous documents, a case that is clearly
possible during the production of atruly effective MT
system.

2.2 Tools

The Bow toolkit [1] was designed for statistical lan-
guage modeling, text retrieval, classification and clus-
tering. It provides a simple means of performing NLP
tasks on a body of newsgroups, and was thus a very
useful tool for us. We produced our results for text
classification and clustering with the help of this sys-
tem.

2.3 Other Related Works

In[4], Weiss et a. showed that newsgroup postings
can be reasonably classified using statistical models.

Palmer et a. [2] investigated the effect of Chi-
nese word segmentation on information retrieval. This
work suggests that well-segmented Chinese text will
improve performances of NLP tasks. Chinese segmen-
tation is an active area of research, partly because cur-
rent systems produce very poor segmentations. Aswe

do not have aworking segmenter for Chinese text, we
expect our results to be accordingly affected.

Finally, Yang [5] gives a good overview of statisti-
cal text classification.

3 Data

The Internet is arich resource for both English and
Chinese texts. Chinese text on the Internet is encoded
using Chinese character sets. There are several exist-
ing Chinese character sets. The most popular ones
are: GB (simplied Chinese), Big5 (traditional Chi-
nese) and UTF-8. Both GB and Big5 use two bytesto
encode one character; UTF-8, a more recent encoding
standard, uses three bytes. The differences between
these encoding standards complicate data collection,
as a data set must have uniform encoding to be us-
able. Character set detection and conversion are re-
quired. In addition, the character boundaries are often
misaligned in online documents, producing corrupted
Chinese text. These need to be removed from the data
Set.

For our experiments, we downloaded newsgroups
articles as our data. Newsgroups are online communi-
ties where people send posts covering many different
topics. There are newsgroups in both Chinese and En-
glish covering similar topics, providing parallel cor-
pora. Postings are self-organized into topics, which
serveas natural labelsfor document classification. The
following data sets were downloaded:

e Data Set 1: Postings from 5 Chinese newsgroups
were downloaded. The newsgroups and their top-
icsare:

— talk.politics.china— (Chinese politics)
cn.bbs.rec.movie — (movie reviews)
cn.sci.medicine — (Chinese medicine)
cn.culture.buddhism — (Buddhism)

cn.comp.software.shareware —  (soft-
ware/shareware)

These newsgroups are chosen such that they are
terminal groups (they are not further divided into
subgroups), and they cover very different topics.
About 800 postings were downloaded. The post-
ingsthat contained corrupted Chinese or were too
short (fewer than 50 Chinese characters) were re-
moved, leaving about 400 to 700 usable postings
from each newsgroup. The total number of post-
ingsis around 2000.

e Data Set 2: English trandations of dataset 1. We
used Altavista's online Babelfish trandation.

e Data Set 3: To create aparallel corpus to data set
1, we downloaded articles from 5 English news-
groups. The newsgroups are:
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— talk.politics.usa— (American politics)
— rec.arts.movies.reviews— (movie reviews)

— misc.hedth.dternative —  (aternative
medicine)

— soc.religion.christian.bible-study — (bible
study)

— comp.softawre.shareware.announce — (soft-
ware/shareware)

These newsgroups were chosen such that they
cover similar topics as data set 1. About 3500
postingsin all, roughly 700 from each group.

o Data Set 4: Chinese trandations of data set 3 us-
ing Babelfish

4 Experiments

4.1 Experiment 1. Classification on Chinese
Source

This experiment serves to compare the accuracy in
performance of text classification on Data Sets 1 and
2: Chinese as source text and English as target text.
We expected a significant drop in accuracy between
the source and target performances, marking a loss of
information in the trandation. A typical member of
Data Set 2, the target English, follows:

Perhaps in the very many movies, the au-
dience already was used to it the good Lai
shipyard -like violence and the love. But
truly could attract the audience or has the
male is positive just the charm actor, they
usually could initiate audience’s favorable
impression even respect. Below is one good
Lai shipyard cinema world first ten very
male ranks announcement.

Clearly the trandated text is not good English,
but it is also relatively clear that the topic of the
posting is the movies, and that the correct newsgroup
classification is cn.bbs.rec.movie, and not one of the
other candidates: cn.comp.software.shareware,
cn.culture.buddhism, cn.sci.medicine, or
talk.politics.china.  The purpose of this experi-
ment is to discover whether a classification system is
ableto correctly classify documents such as this one.

We used the rainbow toolkit to classify the docu-
ments. To get a more rounded and reliable precision
average for each data set, we performed classification
using each of three different methods: Naive Bayes,
TFIDF, and Probabilistic Indexing. Each data set was
partitioned into training and testing sets. Either 80%
or 60% of the documents from each class was ran-
domly selected as traning data to build the class mod-
els. The remaining 20% or 40% was used as testing
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data and were classified. This procedure was repeated
for 5 times each time different subsets was selected as
training and testing data, and results averaged. The
average results from data set 1 and 2 were compared.
Note that the Chinese documents were not segmented,
meaning each character was treated as a token, instead
of aword, which usually consists of several characters.
We expect this to lower classification performance on
the Chinese documents.

4.2 Experiment 2: Classification on English
Source

This experiment serves to compare the accuracy in
performance of text classification on Data Sets 3 and
4. English as source text and Chinese as target text.
Again, we expected a drop in accuracy between the
source and target performances.

4.3 Experiment 3: Clustering on Chinese
Source

In this experiment, we performed clustering on data
sets 1 and 2 using crossbow, which is part of the rain-
bow toolkit. The number of clusters was specified to
be 5, in accordance with the number of newsgroup top-
ics. Note that, since no cluster topics were provided,
the resulting clusters may or may not correspond to
the original newsgroup topics. Indeed it is possible
that articles from one newsgroup be divided into two
clusters, while several newsgroups be merged into one
cluster. However, there is usually a clear correspon-
dence between the clusters and the original topics.

4.4 Experiment 4: Clustering on English
Source

Experiment 4 is a repeat of experiment 3 on data
sets 3 and 4.

5 Reaults

5.1 Experiment 1and 2: Accuracy Results

Classname | 0O 1 2 3 4 | Total | Accuracy
0 | software 318 19 | 1 | 22 360 | 88.33%
1 | health 5 |201| . | 34 330 | 88.18%
2 | movies 2 3 |44 281 330 13.33%
3 | religion 2 10 268 | . 280 95.71%
4 | politics 3 33 114 | 19 | 169 | 11.24%

Table 1. Classification with Probabilistic
Indexing results example for Chinese as
TARGET
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Test-Set Size

Method 20% | 40%
Naive Bayes 90.45 | 90.16
TFIDF 92.35 | 91.79
Probabilistic Indexing | 86.85 | 86.14

Table 2. Classification accuracy, Chinese
as SOURCE

Test-Set Size

Method 20% | 40%

Naive Bayes 92.76 | 93.07
TFIDF 94.32 | 93.35
Probabilistic Indexing | 90.40 | 90.39

Table 3. Classification accuracy, English
as TARGET

Table 1 shows a typica classification result us-
ing documents from the English newsgroups. The
rows represent the original newsgroup topics. The
columns represent the number of documents assigned
to each class. For example, of the 360 documents
from comp.software.shareware.announce, 318 were
assigned to class O (the correct class), 19 were as-
signed to class 1 (mis.health.alternative), and so on.

Tables 2 and 3 summarize results from experiment
1. Each row records results using a specific modelling
method. The size of the testing set was set to be either
20% or 40% of the total number of documents, and the
results are tabled accordingly.

Test-Set Size

Method 20% | 40%

Naive Bayes 97.38 | 97.74
TFIDF 97.60 | 97.97
Probabilistic Indexing | 95.26 | 95.18

Table 4. Classification accuracy, English
as SOURCE

Tables 3 and 4 summarize results from experiment
2, in which original English documents and their Chi-
nese translations were classified.

5.2 Experiment 3and 4. Clustering Results

Tables 6 and 7 summarize results from experiments
3 and 4. In each of the experiments, each data set was
divided into 5 groups, which often corresponded to the
original newsgroups. The clusters were matched with
the newsgroups so that the total number of documents
in wrong clusters was minimized. The second column
in each table shows the number of correctly clustered
documents out of the total number of documents. The
third column gives the percentage accuracy.

Test-Set Size

Method 20% | 40%

Naive Bayes 90.74 | 89.75
TFIDF 96.08 | 96.05
Probabilistic Indexing | 65.42 | 65.38

Table 5. Classification accuracy, Chinese
as TARGET

Texts
Chinese as SOURCE
English as TARGET

Accuracy
1385/1994 \ 69.46%
1431/1994 | 71.77%

Table 6. Clustering Accuracy

Texts Accuracy
English as SOURCE | 1961/3674 | 53.38%
Chinese as TARGET | 1817/3674 | 49.46%

Table 7. Clustering Accuracy

6 Discussion of Results

The results of Experiment 1 are unexpected: the
target text actually performs better on the classifica-
tion than the source text. This should obviously never
occur, unless the machine translation system is so ef-
fective that it actually corrects errors instead of cre-
ating them. Since it is extremely unlikely that Ba-
belfish is such a system, we need an alternate explana-
tion. We propose two hypotheses, namely that either
(1) thetask of classifying Chinese text is somehow in-
herently more difficult than classifying English text, or
(2) the lack of any segmentation in our Chinese map-
ping scheme is causing words to be incorrectly inter-
preted by the classification system. These two factors
could easily be the reason that the results in Table 1
are actually lower than those of the target English in
Table 2.

The results of Experiment 2, on the other hand, are
more as expected. The source English performs much
better than the target Chinese, as can be seen in Ta
bles 3 and 4. These results suggest that the trandation
system did not perform very well; the accuracy aver-
age dropped from 96.68% to 82.86%, a 13.82% loss,
which amounts to an error increase of about 500%. It
is evident from Table 4 that the target Chinese results
suffer greatly from the tests performed with the Prob-
abilistic Indexing method. It is likely that informa-
tion somehow key to this particular method was lost
in the trandation, and that this loss greatly hampered
the classification of the documents. Table 5 shows
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the results of atypical classification test-run using the
Pl method, and it is very interesting to note that the
great majority of postings in the “movies’ and “poli-
tics” newsgroups were incorrectly placed into the “re-
ligion” newsgroup. Reasons for this misplacement
could be any of several possibilities, such as the all-
encompassing nature of religion.

The same trend was observed in Experiments 3 and
4. Clustering result improved from Chinese docu-
ments to English trandations, but deteriorated from
English documents to Chinese translations. One inter-
esting observation is that, clustering performed better
on data sets 1 and 2 than 3 and 4. One possible reason
isthat data sets 3 and 4 are alot bigger (contain almost
twice as many documents).

It is difficult, however, to come up with a concrete
measure of “acceptability” from these numbers. How
do we know what is an acceptable drop in accuracy, or
an unacceptable error increase? The answer to these
questions may depend on the specific purpose of the
MT system under evaluation: if its purpose is ssmply
to provide a general idea of the original text, perhaps
a13.82% drop in accuracy is aperfectly adequate per-
formance; but if its purpose is to provide an accurate,
well-organized text fit for publication (which may be
the purpose of future MT systems), a drop of even 2%
may be unacceptable.

7 Conclusion and Future Directions

In this paper we proposed a machine transla-
tion evaluation system that is not bound to human-
trandated reference texts, instead making use of atext
classification and clustering performance comparison.
We described our experiments in which we evaluated
the Babelfish tranglation system on newsgroup post-
ings. The results were mixed. The Chinese to En-
glish tranglation actually improved classification and
clustering performances, while the English to Chi-
nese tranglation lowered performances. We hypothe-
Size that this is either because Chinese text inherently
does not fit well with the built-in language models in
the Bow toolkit, or that the lack of segmentation ham-
pered performance.

There are some interesting extensions to the ex-
periments described in this paper. It will be interest-
ing to see how much segmentation will improve task
performances on the Chinese documents. We could
also compare performances from other NLP task such
as information retrieval. Finaly, given that there are
many NLP packages for English, and relatively few
for Chinese, it is of practical value to seeif it is pos-
sible to combine NLP packages with some machine
trandation system to obtain NLP packages for other
languages.
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Abstract

This paper describes the design of a lossless
and extensible part-of-speech tagger, with the
intent of illuminating general principles un-
derlying part-of-speech tagging. To this end,
the described tagging program has been de-
signed with form emphasized above perfor-
mance and even above completeness. A key
design premise is that a tagger is most natu-
rally constructed through the implementation
of largely independent methods of inferenc-
ing tags (e.g. analyzing suffixes, analyzing
context). However, occasionally communi-
cation between these methods is necessary,
as is communication of each method’s out-
put to a component that ultimately decides
each word’s part-of-speech. It is argued that
a “stochastic-tag”, implemented as a class and
defined roughly as a set of pairings between
each part-of-speech tag and its hypothesized
likelihood, is an appropriate and perhaps opti-
mal vehicle for communication. Finally, sev-
eral techniques of combining the stochastic
tags returned by methods are evaluated.

Introduction

Deducing the correct part-of-speech (POS) of the vast
majority of words in a testing corpus requires little more
than recalling the POS most frequently assigned to the
same word type in a training corpus of reasonable size.
More sophisticated POS taggers attempt to exceed this
level of performance by correctly tagging 1) words types
not found in the training corpus, and 2) words types with
multiple parts-of-speech (POSes).

The arrangement of POSes is typically viewed as gov-
erned either by a set of simple rules with many excep-
tions or by distributions which deviate from randomness.
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These views correspond to two paradigms between which
most tagging programs are divisible. Rule-based taggers
generate a set of rules for choosing a tag, often including
rules that are exceptions to other rules. Choice of the tag
in the testing corpus is simply a matter of applying the
rules invented during the training section of the corpus.

Stochastic taggers, on the other hand, have much sim-
ilarity to Markov models. They too learn from the train-
ing corpus, but not merely by creating rules to be used
during the testing phase. Their learning takes the form
of improving the accuracy of rules’ parameters. While
there are many taggers that claim to be hybrids, it is per-
haps more natural to view the set of rule-based taggers as
the subset of stochastic-taggers with parameters that may
only hold binary values.

2 Research Goals

This research is motivated by the search for a deeper
understanding of the principles that underlie POS tag-
ging. To this end, a POS tagger has been constructed
from scratch with the goal of learning as much as pos-
sible from the aspects of the document which have been
selected for exploration. Restated, a key design goal is
to model language such that POS deduction can occur
without any loss of information due to processing failure.
While the categories “loss of information due to collec-
tion failure” and “loss of information due to processing
failure” are perhaps not disjoint, an example may clarify
this key distinction. Information available from a word’s
prefix, context, etc. can be lost if no attempt is made
to process that aspect of a word. Information can also
be lost when an aspect of a word is collected, but either
for reasons of efficiency, ease, or oversight some of the
available information is not fully incorporated into the ul-
timate prediction of that word’s POS.

In order to minimize the loss of information due to pro-
cessing, the program’s form is emphasized in the design
process above all else. Thus, some features which could
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have improved accuracy were omitted because they were
not central to building a framework for lossless POS tag-
ging. For one part of the program, for which program-
ming the optimal method proved beyond the scope of this
research, several suboptimal methods were suggested and
clearly marked as suboptimal.

It has already been suggested that designing a tagger
that minimizes loss of information due to processing fail-
ures is a appropriate approach to understanding POS tag-
ging and language. Additionally, if the framework to
which components are added is readily extensible, then
it is likely the framework has captured some truth about
language. Conversely, if the framework designed cap-
tures the complexities of language without using tech-
niques that sacrifice a full understanding either due to
obscure structure (e.g. neural networks) or full consider-
ation (e.g. rule-based POS taggers), then it will be simple
to building new considerations into the existing frame-
work.

[perhaps use this paragraph instead of some of the pre-
vious sentences] The introduction of rule-based taggers is
one way to counteract the incredible complexity of creat-
ing a stochastic-based tagger. The motivation behind this
project is that another method of overcoming the com-
plexity of creating a stochastic model of language is by
placing an explicit focus on structure and simplicity, and
admission of areas of the tagger which will require fur-
ther work, rather than garbling ideas together to avoid
acknowledging the need for future research and to get
higher accuracy measures at the expense of a consistent
methodology for addressing considerations.

3 Program Structure

3.1 Parsing

This research’s emphasis form is natural to accommo-
dated by parsing the training corpus and the testing cor-
pus into separate document objects containing sentence
objects which in turn contain word objects.

Each document is ultimately a series of word tokens
(including punctuation) but the sentence is nonetheless a
relevant unit since it is the largest unit of inferencing. Be-
cause a human reader has no trouble figuring out words’
POSes without looking beyond the current sentence, it is
reasonable that the program not do so either. Of course,
this is assuming that the reader is not using other sen-
tences to learn about the language. The equivalent to a
reader with knowledge of language is the program run-
ning on the testing phase. The exception to this rule is
that words used near a sentence are likely to be used with
the same POS in later sentences. This exception could be
dealt with via horizontally accessed variables. [horizon-
tal?]

Each Word object contains a type, which is the text
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made lowercase of the word (case is another field). Just
as the sentence method handle context sensitive rule de-
duction and application, the word class handles context
free inferencing. Context free inferencing includes oper-
ating a dictionary and set of stochastic rules, and will be
discussed later.

3.2 Stochastic-Tag

In other taggers, each word is associated with one or
at most a few tags. Ultimately, tagging is applying a se-
ries of methods to a given word, and combining the out-
put of these methods. If the output of each method is
merely a tag or set of tags, then combining is probably
best performed by simply picking the POS returned by
all methods. This severely limits the abilities of taggers,
since most methods of inferencing are not totally confi-
dent about and equally confident in the tags in the set that
they report. Naturally, there are ways to work around an
unwillingness of methods to return both the absolute and
relative likelihood of every POS. However, if abstraction
barriers are to be respected (and doing so is key to deal-
ing with the large amount of complexity likely inherent to
dealing with language), then each method must describe
its confidence in its each tag. The stochastic-tag provides
is the vehicle for doing so.

The data portion of a stochastic-tag associates each
POS with a number representing the likelihood that it is
the tag. Accessor methods to return the most likely tag,
the percent likelihood of each tag, and the confidence in
the most likely tag. Additional modifier methods make
automatic some types of adjustments of the likelihood of
a POS. Finally, some more complex methods allow the
averaging and summing of multiple stochastic-tags. Fi-
nally, a product method the confidence in every POS ac-
cording to a vector taken as a parameter.

[should be proofread]In whole, the stochastic-tag pro-
vides a convenient format for relaying the information re-
quired of each component. The proportion of the sum of
the numbers associated with each of the POSes made up
of each number relates the relative likelihoods of each
part. Greater deviation from 1 divided by the number of
POSes indicates greater amounts of information provided
by the component. Similarly, the total sum of the num-
bers provides confidence in the measure. The design of
the components will show how the stochastic-tag’s for-
mat for relaying information is convenient and ultimately
enables inter-component comparison and combination.

4 Context Free Methods

Context free inferencing refers to a set of methods used
to deduce POS that do not consider a word’s context
within a sentence. There are several methods for doing
this.
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4.1 Past Word Type Usage

A single Dictionary object is created to serve as the
store for all the words encountered during the training
phase. During the testing phase the dictionary is used to
retrieve statistics about the uses of the word. Word that
have not been encountered in the training section will not
be found in the dictionary. Similarly, words that have
been encountered only a few times may take on novel
POSes in the testing corpus. Actually, there is a chance
of a word type taking on any formerly unseen POS in
the testing corpus if the word type has only been en-
countered a finite number of times in the training cor-
pus. More generally, given a finite number of encounters
with a word type in the training corpus the sample dis-
tribution of POSes will differ from the true population
distribution for a given word type. There is never a case
where dictionary lookup is certain to be correct, and thus
more information is always potentially helpful to choos-
ing a tag. Since the dictionary tends to be the premere
source of information about a word token’s POS, in the
case of words not found in the dictionary other methods
become especially influential. In isolation of other meth-
ods, the dictionary correctly tags approximately 85% of
words when given a large training corpus. The addition
of a few simple rules such as guessing noun when no in-
stances of the word are found increases accuracy 92%.
However, this type of modification has been commented
out of the program’s code because it is inconsistent with
the stochastic approach underlying this research.

4.2 Past POS Usage

A crude method of guessing POSes is to always guess
the POS that most frequently occurs in the training corpus
without even considering the specific word type. How-
ever, appropriately filling a stochastic-tag requires includ-
ing information other than that the most likely POS has
100% chance of correctness while the other POSes have
a 0% chance of correctness. Rather, accurate informa-
tion concerning the likelihood of each POS must be in-
cluded to avoid unfairly undermining the estimates of
other methods. It is thus more appropriate to fill each field
with the percent of tags in the training document with that
POS. By being truthful about its certainty in each POS,
this component can hope to have its information accu-
rately weighted upon combination with other POSes.

Applied in isolation, this method will guess that ev-
ery word is a noun, with accuracy of approximately 21%.
An example will make clear the value of avoiding the
rule-based method of guessing noun when a word type
is not found in the dictionary, even without consideration
of methods other than “Past Word Type Usage” and “Past
POS Frequency”. Obviously, when “Past Word Type Us-
age” reports that it has seen the word type O times, it
is more reasonable to follow the suggestions from “Past
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POS Usage”. Less obviously, when “Past Word Type Us-
age” reports that it has encountered a certain word token
a small but nonzero number of times, then there still is
some information about smoothing that could potentially
be obtained from “Past POS Usage”.

4.3 Suffix Identification

Some words have suffixes which provide useful hints
as to their POS. For example, words ending in “ly” are
likely to be adverbs while words ending in “ing” are fre-
quently verbs. There are also many endings that provide
less certain mandates, but nonetheless slightly increase
the likelihood of a word taking on a certain POS or de-
crease the likelihood of a word having another POS. More
generally, shared word endings influence the distribution
of probabilities.

‘Words can share suffixes of different lengths with mul-
tiple classes of words. How are multiple shared suffixes
to be reconciled? With a stochastic-tag, of course. The
stochastic-tag features an accumulate function, used to
sum the contents of multiple stochastic-tags. If a word
has one suffix that occurs many times in the testing cor-
pus but provides no clear mandate, then it should be like
adding unbiased white noise to the stochastic-tag. The
number associated with each POS in the stochastic-tag
returned by this component is the number of words with
a matching suffix in the train corpus. If a suffix of length 3
is matched then a suffix of length 2 will also be matched,
bringing up questions of double counting. This is a recur-
ring theme, which tragically is beyond the scope of this
project. Nonetheless, even in isolation this method per-
forms much better than randomness, choosing the correct
tag for approximately 55% of words when recall is set to
35%. Ultimately, there will be no need to manually set
the level of recall, since doing so is inconsistent with this
research’s objectives.

4.4 Affix Transformation

Some words, when stripped of a prefix or a suffix, may
match a word type in the dictionary. However, just be-
cause a word shares a root word with a word in the dictio-
nary does not mean that it has the same POS. In fact, lan-
guages frequently rely on affixes to change a word’s POS.
While recall will be lower for this method than for “suf-
fix identification”, it will be more accurate for the words
it finds, as is illustrated by an example. While “ly” may
be highly correlated with adverb, if the root word is not
itself a verb then “ly” is likely be a red herring (or at least
to be over confident).

In practice this method is useful only when recall is set
at less than 12%.
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5 Context Sensitive Methods

There is also information available about a word’s POS
based on its location and surroundings within a sentence.

5.1 Preceding Word’s Type

Certain words tend to immediately precede words of
certain POSes. For example, “the” tends to precede a
noun. By identifying these words in the testing corpus a
stochastic-tag can be returned indicating all information
relevant to each word.

5.2 Surrounding Words’ POSes

Words with certain POSes tend to be located in the
same position relative to other words with certain POSes.
For example, articles tends to precede nouns, either di-
rectly or perhaps with an adjective in between the arti-
cle and the noun. By identifying these words in the test-
ing corpus a stochastic-tag can be returned of the sus-
pected POS distribution of the current word. However,
there is one major difficulty with this method that was
not relevant to the “Preceding Word’s Type” component.
The type of the preceding token is certain, so applying
the data collected from the training corpus is not diffi-
cult. During the training phase it is not permissible to use
the truth about the previous words POSes to deduce the
current word’s POS. An estimate must be substituted for
the truth, and for simplicity this estimate comes from the
previous word’s dictionary-based tag. Again, unlike the
truth, the dictionary-based tag is a stochastic-tag, and so
it does not clearly specify one POS. Using the “product”
function of stochastic tag it is possible to use this tag as
a vector for scaling distribution for each POS, and subse-
quently accumulating the resulting stochastic-tags.

6 Techniques for Combining Methods’
Opinions

For each word, each method must not only suggest the
most likely POS, but must suggest the likelihood of each
element of the set of POSes. This approach largely iso-
lates the methods, such that additional code is needed to
combine the methods’ outputs. Since the return type of
each of the methods is a stochastic-tag, the most natural
method of combining the information they contain is to
create one “meta-stochastic-tag”, and only then pick the
POS deemed most likely by the “meta-stochastic-tag”.
Incidentally, leaving a “meta-stochastic-tag” associated
with each word instead of just its most likely POS al-
lows for more accurate context sensitive inferencing of
neighboring words.

6.1 First Technique: Use Case Statements

A crude technique of combining the stochastic-tags re-
turned by each component can be implemented using a
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series of case statements. Let the internal stability of a
stochastic-tag be the maximal deviation of the estimated
probability of any POS from a value denoting no informa-
tion (i.e. \Po—lsm)' Then, if the internal stability of the
stochastic-tag returned by the “Past Word Type Usage”
method is greater than O (i.e. the word type was encoun-
tered in the training corpus), let the meta-stochastic-tag
be the “Past Word Type Usage” tag. Otherwise, use the
suffix identification method’s return value as the meta-
stochastic-tag if the internal stability claimed by the suf-
fix is over 50%. Precede in this fashion through the re-
mainder of the methods, assigning the tag returned by
“Past POS Usage” as a last resort.

Clearly this method is quite imperfect. The most glar-
ing problem is that so little use is made of the infor-
mation provided by the stochastic-tags returned by each
methods. While with this technique each method’s return
value could potentially influence the final selection of a
word’s tag, the way this is achieved is far from optimal.

6.2 Second Technique: Pick the Most Confident
Opinion

A superior technique lets the meta-stochastic-tag equal
the method’s output that makes the strongest claim to cor-
rectness. Without combining tags, even in theory no bet-
ter choice can be made than choosing the method’s output
with the greatest internal stability (previously defined).

While conceptually this technique is an improvement
over the first technique, it is still lacking. Recall that the
motivation for introducing stochastic-tags was not to di-
rectly pick the method claiming to be the most certain.
Rather, it was to allow the unbiased combination of in-
formation returned by various methods. These first two
techniques are similarly suboptimal in that they both dis-
card all of the returned tags except for one. Assuming
that the components are accurately reporting the likeli-
hood that they are correct, this does not preclude their
being valuable information in the tags returned by the
other components. Even given credible evidence, one is
still aided by the collection of less credible pieces of evi-
dence. Perhaps multiple pieces of less credible evidence
all point mainly towards the same POS, thus overwhelm-
ing the most credible evidence.

6.3 Third Technique: Sum POS Histories

For this technique combination is performed by sum-
ming the number associated with each POS. Recall that
this number as a proportion of the sum of the numbers
associate with all of the POSes is the likelihood that this
POS is correct, at least from the perspective of a particu-
lar method. However, this number is not a likelihood in
isolation of the other POSes. This number is generated by
seemingly similar processes across methods; when an in-
stance is encountered a stochastic-tag’s noteOccurrence
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method is called, which increases the count of the ap-
propriate tag by 1. However, the tags returned by “Past
POS Usage”, for instance, will be called many times
yet contains little information not accounted for by the
dictionary-lookup method. However, with so many calls
made to noteOccurrence, the stochastic-tag returned by
“Past POS Usage” method will overwhelm other meth-
ods, effectively always choosing one of the least accurate
tags. It was eventually realized that this number was not
necessarily comparable among tags returned by different
methods. This technique is discussed because its failings
highlight a key difficulty in combining stochastic output
from methods that generated their output in isolation.

6.4 Fourth Technique: Sum or Multiply POS
Likelihoods

The simplest attempt at remedying the very fundamen-
tal problem raised by the third technique is to sum or mul-
tiply the likelihood of each POS instead of combining the
number of calls to noteOccurrence. While dealing with
percentages clearly improves on the unworkable model
suggested by the third technique, in a way it is a step
backwards. Certainly by using the percent rather than
the number of calls to noteOccurrence the use of some of
the most important features of the stochastic-tag are pre-
served: Summing two stochastic-tags that represent the
same distribution will result in the same distribution of
percentages. Multiplying a stochastic-tag that is 100%
confident in one POS by another tag typically also gives
returns a tag that is 100% in the appropriate POS. Both
of these results are desirable. However, switching the
tags that were summed in the previous example with the
tags the were multiplied in the previous example provides
counterexamples to the correctness of both methods.

Moreover, by dealing with likelihood instead of the ab-
solute number, the ability to cope with small sample size
is limited. Given the large number of English word types
and the even larger number of bigrams, small sample size
will be an issue even with the largest of corpora. More-
over, even if sample size was finite but not small, combin-
ing the stochastic-tags without loss of information would
still require knowledge of the sample size.

6.5 Fifth Technique: Use Information External to
the Methods

Before learning from a sentence of the training cor-
pus, the tagger attempted to tag the sentence based on
the data collected from the sentences that preceded it. It
then preceded to judge its accuracy at tagging that sen-
tence. Using a procedure which simulated the operations
of a Kalman filter, a prediction of the current accuracy
of each method was maintained throughout training. (A
Kalman filter is a procedure which adjusts for the Gaus-
sian distribution of noise.) By the time the tagger had fin-
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ished learning it knew the optimal estimate of how each
method would perform throughout the testing phase of
the document, during which time it would be unable to
improve itself since it did not have access to the truth.

Using a Kalman filter-like procedure generates the op-
timal estimate of how the tagger will perform on the train-
ing corpus. Many other methods would have resulted in
worse performance. Method’s accuracy from earlier is
not a good indication of its current level of performance,
since the method become more accurate as it trained.
Also, a method’s performance on the previous sentence
would have been a poor way to gauge accuracy, since
the previous sentence may have been unusually difficult
or unusually simple to tag. Waiting until the tagger has
processed the whole training corpus to gauge the abili-
ties of the tagger also would not have been a good alter-
native; measures obtained from testing on the document
on which training has occurred are largely meaningless.
Finally, reserving part of the training corpus for testing
prior to the actual testing is wasteful and suboptimal.

Based on the judgment of each method’s accuracy,
those methods consistently performing closer to their pre-
dictions were given appropriately more weight, using the
stochastic-tag’s accumulateByMerit function. Note that
accuracy for a stochastic-tag is rarely a simple correct
or incorrect, but rather the degree to which it is correct.
A stochastic-tag’s accuracy is the percent with which it
votes for the correct tag. While it was heartening that
accuracy could be so aptly defined, second guessing the
internal measures of correctness entailed overwhelming
complexity; further attempts along this trajectory were
abandoned.

6.6 Suggestions for Future Research

Further development of the stochastic-tag is necessary
if the output of methods is to be combined losslessly.
Specifically, each method must accurately report more
than the likelihood of each POS. Rather, each method
must also adjust its output to account for the size of its
sample. Modifying the “Past Word Type Usage” method
such that it will adjust for sample size could be done per-
haps by using the t-distribution to generate confidence
intervals surrounding each estimate of POS likelihood.
Generating confidence intervals around the unbiased es-
timates of several other methods would also be possible.
Modifying operations on stochastic-tags to accommodate
confidence intervals is well beyond the scope of this pa-
per.

The covariance between methods also needs to be con-
trolled. For example, when a word token has occurred
often in the training corpus, “Past POS Usage” offers
nothing that is not accounted for “Past Word Type Us-
age”. Similarly, “Suffix Identification” is largely re-
dundant when “Affix Transformation” is highly relevant.
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Controlling for covariance is a standard method used
when performing regression analyses, so perhaps those
methods could be incorporated.
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Abstract

We describe a hybrid Word Sense
Disambiguation (WSD) system using the
context-based frameworks of both Word
Space and Semantic Space. We develop
confidence measures for the results
generated by each model. To solve a WSD
task, each classifier is run independently
and the results combined using the
confidence measures. The result is a more
robust solution to the disambiguation task.

1. Introduction

Word Sense Disambiguation (WSD) remains a
difficult problem in natural language
processing. The source of the problem lies in
the ambiguity of language — many words, in
many languages, have different meanings in
different contexts and situations. An often
used example is the English word ‘bank’,
which has the institutional sense (as in
‘National Bank’) and the shore sense (‘river
bank’), among others. Native speakers
develop an intuitive ability to recognize these
distinctions, but it is difficult to translate this
ability into computational algorithms or
models.

A variety of approaches have been
attempted, ranging from statistics-based to
connectionist methods. We focus on the Word
Space and Structured Semantic Space
approaches to WSD, two methods that
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develop the idea of modeling a language as a
vector space. In the case of Word Space, a
vector space is constructed for a particular
word we wish to disambiguate, and spans all
possible context words with which that word
appears in a training corpus. Each instance of
the ambiguous word is represented by a single
point in this space. Structured Semantic Space
is constructed similarly, but uses semantic
information about context words rather than
the words themselves, and models an entire
language as opposed to a single ambiguous
word.

Given the two methods’ mutually
independent  information = domains, we
hypothesize that a hybrid system using both
methods can take advantage of the strengths of
each method while compensating for their
weaknesses. One explicit way we hope to
achieve this is by developing confidence
measures for the results of each method and
taking these into account when forming our
final result.

The remainder of the paper is
organized as follows: Section 2 explains the
concepts of Word Space and Semantic Space
in more detail. Section 3 describes our hybrid
system and confidence measures for the
results produced by Word Space and Semantic
Space. Section 4 describes our implementation
of this system. Section 5 presents our results,
of which a discussion follows in Section 6.
Finally, Section 7 describes possible future
work.
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2. Related Work
2.1. Word Space

A Word Space (Schiitze, 1992) is an n-
dimensional space of contexts of a particular
word w, where n is the total number of unique
words that co-occur with w in a training
corpus, and each dimension of the space
corresponds to one such unique word. Co-
occurrence is determined by considering a
window of a fixed number of characters
before and after each instance of the word w in
the training corpus. For example, a window of
1000 characters would include all words
within 500 characters of an instance of w, both
before and after.

A Word Space is built by taking every
instance 7 of w in the training corpus. A vector
representing i can be generated by considering
all of the words in the context window of w
along with their frequencies; the vector is non-
zero in those dimensions which correspond to
the words in the context window.

If the context of an ambiguous word is
a good indicator of which sense it carries (this
assumption is the basis for many WSD
techniques), then the vectors associated with
similar senses of w should have spatial locality
in the Word Space for w. Vectors which are
close to each other can be grouped into
clusters, and the centroid of a cluster (the
average of all vectors in the group) can be
thought of as the "sense" for the cluster.
Therefore, a small number of centroid vectors
representing senses of w also exist in the
Word Space of w.

WSD is accomplished by comparing the
vector representing an instance of w in the test
set to each of the centroid vectors determined
through clustering, and assigning it the sense
of the nearest vector, using cosine of the angle
between the vectors as a metric. However,
unless we assign a dictionary definition to
each centroid vector as well, that w has been
determined to carry the sense of a certain
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cluster means very little; we don't know what
the cluster itself means! Schiitze allowed
assigning of real-world definitions to clusters
by hand in his work with Word Space. Sense-
tagged corpora can be used to automate this
process of assigning definitions.

2.2. Structured Semantic Space

The Structured Semantic Space approach to
WSD (Ji and Huang, 1997) is reminiscent of
Word Space insofar as it involves creating
context vectors and clustering them according
to a similarity metric within an n-dimensional
space. In the ‘"sense space", however,
similarity is measured with respect to the
semantic categories of the context words
rather than the context words themselves.
Each of the n dimensions of the sense space
corresponds to a semantic category, as defined
in a dictionary resource such as Roget's
Thesaurus. Additionally, a corpus tagged with
semantic senses is required to construct the
context vectors of monosense words, which
outline the sense clusters in the space. The
relevance of each particular semantic category
¢ to the sense of the monosense word w is
captured by a salience value, given by the
formula:

[{w:lce NC}I

Sal(c,w) = .

where NC; is the set of all semantic codes for
neighboring words of instance i of word w,
and £ is the total number of occurrences of w.
Each unique w that appears in the corpus is
therefore represented by a context vector of
length equal to the number of semantic
categories, where the c'th element of the
vector is equal to the salience of semantic
category ¢ with respect to w:

cvy, = <Sal(c;,w), Sal(ca,w),....Sal(ci,w)>.
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The similarity (distance) metric
between two context vectors is defined as (1 -
cos (cvl, cv2)), where cos(cvl, cv2) is the
cosine of the angle between the two vectors. A
tree-based algorithm that iteratively merges
the most similar context vectors together is
then used to partition the set of context vectors
into a number of sense clusters. A sense
cluster is characterized by its centroid.

Actual disambiguation of a word takes
place in two steps. First, the words within the
context window of an instance of an
ambiguous word are used to create a context
vector consisting only of 1's and 0O's. This
vector is compared to all sense clusters in the
space using the distance metric described
above, and all clusters within a certain
threshold distance are "activated", or selected
as candidates for the next step. Second, a
context vector is created for each dictionary
sense of the ambiguous word, based on the
contents of a collocation dictionary. The
distance between each dictionary sense vector
and each activated cluster is calculated, and
the sense minimizing the  distance
(maximizing similarity) is selected for the
ambiguous word.

3. A Hybrid Approach

We describe a hybrid system combining
features of the above mentioned methods with
the following two goals in mind: 1) automatic
assignment of real-world senses to sense
clusters in Word Space, and 2) increased
performance by employing Word Space and
Semantic Space in parallel and combining the
results of both methods, taking into account
available confidence measures.

3.1. Automatic Tagging of Word Space
Clusters

We present a method for implementing
unsupervised tagging of Word Space clusters.
The method requires a sense-tagged corpus,
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and simply involves assigning the sense with
the highest representation in a cluster to that
cluster. For any ambiguous word, the more
consistent the mapping between senses and
clusters in the Word Space, the more
confidence we have in the disambiguation
result. If the sense-tagged corpus is small, the
clusters can first be generated from a larger,
untagged corpus. The cosine similarity
between context vectors for instances of each
sense of the ambiguous word in the sense-
tagged corpus and the cluster centroids is then
computed, and the vectors are assigned to
their closest clusters. We tally the number of
times each particular sense was assigned to
each cluster, and expect the tally to be high for
only one sense per cluster, indicating that the
cluster is representative of that sense.

We define a representativeness
measurement for each sense s of ambiguous
word w in cluster ¢, given by

"
nC

S

R(c,s)=

n,

where s.1s the number of occurrences of sense
s in cluster ¢, n. is the total number of sense
occurrences in ¢, s; is the total number of
occurrences of sense s in the corpus, and n; is
the total number of occurrences of w in the
corpus. The numerator describes the ratio of
sense s in cluster ¢, while the denominator
normalizes according to the number of times s
appears in the corpus. For word wy, a
representativeness value of 1 for sense sy
indicates that the distribution of sy with respect
to all senses of wy in cluster ¢y is the same as
the distribution of sy with respect to all senses
of wy in the entire corpus. Given that vectors
are clustered by similar contexts, we assume
that the more similar a cluster’s sense
distribution is to the sense distribution of the
corpus, the less “unique” the context
represented by the cluster is to its senses.

Appeared iniProceedings of the Class of 2003 Senior Conferepages 46-54
Computer Science Department, Swarthmore College



Under this assumption, cluster ¢y provides no
information for disambiguating sense sy. Thus,
representativeness estimates how reliable
disambiguation based on a particular cluster
will be. (For convenience’s sake, we take the
natural log of representativeness values in our
system, shifting the value of neutral
representation from 1 to 0. Positive
representativeness will always mean a sense is
well represented in a cluster, and negative
representativeness will always mean the
opposite. The characteristic representativeness
of a cluster is its largest positive
representativeness value. We test the utility of
this measurement in our experiments.)

3.2. Improving Performance by Employing
Word Space and Semantic Space in Parallel

The orthogonality of different WSD
techniques suggests that wusing multiple
methods will improve overall performance.
Our approach is to apply both Word Space-
and Semantic Space-based disambiguation in
every disambiguation event. As Ji and Huang
point out, a confidence rating is implicit in the
Semantic Space distance calculated between
word senses and activated clusters; if this
distance is large, it is very unlikely that the
system will select the correct sense.

Our intuition is that an analogous
confidence rating is implicit in Word Space
distance calculations as well. If the distance
between a word's context vector and its
potential sense clusters is large, or if the sense
clusters are all more or less equidistant from
the context vector such that no single sense is
strongly preferred over the others, we should
put less faith in the system's determination.

Intelligent consideration of these
confidence measures in conjunction with the
results of both disambiguation methods should
allow the hybrid system to show improvement
over each individual system.
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4. Implementation

Our implementation of Word Space involves
the following steps: First, we parse a corpus,
searching for occurrences of words in a list of
target ambiguous words. We build context
vectors for each occurrence. Second, we
reduce the dimensionality of the context
vectors to 100 by means of Singular Value
Decomposition in order to facilitate clustering
by AutoClass, a program for clustering data
by modeling the data as mixture of
conditionally independent classes. (For
comparison, the average unreduced context
vector length in our experiments was 18145.)
Next, we run AutoClass to generate clusters
from the vectors of reduced dimensionality.
The results tell us which vectors belong to
which clusters; we use this information to
compute the centroids of the clusters in the
original space. Finally, to perform WSD on an
instance of an ambiguous word we construct
its context vector, find the cluster with the
highest cosine similarity to it, and assign the
most representative sense of that cluster to the
word.

In order to test the performance of the
Word Space classifier in the absence of a
sense-tagged corpus, we use pseudowords
(Schiitze, 1992). A pseudoword is a set of two
or more monosense words having different
senses which we consider to be a single word
with multiple senses. For testing purposes,
pseudowords may then substitute for a sense-
tagged corpus: for example, we can pick two
words, ‘house’ and ‘dog’ and treat them as
one word with two senses, a ‘house’ sense and
a ‘dog’ sense.

To evaluate the Word Space
component, we ran four different experiments,
with (CITY, HOME), (FACE, WAR),
(CHILDREN, HAND), and (EYES, SYSTEM)
as our pseudowords. We selected only nouns
under the assumption that they possess the
most distinct context vectors. Our context
window of choice was 1000 characters wide,
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which Schiitze found to be ideal in his
experiments. We trained on the Brown Corpus
and tested on a 1 million word WSJ corpus.
Since word frequencies between the two
corpora are significantly different, we also test
using the Brown corpus, with the idea that it
can hint at the “best case” performance
potential of our system. The distribution of the
pseudowords in the corpora is given in Table
1:

Pseudoword Brown WSJ
corpus corpus
CITY/HOME 4157547 | 316/795
FACE/WAR 314 /310 | 167 /167
CHILDREN/HAND | 372 /419 | 220/ 103
EYES/SYSTEM 304/404 | 36/479

Table 1. Frequencies of pseudowords in corpora

We test the wusefulness of the
representativeness measure (section 3.1) by
disregarding clusters in order of increasing
representativeness value and noting the effect
on precision. Finally, we look for a correlation
between correctness of disambiguation and the
distance from the ambiguous words’ context
vectors to the closest cluster centroids.

We implement Semantic Space in the
following manner: First, we parse the public
domain 1911 version of Roget’s Thesaurus
and create a database of semantic categories.
Second, we map word-POS pairs that appear
only under a single semantic category to the
headers under which they appear, discarding
all word-POS pairs which appear in multiple
categories. These are the monosense words we
are able to identify in a POS-tagged corpus.
We then semantically-tag the Brown Corpus.
To build the Semantic Space, we follow the
same procedure as described in section 2.2,
with the exception that we choose to try
AutoClass as our clustering method instead of
the trie method described by Ji and Huang. To
test disambiguation, we construct a
pseudoword by selecting two or more words
with distinct senses from the tagged,
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unambiguous words. Next, we can generate
the equivalent of a collocation from the
context of the selected words. Because this
collocation is generated from a corpus which
may not be representative of all contexts in
which the words may appear, it may not be as
general as a collocation taken from a
collocation dictionary. However, we hope it
adequately reflects the semantic nature of
most contexts. If the content of the test corpus
is of the same genre as that of the training
corpus, we expect this to be the case. A larger
and more representative training corpus may
obviate this problem.

To simulate disambiguation of the
pseudoword in a test corpus, we follow the
same procedure as described in section 2.2.
We search for occurrences of the pseudoword,
using the semantic-category thesaurus to tag
context words, and from these build either
normalized Boolean or frequency vectors. We
activate nearby sense clusters in Semantic
Space with this context vector, and determine
which word in the pseudoword set is closest to
one of the activated clusters, according to the
collocation for each such word found earlier.

Unfortunately, due to time and
computer hardware limitations, we have to
date been unable to obtain useful data from
the Semantic Space component of our system.

5. Results

Tables 2, 3, 4, and 5 summarize the results of
our experiments with regard to the
representativeness measure. The first row
shows the precision of the system taking into
account all clusters; each successive row
drops the cluster with the lowest
representativeness value until only one cluster
is left. The second column shows the results
using the WSJ corpus; the last column shows
the result using the Brown corpus.

The recall value for all experiments is
100%, because our system in its current form
returns an answer for every instance of the
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# clusters WSJ Brown # clusters WSJ Corpus Brown
dropped Corpus Corpus dropped Corpus
0 455856 587929 0 313665 .635572
1 455856 551509 1 31677 .631841
2 35045 547347 2 319876 .646766
3 35045 .569199 3 .60559 656716
4 410811 578564 4 .590062 .661692
5 .384685 573361 5 .590062 .655473
6 317117 562955 6 .639752 .619403
7 501802 57232 7 .649068 61194
8 547748 .619147 8 .680124 468905
9 .363063 526535 9 .680124 468905
10 361261 .539022 10 .680124 468905
11 284685 430801 Table 4. Precision results for Test #3
12 .284685 430801
Table 2. Precision results for Test #1 # clusters WSJ Brown
dropped Corpus Corpus
# clusters WSJ Brown 0 .680934 .818293
dropped Corpus Corpus 1 .363813 .858537
0 462462 659905 2 363813 859756
1 477477 677804 3 .344358 858537
2 477477 71957 4 .392996 .868293
3 468468 720764 5 441634 871951
4 459459 626492 6 929961 510976
5 435435 610979 7 929961 210976
6 45045 613365 8 929961 510976
7 465465 713604 9 929961 | 510976
3 513514 554893 10 929961 510976
9 498498 557279 11 929961 510976
12 929961 510976

Table 3. Precision results for Test #2

ambiguous word — no thresholding or other
means of filtering results are currently
employed.

Figure 1 shows the results with respect
to the distance values for the experiments
using the WSJ corpus in graphical form, while
Figure 2 shows the results for the same
experiments using the Brown corpus. Note
that the values on the vertical scale are cosine
similarity values; thus, a low cosine similarity
value indicates a large distance.
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Table 5. Precision results for Test #4

6. Discussion

Generally, our results do not match the
reported performance in Schiitze’s paper. We
believe that this may be due to training data
sparseness. Another reason for the low
performance on the WSJ tests is the fact that
we are testing on a different corpus than the
one we are training on; the Brown and WSJ
corpora might have sufficiently different types
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of information that the context vectors are too
dissimilar to  produce good  results.
Nevertheless, despite the overall low
performance, we wish to discuss several
trends that we observed.

6.1. Representativeness

An interesting trend we observed is that in all
four tests and with both testing corpora (with
the exception of test #4 using the WSJ corpus;
we provide an explanation of this anomaly
later), the precision of our system is never at
its peak with all clusters used. Instead, as we
drop the first several clusters, a general trend
of increasing precision sets in, leading up to
the peak performance. A possible explanation
is that because the dropped clusters have low
representativeness values, they contribute little
to word sense disambiguation. In fact,
allowing these clusters to remain in the system
impairs performance by “attracting” context
vectors in their vicinities that otherwise would
be assigned to sense clusters with higher
representativeness values. As we drop even
more clusters, we begin to lose important
clusters and the system performance degrades.

Note that towards the end of each
column, the precision values have a tendency
to remain constant. This indicates that all
remaining clusters lean towards the same
sense; all instances of the ambiguous word are
automatically assigned that sense, and the
precision value obtained is identical to the
ratio of that sense in the testing corpus. In the
case of test #4, this leads to an absurdly high
precision value of 93% when using the WSJ
corpus for testing. Of course, no attention
should be paid to these values.

As mentioned earlier, Test #4 using the
WSIJ corpus performs best when all clusters
are considered. However, during the clustering
phase of the Word Space, the most populated
cluster turned out to be representative of the
SYSTEM pseudosense. At the same time, this
cluster’s representativeness value was the
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lowest. We also recall that the WSJ corpus has
a SYSTEM/EYES ratio of 479/36. Thus, the
high initial precision can be attributed to the
fact that the SYSTEM cluster described above
very likely attracted many context vectors
during the testing phase (since it attracted the
most context vectors during the training
phase), and since there were many more
SYSTEM instances than EYES instances in
the testing corpus, these taggings turned out to
be correct. Once we dropped that cluster,
some of these context vectors were assigned
incorrectly to EYES clusters, thus lowering
the performance.

Another exception to this trend is
found in Test #3 using the WSJ corpus, which
fails to exhibit the behavior of dropping
precision as more clusters are dropped. This
can be explained by two facts: that the highest
representativeness clusters were all of the
CHILDREN pseudosense, and. that
CHILDREN appeared twice as many times as
HAND in the test corpus.

Another interesting trend is that there
seems to be some correlation between the
points of highest precision when using the
Brown corpus and when using the WSJ corpus.
This suggests that the training corpus used to
generate a Word Space can also be used to
find the optimum cutoff point for dropping

clusters and  thus  optimize  actual
disambiguation.
6.2. Distance value as confidence
measurement

Figures 1 and 2 show that there is very little
consistency in the cosine similarity values
between correctly and incorrectly classified
instances. The average cosine similarity of the
correctly classified instances was greater than
incorrectly classified instances in some cases
(for example, test #2 in Figure 1), whereas in
the other cases, surprisingly, the opposite was
true (test #1 in Figure 1). In the Brown corpus
results, the values were generally too close
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together for any distinction between correct
and incorrect classifications to be reasonable.
We conclude that distance to the closest
cluster is not a good confidence measure for
results obtained from Word Space.

7. Future Work
Future work would of course entail
completing our proposed hybrid system,

followed by implementing a voting system
between the Word Space and Semantic Space
components of the system. Although we found
the distance to the closest cluster in Word
Space to be an unreliable confidence measure,
perhaps the representativeness measure can in
some way be used instead.

Performing additional experiments
using new pseudowords would allow us test
the validity of our interpretation of the
relationship between the optimal cutoff point
for dropping clusters in the training corpus
and testing corpus.

Another way of using the
representativeness measure could be to
perform screening on disambiguation results.
Instead of dropping clusters, we could set
some minimum representativeness threshold.
For disambiguation attempts that do not break
that threshold, we do not return an answer,
thus lowering the recall rate of the system. But
since clusters with low representativeness
values in general do not disambiguate well,
we expect the precision to increase as a result
of the thresholding.

We would also like to experiment on
different languages with the hybrid system. Ji
and Huang claim that the Semantic Space
approach is language independent; we expect
Word Space to be as well. We currently have
the resources to perform tests in Chinese.

We have also discovered that the
AutoClass clustering package generates some
weight measures for each class found during
the clustering process. This information can
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possibly be used to supplement existing
confidence measures.
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Abstract

This paper presents a minimally-supervised
system capable of learning Malay affixation. In
particular, the algorithm we describe focuses
on identifying p-similar words, and building
an affix inventory using a semantic-based ap-
proach. We believe that orthographic and
semantic analyzes play complementary roles
in extracting morphological relationships from
text corpora. Using a limited Malay corpus, the
system achieved F-scores of 36% and 86% on
prefix and suffix identification. We are confi-
dent that results would improve given a larger
Malay corpus. In future work, we plan to ex-
tend our algorithm to include automatic discov-
ery of morphological rules.

Introduction

1.1 Overview

Similarly, the allomorphs opeN- are pe- pem; pen;
peny; peng; and penge- The use of the allomorphs
of meN; which parallels that opeN- is illustrated as
follows:

(a) me-is typically used with stems that begin with
the letters |, m, n, ng, ny, r, w or y. For exampiee-+
‘nanti’ (wait) = 'menanti’ (to wait).

(b) mem-is typically used with stems that begin with the
letter b, or cognate verbs that begin with f, p, or v. For
examplemem-+ 'beri’ (give) = 'menberi’ (to give), and
mem-+ 'proses’ (process) =menproses’ (to process).

(c) men-is typically used with stems that begin with the
letters ¢, d, j, Sy, z or cognates that begin with the letters t
or s. For examplanen-+ 'cari’ (search) = mercari’ (to
search), andhen-+ 'sintesis’ (synthesis) =mersintesis’

(to synthesize).

(d) meng- is typically used with stems that begin
with vowels, the letters g, gh, kh, or cognates that
begin with k. For examplemeng-+ 'ambil’ (take) =
"men@mbil’ (to take), andmeng-+ 'kritik’ (critique) =
"mendritik’ (to criticize).

There are over 18 million speakers of Malay in Unitecke) meny-is typically used with stems that begin with
Arab Emirates, the US, and southeast Asian countrigfe |etter s, which is dropped in the inflected form. For
such as Malaysia, Indonesia, Brunei, Singapore, Thagxample meny-+ 'sumpah’ (swear) =menympah’ (to
land, and Myanmar (Ethnologue, 2002). Malay uses bot\year).

Roman and Arabic scripts, and belongs to the Westeify menge-is used with monosyllabic stems. For exam-
Malayo-Polynesian group of languages in the giant Ausgle, menge-+ 'cat’ (paint) = ‘mengeat’ (to paint), and
tronesian family of over 1200 languages (Ethnologuenenge-+ 'kod’ (code) = 'mengéod’ (to encode).

2002).

Unlike prefixation, suffixation in Malay never results
Malay morphological processes include affixation” & change tq the stem, -an, and-kan are the only
.three suffixes in the language. These suffixes can be at-

(prefixal, suffixal, and infixal) as well as reduplication,t hed t dsto f b 4 adiecti F
however, prefixation is one of the most productiveaC € ov,vc')r, stoform ’?0”']5.' y,er S.anda ]e,c |v'e,s. or
xample, 'air’ (water) +i = ’airi’ (to irrigate), 'lukis

of these processes. There is a total of 21 prefixesfu +an= lukisan (drawi d Kirim’ d) +
Malay (Tatabahasa Dewan, 1993) and the more comm raw), -an=ukisan ( rawmg)z and ‘kirim’ (send)
-kan = 'kirimkan (to send). Suffixes can also be com-

ones includemen; pens ber- se5 ter-, anddi-. (See . ) )

Appendix for the full list.) With the exception ahen- bined with prefixes.peN-andke- are frequently com-
and pens prefixes typically do not result in changesb'ned W|.th—an to form nouns, while combinations like
to the stem. However, prefixamen; pens and their meN-...-j meN-...-kandi-...-i, di-...-kan ber-...-kan and
allomorphs (which we will denote asieN-and peN- ber-...-angenerally form verbs.
respectively), take on different forms depending on the In addition to prefixes and suffixes, Malay has four
initial letter of the stem. The allomorphs of the prefixinfixes, namely-el-, -em5 -er-, and-in-. Compared to
meN-are me; mem; men; meny; meng; andmenge- the other two affix categories, infixes are used relatively

1.2 Malay Morphology
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infrequently since only a very small subset of words irtive tongue. Nevertheless, a recent check on Google re-
Malay take infixes. The following are examples of suctvealed that there is still no option to limit a search query
words: ’tunjuk’ + -el- = 'telunjuk’ (index finger), 'gi- to only webpages written in Malay. Furthermore, while

lang’ + -em- = 'genilang’ (splendid), 'gigi’ + -er- = a Malay grammar and spell checker is currently available
‘gerigi’ (serrated), and 'sambung’ #in- = 'sinambung’ on Microsoft Word, a quick check showed that it does
(continue). not catch errors that pertain to word order or incorrectly

Nested affixation occurs in Malay as well. Fortunatelyjnflected words.
unlike some agglutinative languages, no more than threeIn this paper, we propose an algorithm that automati-
layers of affixation is allowed in Malay. For exam-cally induces a subset of Malay morphology. In partic-
ple, the stem 'orang’ (person) can be prepended wittlar, this algorithm takes as input a text corpus and pro-
the prefixse-to form the word seorang’ (alone), fol- duces as output an affix inventory of prefixes and suffixes.
lowed by the layeke-...-an resulting in kes@rangan’  This system ignores infixes since they are not productive
(loneliness), and finally the prefber- to form the word in modern Malay and their use is limited to a very small
"berkeserangan’ (to suffer from loneliness). Similarly, subset of words (Tatabahasa Dewan, 1993).
the word 'kesinambungan’ (continuity) can be decom- Although Malay is a reduplicative language, word
posed tdke-+ s +-in- + ambung +an, in which the stem reduplication will be ignored here as well since the goal
'sambung’ (continue) undergoes two layers of affixationof this system is to obtain an affix inventory for a highly
Aside from nested affixation, reduplication is alsoprefixal language, not to perform a complete morpholog-
common to Malay. Reduplication is the process of reical analysis of Malay. The proposed algorithm can be
peating phonological segments of a word. There arésed as part of the design of a complete morphological
three types of reduplication in Malay, namely full andanalyzer. Since Malay morphology is similar to that of
partial reduplication, and reduplication that results in andonesian, this algorithm is likely to be portable to In-
certain rhythmic phonetic change (Tatabahasa Dewafipnesian as well.
1993). The first two processes typically produce in-
definite plurals and words that convey a sense of r Related Work

semblance or homogenity, while the latter usually regiost of the existing morphological analyzers focus
sults in words that describe repetitive or continuous agsn, suffixal languages. With the exception of Schone
tions, heterogenity, and level of_intensity or extensivez g Jurafsky (2001), whose work we will describe in
ness. For example, "pulgulau (!sland?) results from  gection 2.1, few have considered prefixes, circumfixes,
Fhe ,f“"’ duplication of the word "pulau’ (island) while j,syes or languages that are agglutinative or reduplica-
sesiku’(triangle/drawing tool) results from the partial e  previous unsupervised morphology induction sys-
reduplication of the word 'siku” (elbow). Partial redu- oms can be divided into two main categories based on
plication is not limited to the front segment of a word, asynether the goal is to obtain an affix inventory or to per-

duplicated phonetic segments can be added to the endigfy, 4 more comprehensive morphological analysis.
aword as well (e.g. 'berlatdari’ and 'kasihmengasih).

In rhythmic reduplication, the entire stem is repeated bi?.1 Morphological Analysis

with phonetical changes that can either be a free phonefigayssier (1999) uses an inflectional lexicon to analyze
change or involve rhythmic vowel and consonant repetigerivational morphology. His system automatically in-
tion. Thefollowmg'exqmples illustrate the differenttgoe 4, ces suffixes by splitting words based psimilarity,

of rhythmic reduplication (Tatabahasa Dewan, 1993). that is words that are similar in exactly the fipstharac-

Vowel reduplication: ’s'ayu,mayur (vegetables) ters. Schone and Jurafsky (2000), on the other hand, ex-
Consonant reduplication: ‘gunurganang(mountains) - tract affixes by inserting words into a trie, and observing
Free reduplication: 'saudaraard (relatives) places in the trie where branching occurs, an approach

similar to identifyingp-similar words. Using only the
200 most-frequent affixes, they generate a list of pairs of
Automated morphological analysis can be incorporateghorphological variants (PPMVSs). Their system then de-
into information retrieval systems as well as grammatermines the semantic relationships between word pairs
and spell checkers. With the increase in the number ofia Latent Semantic Analysis. Word pairs with high se-
computer and internet users in southeast Asia, perfomantic correlations form conflation sets. Schone and Ju-
mance of such systems is becoming increasingly imporafsky (2001) extended their semantic-based algorithm
tant. According to a 1999 International Data Corporato include orthographic and syntactic cues, and applied
tion (IDC) report, internet users in the Asia Pacific regiortheir algorithm to induce more extensive morphological
show preference for viewing the World Wide Web in theirrelationships (prefixes as well as circumfixes) in German,
native language, especially when English is not their nddutch, and English.

1.3 Motivation and Goals
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2.2 Affix Inventories

Select
Brentet al (1995), uses a Minimum Description Length Potential Affixes
approach to obtain suffixes that result in the maximum
compression for any given corpus. DéJean (1998) uses Y
an algorithm that exploits the entropy of the next char-
acter in a word. His algorithm decomposes a word into Identify PPMVs
stem and suffix when the number of possible characters
following a sequence of characters in a word exceeds a
certain threshold. Like Brerdt al, his goal, too, was to Y
obtain an affix inventory using statistical methods. Compute Semantic

: . Correlation of PPMV§g
2.3 Previous Work in Malay Morphology

Very little work on morphology induction has been Y
done in Malay. The most recent work with regard to Identify
Malay morphology is an automated stemmer proposed by valid Affixes
Tai et al (2000) as part of the design of an information re-
trieval system for Malay. In addition to a set of heuristics,
their system is given a list of prefixes and suffixes along
with an explicit set of rules under which affixes may be
removed from words. Their overall goal is different from
ours: Taiet al seek an efficient, but highly supervised,
stemming system, while we seek a minimally-supervise

Figure 1: System architecture.

uba’ (try), 'dicuba’ (tried), and 'mencuba’ (trying) are

4 . ) o “similar in exactly the last four characters. The branching
system that is capable of inducing affixation in Malay Vi%actor is the number of branches that hang off a node in

semantlc-bageq analysis. The output of our systgm MMPe trie. In the previous example, the branching factor at
be used to eliminate the need for an explicit affix list that _, is 3

) . ; ) . C
is required by their stemming algorithm. To extract candidate prefixes from the reverse trie,

3 Current Aoproach the system needs to identifyssimilar words. However,
PP we believe that a constaptvalue is unsuitable for this

We propose to extend Schone and Jurafsky’s semanti@sk since errorneous splitting points may be proposed.
based approach to analyzing a highly prefixal, agglutind3€nce, we try to automatically induce an appropriate
tive language. Like Schone and Jurafsky (2000), our apalue for different sets of words. To do this, we observe
gorithm can be decomposed into four phases, namely (Rlaces in the trie where, the ratio between the branch-
building an initial affix inventory, (2) identifying pairsfo ing factor and the type count is exactly 1. We call these
potential morphological variants (PPMVs), (3) computlaces potential breaking points (PBPs). Splitting words
ing semantic correlation of PPMVs, and finally (4) idenJnto stem and affix when theratio is 1 gives us an esti-
tifying valid affixes by selecting morphological variantsmate of a suitable value for any given subtrie.

with high semantic correlation. We use a text corpus con- Once a potential breaking point is identified, each can-
sisting of news articles from an online Malaysian newsdidate prefix that hangs off that PBP is checked for its

paper, and words from an online Malay dictionary. overall frequency in the corpus. Only tfienost frequent
candidate prefixes, as determined by their frequencies in
3.1 Phase 1: Selecting Potential Affixes the forward trie, are selected as potential prefixes, and

In the first phase of analysis, we build two tries via in-us. @dded to the potential prefix inventory. _
order and reverse order insertion of words from the cor- A reverse selection process is performed to determine
pus along with their frequencies. Before describing theotential suffixes. That is, candidate suffixes are identi-

algorithm that extracts potential prefixes from these triediéd from PBPs in the forward trie, and depending on their
we define the following terms: overall frequencies in the reverse trie, the system decides

(1) type count: Each distinct word in the corpus is Conwhgther or n.ot to add these candidate suffixes to the po-
sidered a unique type. Hence, type count refers to tHgntial suffix inventory.

frequency of occurrence of a unique word. .
(Z)qbranc)rqing factor: When two (?r mopesimilar words 3.2 Phase 2: Identifying PPMVs

are inserted into a trie, branching occurs at thth  Pairs of potential morphological variants are constructed
node. For instance, in the reverse trie shown in Figure Z,om words that descend from the same root node in the
branching occurs at the fourth node from the root sinctrie, share a common PBP, and contain a potential affix
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Figure 2: Structure of reverse trie with the words

'dicuba’, 'mencuba’, and 'cuba’ inserted. The empty

nodes represent end-of-word markers. Figure 3: Structure of forward trie with the words
'dicuba’, 'mencuba’, and 'cuba’ inserted.

' PBP

T =1.C

.
O

O~-0)

) .
O--0--0-6)

in the initial inventory. For instance, ii-, men; and

NULL were candidate prefixes that were added to the iRhe semantic correlation of two words. Ideally, a pair
ventory at the PBP shown in Figure 2, then the pairs af morphologically-related words would have a large dot
morphological variants would be (‘'dicuba’, ‘'mencuba’),product, and thus, a high cosine score.

('dicuba’, 'cuba’), and (‘'mencuba’, ‘cuba’). The three af-

fixes {di-, men; NULL} form what we call the affix set 3.4 Phase 4: Identifying Valid Affixes

for the stem 'cuba’. The same construction process is "¢Jsing the cosine scores of the PPMVs computed in the
peated to obtain PPMVSs for words containing Ca”didatﬁrevious phase, we determine the "goodness” and "bad-

suffixes. ness” of each candidate affix in the initial inventory. For
3.3 Phase 3: Computing Semantic Correlation of every PPMV with a cosine score above the cosine thresh-
PPMVs old, C, we increment the "goodness” of the affixes corre-

. ... sponding to that PPMV by 1. Likewise, for every score
Morphologically-related words frequently share similar,q oy the threshold, the "badness” of the correspond-

semantics. Accordingly, we determine the validity Ofi,; affixes is incremented by 1. For instance, assum-
candidate affixes in the potential affix inventory by com-

: ) : ing a cosine threshold of 0.2, the goodnessibfand
puting the semantic correlation of the PPMVs. The COlnen-corresponding to the PPMV (‘dicuba’, ‘mencuba’)

relz.;lti.on score of each PP,MV givgs us an eStim?_te gf tfom Table 1 will be incremented by 1 each. Similarly,
validity of the two affixes it contributed to the initial in- 4,4 goodness ofen-and NULL is incremented since
ventory. For this purpose, we construct a co-0ccurrengge nair ‘mencubar, 'cuba’) has a cosine score greater
vector with a+ 5-word window for each word in the a4 the threshold we defined earlier. However, the co-
PPMV using the corpus from Phase 1. We then compulgne score for (‘dicuba’, 'cuba’) is below the threshold;

the cosine of the angle between the two vectors using ”E%nsequently the affixedi- and NULL will have their
standard formula: ’

St
St

cos(¥1, ) = o | PPMV | Cosine scord
o112 (dicuba’, 'mencuba’) 0.22
The dot product is the projection of one vector onto (dicuba’, 'cuba’) 0.19
the other, and is thus a measure of the similarity, or ('mencuba’, 'cuba’) 0.32

more accurately, the co-directionality of two vectors. In .
view of this, the cosine of the angle between two coJable 1: Cosine scores of PPMVs formed from the stem

occurrence vectors is commonly used as a measure ‘6#ba’ and affixes in the sefidi-, men; NULL}.
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badness scores incremented by 1. The goodness and bad-

ness scores of each candidate affix in the affix{sk,
men; NULL} corresponding to the stem 'cuba’ are sum-
marized in Table 2.

A new inventory is constructed from candidate affixes
in the initial inventory whose goodness scores are greater
than or equal to their badness scores. From the previous
example, bothdi- and men-would be considered valid
affixes for the stem 'cuba’, and hence, added to the new
inventory.

| Affix | Goodness Badness|

di- 1 1
men- 2 0
NULL 1 1

Table 2: Scores of affixes in the sfdi-, men; NULL}

Precision

0

©0
0000 O
WG000 O

QOGO O

b,

¢

Frequency Threshold = 3/ %

50 60 70 80
Recall

90 100

Figure 5: Precision versus recall for prefixes.
recall, precision is highest at a frequency
T of 36.

At 100%
threshold

After Semantic Analysis Cosine thresholds were var-

corresponding to the stem 'cuba’. These scores were ofgd between 0.2 and 1.0, and the new prefix inventories
tained using the validity heuristic described in Phase 4. Were re-evaluated. Figure 6 shows that, at a cosine thresh-

4 Results

old C of 0.45, our system obtained 150.62% relative in-
crease in precision but suffered 19.05% relative decrease
in recall. The F-measure climbed 170% after semantic
analysis.

4.1 Prefixes

Before Semantic Analysis In order to determine a rea-
sonable value fof, frequency thresholds were varied be-
tween 0 and 500 in increments 5 (with the exception of
the interval between 35 and 40 in whidhwas incre-
mented by 1), and proposed affix inventories were evalu-
ated for recall and precision. Figures 4 and 5 summarize
the results of this evaluation. Since we valued recall over
precision in the initial phase, and did not wish to lose
any correctly identified affixes prior to semantic analysis,
we fixed T at 36. The later phases would serve to in-
crease precision by eliminating incorrectly hypothesized

100

60

40 -

Tt

T T T
Cosine Threshold = 0.45
|

S

T T
Precision —o—
Recall -+
F-measure - -3~

e e

TB--EB--gog-B--8--8--8--8--8--

0
0.2

0.3 0.4 0.5 0.6 0.7
Cosine Threshold

0.8 0.9

prefixes. Thus, with & value of 36, the system achievedrigyre 6: Precision, recall, and F-measure as a func-
100% recall, 7.95% precision, and 14.74% on F-measuUr§on of the cosine threshold, in prefix identification.

100 -+

T

Precision +— |

Recall —+-
F-measure -8

L L
50 100

. . . . . .
150 200 250 300 350 400 450 500
Frequency Threshold

F-measure is highest @t= 0.45.

4.2 Suffixes

Before Semantic Analysis As a consequence of the low
precision in prefix identification, our system did not at-
tempt to remove prefixes from words in the corpus be-
fore they were reinserted into the tries for potential suffix
selection, as suggested by Schone and Jurafsky (2001).
To identify candidates for the initial suffix inventory, we
employed the method described for prefixes, that is, we
varied the value of the frequency threshdicbetween

0 and 2000 in increments of 5, and evaluated the pro-
posed inventories for recall and precision. Figure 7 shows

Figure 4: Precision, recall, and F-measure as a functiqfe evaluation results. The system achieved 100% recall,

of the frequency threshold, in the initial phase of prefix 609 precision, and 75% on F-measure Tovalues be-
identification. Recall is highest for€ T < 36.

tween 1500 and 1745.
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O o S T | | Prefix | Suffix |
Recall Before || 100.0| 100.0
wl | After 80.95| 100.0

Precision | Before 7.95| 22.97
. 1 After 22.97 75.0

F-measure ---%---

60

F-measure| Before | 14.74| 75.0
After 35.70| 85.71
1 Table 3: Summary of precision, recall, and unweighted

F-measure before and after semantic analysis.

° . . . . . . . . .
1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
Frequency Threshold

corpora in English, building a large corpus in Malay
Figure 7: Precision, recall, and F-measure as a functighoved rather difficult. Our corpus contains just over
of the frequency threshold, in the initial phase of suffix 22,000 unique words, compiled from two online sources:
identification. At 100% recall, precision is highest fora Malaysian newspaper and a Malay dictionary. Since
1500< T < 1745. English is widely spoken in Malaysia, English words fre-
- quently find their way into Malaysian news articles, and
thus our corpus. Extending the news corpusto include en-
After Semantic Analysis The new suffix inventories tries from the dictionary increased the number of prefixes
that were obtained with cosine thresholds varied betwegdund in the initial phase, but doing so presented a sig-
0.2 and 1.0 were re-evaluated as described in section 4pificant problem in the semantic analysis phase because

At a cosine threshold of 0.65 (see Figure 8), the systefany of the words from the dictionary were not found in
was able to achieve 80% precision and 10.71% increagige news articles.

in F-measure while maintaining recall at 100%. The iden- Although the results from suffix identification could
tified suffixes werei, -an, -kan and-a. Of these, the first improve with a larger corpus as well, the size of the train-
three were correct. ing corpus was not an issue in the case of suffixes. This
Table 3 provides a summary of the precision, recall ang because the size of the corpus relative to the number
unweighted F-scores obtained by the system before anfl suffixes the system had to identify was approximately

after semantic analysis. 7,000 to 1, while the ratio was only 1,000 to 1 in the case
| | | | | | | of prefixes.
T ——— 5.2 Potential Issues with Validity Heuristic
or oo While the validity heuristic employed in Phase 4 gener-
ol ally works well, it has potential issues that are not ad-
S S dressed in current work. A problem arises when there
w0r are many spurious PPMVs associated with a given stem.
o et o Consider the addition of- to the affix set{di-, men;
Fomessure - - NULL} in our earlier example. We present the corre-
o sponding PPMVs and their cosine scores in Table 4.
Cosine Threshold
| PPMV | Cosine scord
Figure 8: Precision, recall, and F-measure as a func- (dicuba’, 'mencuba’) 0.22
tion of the cosine threshold;, in suffix identification. (‘'dicuba’, ‘cuba’) 0.19
F-measure is highest for 0.65C < 1.0. ('mencuba’, ‘cuba’) 0.32
('dicuba’, 'scuba’) < 0.01
. ] ('mencuba’, 'scuba’) <0.01
5 Discussion (cuba’, 'scuba’) <0.01

5.1 Corpus Size Table 4: Cosine scores of PPMVs constructed from the

The results from prefix identification were rather disapaffix set{di-, men; NULL, s-} and the stem 'cuba’.
pointing. However, we believe that this is not a short-

coming of our algorithm, but rather of the training cor- As mentioned earlier, our corpus has the potential of
pus itself. While it is typically easy to find unlabelled containing English words, thus there is a chance that a
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word like 'scuba’ may appear in the training corpus. Be-

Affix | Goodnesy Badness|

cause of the presence of spurious PPMVs (due to the ad- -ali 1 2
dition of s-), the hypothesized badness of each affix in -a 1 2
the original sef{di-, men; NULL} has increased. In Ta- Jis 1 2
ble 5, we list the new goodness and badness scores with St 1 2

the addition of candidate prefgx.
Table 6: Validity scores of suffixes from the example in

[ Affix [ Goodnesg Badness| French.
di- 1 2
men- 5.3 Unsupervised Selection of Thresholds

2 1
NULL 1 2 Although the values of the frequency and cosine thresh-
S- 0 3 olds in this experiment were hand-picked to obtain the
best results, these values can be obtained automatically.
The following is a potential algorithm for doing so:

Table 5: Validity scores of candidate affixesfidi-, men;
NULL, s-}, assuming a cosine threshold of 0.2.

(1) Set the frequency threshold to a reasonably

Although few instances like this were encountered ismall number, say, 5, in order to eliminate potential typos
our current work, it is conceivable that such a problenas well as the possibility of foreign words in the corpus.
would be significantly detrimental to our system’s per{2) Run Phase 1 witll = 5 to obtain an initial affix
formance, especially in future work when a larger corpugventory,|.
is used. A more robust solution would be to compute th€3) Build a vocabulary of all distinct words in the corpus.
goodness and badness of each candidate in the affix s&ttach each affia € | to each word in the corpus. Check
remove any affix with a goodness score of 0, and theifiwe still have a valid word in the vocabulary. If we do,
recompute the validity of each affix in that set by decreadda to the new inventory, .
menting each of their badness scores by 1. (4) Next, run Phase 2 for each affixlin

With s- removed, and the badness scores recomputeé®) Now, run Phase 3 with varying cosine thresholds,
the validity ofdi-, men; andNULL would be restored to Starting at 0. With each different threshold, check to see
their original values as shown in Table 2. if we have lost any affix il’. Increase the threshold as

This method of determining affix validity suffers from /0ng @s we have 100% recall on the affixe$ ifSave the

another drawback in that it would incorrectly identify af-COSine threshol@” prior to the drop in recall ofi.

fixes as invalid if there is a partition within an affix set ) ) )
associated with a given stem. A partition exists in afr Should give us a good estimate of the, optimal
affix set if the PPMVs that are constructed from thos&°Sin€ threshold for the initial inventoly Sincel’ is a

affixes belong to two disjoint, morphologically-unrelatedSUPset of , we are gLfarant.eed that recall on the affixes in
sets. Although we did not find an example like this inl would drop befor€€’. Having estimated the value of the

the Malay corpus, such a phenomenon occurs in Iaﬁ_osine threshold, we can now return to running Phase 2

guages like French. Consider the two verbs *fonder’ anith |, and Phases 3 and 4 with a cosine threshold'of
'fondre’ whose simple past forms afdondai’, 'fonda’}
and {’fondis’, 'fondit’ } respectively. On seeing these
four inflected words, our system would propdsei, -a,  Despite relatively disappointing results, we are confident
-is, -it} as the affixes associated with the stem fond’that this algorithm would be more successful on a
The problem arises from the fact that the four wordsarger corpus. Being one of the first systems built to
fondai’, 'fonda’, *fondis’, and 'fondit’ belong to two analyze Malay affixation, this system shows promise of
morphologically-unrelated sets. Consequently, our validanalyzing highly prefixal languages. More importantly,
ity heuristic would propose the scores shown in Table Ghis system provides a starting point for future work in
Since none of the affixes have goodness scores greafgalay morphological analysis.

than or equal to their badness scores, all of them would

be erroneously discarded by our algorithm.

Fortunately, this phenomenon rarely occurs in mosicknowledgements
languages. Even in cases where it does, it is highly likely
that the affixes, which are mistakenly discarded by th#lany thanks to Richard Wicentowski and five anony-
system, would be associated with other stems that do nawious reviewers for useful suggestions and comments on
suffer from the same problem. a first version of this paper.

6 Conclusion
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code-name DUTCHMAN:
A Text Summarization System

Erik Osheim
Swarthmore College
oshei m@ccs. swart hnor e. edu

Abstract

Text summarization is an interesting and chal-
lenging problem in natural language process-
ing, and one that has numerous potential appli-
cationsin therealm of data-mining, text search-
ing, and information retrieval. We have im-
plemented a summarization system appropriate
for articles and technical texts.

The system, code-named DUTCHMAN, at-
tempts to identify which sentences in the doc-
ument are most appropriate for inclusion in a
summary based on analysis using key noun-
phrases. The system employs WordNet in or-
der to extend the notion of key phrases to key
concepts.

The system, in its current instantiation, only
achieves mediocre results, but our work does
suggest some promising avenues for future re-
search in text summarization.

1 Introduction

The general problem of text summarization is very broad
and difficult: Given some document of arbitrary length,
can we produce a second document of roughly constant
length (ie. a few sentences) that conveys the genera
meaning of the origina? How can we process a text to
determine what the text is about, and then reformulate
that information to produce aviable summary? Certainly,
humans are able to do this, but this is typically contin-
gent on our ability to not only parse and read, but also
understand the document in question. Thus, to fully ad-
dress text summarization in general, we would need to
first solve a large number of difficult and currently unre-
solved natural language processing and artificial intelli-
gence problems.

One option would be to use a knowledge base to iden-
tify semantic facts and topics in a document; without

Daniel Sproul
Swarthmore College
sproul @ccs. swart hnor e. edu

fully solving things like the symbol grounding problem,
we can still hope to understand the text's subject. Sum-
marizers which take this approach are known as symbolic
summarizers. However, there are some difficulties with
taking a heavily symbolic approach. First, since it re-
quires a large knowledge base in order to function, the
results do not generalize across languages well. Sec-
ond, symoblic approaches are especially vulnerableto the
depth vs. robustness trade-off. Simply put, systems that
are created to analyze a certain type of document can re-
strict themselves to that domain, alowing them to make
more assumptions about the source texts and thus per-
form better, at the expense of generality (Hovy, 2000).
Since symbolic summarizers have to make a lot of as-
sumptions about the text’s content, they tend to do es-
pecialy well when they can speciaize; however, this
makes a general summarization tool difficult to imple-
ment symbolically. Theme and topic recognition (two
common methods of symbolic summarization) are stag-
geringly complex in the most general cases (Mani, 1998).

Fortunately, in certain domains, documents tend to
contain sentences which are self-summarizing. For ex-
ample, journal and newspaper articles, and technical doc-
uments, tend to begin with, and, more generaly, contain
sentences which address the purpose and nature of the
document as awhole. We cannot expect this sort of sen-
tence to be found in certain other domains, for example
fiction, where no part of the text can be expected to per-
tain to the text asawhole. Many text summarization sys-
tems (eg. (Barker, 1998), (Szpakowicz, 1996)) choose to
adopt such a restricted domain, and thus are able to ex-
ploit the self-summarizing nature of such documents.

Within this restricted domain, we can reformulate the
problem of text summarization as follows: How do we
select the best sentences for inclusion in a summary, and
what do we do with these sentences after we have se-
lected them? We have based our work on the work of the
Text Summarization Group at the University of Ottowa
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Department of Computer Science (Barker, 1998). Their
general method involves identifying key noun phrases
within a document, and then applying various heuristics
to weight sentences based on key phrase frequency, then
just concatenating the sentences in order to produce a
summary.

Our text summarization system, code-named DUTCH-
MAN, is structured similarly, but we have extended the
key phrase analysis to a form of conceptual anaysis
based on WordNet, allowing us to increase the empha-
sis placed on certain key phrases which are representa-
tive of general conceptsin which other key phrasesin the
document participate. For example, in a paper about en-
gines, given that engine, camshaft, and piston are al key
phrases, the salience of the word enginewill beincreased,
because camshaft and piston are both parts of engines.

2 Related Work

Due to renewed intereset in text summarization, sev-
eral conferences have recently addressed the problem.
From these talks, it is obvious that researchers some-
what divided over the best methods of text summariza-
tion. While many researchers favor statistical approaches
similar to the one pursuedin DUTCHMAN, there are also
symbolic summarizers, which place more weight on try-
ing to find important topics through world-level concepts
(Howvy, 2000). These systems try to identify an underly-
ing topic (or topics) before ranking phrases and sentences
on their score. (?) In this context, DUTCHMAN isasta
tistical summarizer which utilizes symbolic information
(via WordNet) in an attempt to improve its statistically
generated keywords.

Most other projects that use symbolic information do
so before their statistical processing, or do the two forms
of processing independently and then attempt to integrate
the results ((Szpakowicz, 1996), (Mani, 1998)). How-
ever, there are many varieites of symbolic summarizers;
its unclear what the best use of ontologies is, especially
given the depth/robustness trade-off. Some examples
of symbolic summarization methods from the TIPSTER
conference are:

e use agraph of theme nodes linked via a custom the-
saurus (CIR).

e use sentences determined to be about fregquently
mentioned individuals via co-reference resolution
(Penn)

e use morphological analysis, hame tagging, and co-
reference resolution to weight sentences (SRA)

Ad hoc summaries (undirected summaries like the
kind DUTCHMAN generates) only comprise some of the
goa of summarization systems. Most systems also sup-
port interactive summarization (after being questioned,

i.e. (Mani, 1998) and (Szpakowicz, 1996)), and topic-
specific summarization (summarization with regard to
specific set of interests, i.e. terrorist activity (Mani,
1998)). These systems serve different purposes, but most
summarization methods can be used fairly effectively in
any of thereams. (Mani, 1998)

3 DUTCHMAN Base System

As noted, our genera approach is to identify key noun
phrases within a document which indicate that the sen-
tences in which they participate might be relevant sum-
mary sentences, ie. might contain content which is rele-
vant to the overall meaning of the text.

Given an input text, our basic algorithm is as follows:

1. Split the document into sentences

2. Apply part-of-speech tagging, text-chunking, and
noun-phrase identification

3. ldentify key noun-phrases based on frequency
4. Select sentences based on key phrase frequencies

5. Concatenate sentences to generate the final sum-
mary

Lacking sophistacated sentence splitting tools,
DUTCHMAN currently relies on asimple and imperfect
script to handle sentence chunking.

POS tagging, text chunking, and NP identification
are accomplished using the pre-trained fnTBL rule sets
which are distributed with the fnTBL system (fnTBL isa
freely-distributed rule-based machine-learning tool com-
monly employed in natural language processing tasks;
TBL stands for Transformation-Based Learning) (Flo-
rian, 2001).

The remainder of the base system was implemented
using Python. After sentence chunking and NP identifi-
cation, we construct a database of frequencies for each
noun-phrase in the document. In addtion to noun-phrases
identified by fnTBL, we also add to the database individ-
ua nouns and noun-phrases connected by prepositional
phrases; in this manner, given the string “King of Prus-
sia Mall” rather than merely adding “King” and “Prus-
siaMall” to the database, we aso add “Mall” and “King
of Prussia Mall” ,which are, one might imagine, the truly
salient key-phrases for the document in question.

We then identify 10 noun-phrases as “key phrases’ ie.
phrases whose sentence content is likely to pertain to the
overall meaning of the document, and thus make good
summary sentences. In the base system, the key-phrases
are chosen based purely on which noun-phrases have the
greatest frequencies. The scores for noun-phrases which
are contained in larger noun-phrases (eg. “King” is con-
tained in “King of Prussia’) are discounted somewhat by
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the scores of their containing phrases. We used 10 key-
phrases because, given the length of our test documents,
thistended to cover about 10-25implementation might in-
clude dynamic selection based on a fixed target percent-
age, but DUTCHMAN does not currently support this.
Each sentence is then scored based on the summed
weights of the key phrases in the sentence. When a key
phrase occurs more than once within the same sentence,
an interesting issue arises. The most obvious approach
would be to simply multiply by the key phrase's count in
the sentence, but the problem with thisis that we would
like to in some manner reward diversity of key phrasesfor
our summary sentences. Thus, a sentence which contains
asingle key phrase twice ought to, on average, fair poorer
than a sentence which contains two distinct key phrases
once each. We accomplish this by multiplying by the
square-root of the count rather than just the count; thus,
additional instances of a key phrase increase the score of
a sentence, but always by an amount less than the prior
instance. The resulting scoring equation is as follows:

score(S) = Y  weight(w) - /freq(w)

weS

The final summary is then generated by selecting the
three highest-scoring sentences in the text, and concate-
nating them in the order in which they occur in the text.
We found that since our algorithm tended to pick longer
sentences from the text, choosing the best three tended to
produce summaries which had fairly varied content, but
with brevity. While the longer sentences naturally tend
to score higher, it is still a useful result, as longer sen-
tences are often used to link various indepentently occur-
ing ideas within atext.

4 Key-Concept Analysis

We refine our key phrase analysis by generalizing to a
notion of key concepts. Within a given text, many of the
key phrases will in some manner be related to a similar
concept. For example, in an article about engines, both
pistons and camshafts are parts of an engine, and thus
can be said to participate in the concept engine.

In order to implement our key concept analysis, we
employed WordNet. WordNet is an ontology; it con-
tains information linking words in the English language.
It stores many different types of relationships, such as
hypernymy, holonymy, synonymy, and sense. Langauge
processing systems which take advantage of WordNet
have information about words and language that is fun-
damentally richer than those that do not (Miller, 1998).

After experimenting with WordNet, and creating apro-
totype summarization system without it, we found that
the only two relations which seemed to provide us with
useful information for summarization were hypernymy

and holonymy (-hypen and -hholn). Hypernymy iden-
tifies hierarchical “is @' relationships (thus a query for
“tabby” might return “tabby IS cat IS mammal |'S animal
IS organism IS entity”), whereas holonymy returns a va-
riety of containment relationships, eg. “isa’ or “part of”
in a non-hierarchical fashion (thus a query for “tabby”
might return “tabby IS A cat”, whereas a query for “pis-
ton” might return “piston PART OF reciprocating en-
gine’). In order to facilitate interffacing DUTCHMAN
with WordNet, we implemented a WordNet subsystem
which we termed FERNANDO.

Because our summarizer is not generative, there was
no good way to take advantage of noun phrases which
WordNet found to be related to the article, but which did
not appear in the article. Therefore, we use the Word-
Net analysis to reconsider the weightsin the noun-phrase
frequency database, giving added weight to those noun-
phrases which represent concepts in which other noun-
phrases in the document participate. Thus, if the words
“cat”, “tabby”, and “ calico” all appear in adocument, the
score for “cat” would be increased because both “tabby”
and “calico” are identified as being kinds of “cat”. We
then select the 10 most salient key phrases based on the
adjusted weights.

This modified algorithm isreflected by adding an extra
step in relation to the base-system a gorithm:

3a Use WordNet to modify key noun-phrase values
based on key-concept analysis

Our algorithm generates atree of noun phrasesfor each
keyphrase. It then weights each noun phrase in the tree
based on the number of keyphrases in whose trees it par-
ticipates, and how directly it islinked to them. Wewish to
favor relationships which are closer to the source words,
thus given the example “tabby IS cat IS mammal 1S ...”,
if both “cat” and “mammal” occur in the document, we
wish to increase the score for “cat” more than the score
for “mammal” ,because we are seeking to achieve the cor-
rect level of generalization which encompasses the salient
noun-phrases in the document and yet still addresses the
meaning of the document as a whole. An article might
contain “tabby”,“calico”, “siamese’, etc., and thus is
most likely about cats and not about mammals. How-
ever, an article which contains not only those words but
also “labrador” and “squirrel” is more likely about mam-
mals; here, despite the fact that the score for “cat” was
increased more than the score for “mammal” by the var-
ious types of cat, al words which are kinds of mammal
contribute to “mammal”,so in most cases “mammal” will
win out over “cat”.

For each noun-phrase considered in WordNet analysis,
we must now compute a score offset. In essence, we need
a decaying distance function for the relevant internode
distances, which we achieve with a decaying exponential .
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Average Score
Document | Random | no WordNet | WordNet
ADA 12 3.6 24
SAUDI 1.0 44 2.8
GW 2.6 3.6 2.8
ENGINE 1.2 18 16
PIRATE 1.6 4.0 2.8
Average 1.52 348 248

Table 1. Human-assigned summary scores

To determine the score offset for each noun-phrase N, we
then sum over each considered noun-phrases n, for each
adding its originally computed frequency weight times
the decaying distance function:

>

néEnoun-phrases

Ascore(N) = freq(n) - adsance(N.n)

where «, a constant, was empirically chosen to be 0.7, a
value which helped acheive the aforementioned desired
level of concept generalization.

5 Reaults

One of the inherent difficulties of the text summarization
problem is that it is rather difficult to evaluate quantita-
tively. What makes a summary “good” varies from per-
son to person and from document to document. Nonethe-
less, some attempt can be made to evaluate the quality of
asummary.

We selected a set of five test documents: an article
about the Americans with Disabilities Act (ADA), atext
regarding aGulf-War eralragi occupation of a Saudi Ara-
bian town (SAUDI), abrief biography of George W. Bush
(GW), an excerpt from a text about engines (ENGINE),
and a brief article about pirates (PIRATE). For each, we
generated summaries both with and without using FER-
NANDO. In addition, in order to establish a baseline for
our system, we generated summaries based on purely ran-
dom selection of sentences.

Our first evaluation scheme involved getting a group
of human evaluators to score each summary on a scale
from 1 (bad) to 5 (good). The results of this evaluation
are displayed in Table 1. It is sadly apparent that FER-
NANDO seems more to detract than add to the quality of
a summary, but nonetheless both are notably better than
the results acheived by random selection.

Our second evaluation scheme involved using preci-
sion and recall metrics. For each document, human eval -
uatorsidentified alist of what they felt were the ten most
relevant key noun phrases, and then each summary was
scored for precision and recal of this list. We calcu-
lated precision as the percentage of nouns in the sum-
mary which were in the key phrase list; in this manner,

Random

Document | Precision | Recall
ADA 25% 30%
SAUDI 13% 10%
GW 36% 50%
ENGINE 0% 0%

PIRATE 33% 60%
Average 21% 30%

Table 2: Baseline Precision and Recall

no WordNet with WordNet
Document | Precision | Recall | Precision | Recall
ADA 57% 90% 61% 90%
SAUDI 42% 100% 50% 100%
GW 31% 40% 23% 40%
ENGINE 63% 40% 48% 40%
PIRATE 45% 50% 43% 40%
Average 48% 64% 45% 62%

Table 3: Precision and Recall for test documents

we prevent the possible favoring of gibberish sentences
like “Engine engine engine” Recall was simply the per-
centage of words in the list which were contained in the
summary. In the text summarization domain, a good re-
call score will indicate that a summary addressed the ma-
jor content elements of the document, whereas a good
precision score indicates that a summary is targeted and
concise. Arguably, recall isamore important metric than
precision in this domain, but both convey meaning re-
garding the quality of a summary. The baseline (random
summary) results are displayed in Table 2 and the actua
summary results are displayed in Table 3.

6 Discussion

On the surface, it appears as if incorporating WordNet
into our system has madeit slightly worse rather than bet-
ter, as we get the same recall but, on average, dlightly
worse precision. However, the engine and George W.
Bush texts presented unique challenges to summariza-
tion, being that the engine article contained many lists of
engine parts and very few summary-relevant sentences,
and the Bush text was just very short, which meant that
there were not enough key words present to make our
WordNet analysis particularly meaningful. This suggests
that perhaps the size of our keyword set needs to be
alocated dynamically based on document length rather
than constant. Also, in neither of the two problem cases
did the sentences in the article have any real unifying
themes, other than a very shallow description (“biogra-
phy of George Bush”, or “Mechanic’s Textbook™) which
was not actually present in the text. Thus, our use of
WordNet depends upon the assumption that the general
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concepts relating the keyphrases actualy be relevant to
the summary.

On amore qualitative level, the no WordNet vs. Word-
Net summaries tended to be similar, and in the Saudi and
ADA cases the WordNet ones provided more thorough
detail, according to the human readers. Thus, despite the
disappointing figures, analysis with WordNet did seem to
yield some positive results.

7 Futurelmprovements

It would be interesting to test the human readers to see
which documents they believed would be easier or harder
to summarize, and compare those figuresto our precision
and recall figures for summarization with and without
WordNet. Based on the articles and summaries that we
have seen, we would guess that the articles which were
found to be more easily summarizable by human readers
would be the onesthat the WordNet-aided summarization
system would do best on.

DUTCHMAN lacked pronoun resolution, which
severely hindered its performance. Since most suffi-
ciently complicated ideas will span multiple sentences,
and subsequent references of salient noun phrases are
typically substituted for pronouns, pronoun resolution is
key to derivative summarization (creating a summary di-
rectly out of excerpts from the text). Thus, a system
with pronoun resolution could see a signifigant jump in
its effectiveness. Additionally, DUTCHMAN lacked ro-
bust sentence splitting utility, and was thus often forced
to deal with sentence fragments rather than whole sen-
tences. Incorporating a more viable sentence splitter
would no doubt increase DUTCHMAN's performance as
well.

Another direction would be to use WordNet on all the
noun phrases instead of just the statistically signifigant
ones. It seems like concept-webs such as were used in
the CRI summarizer might be an interesting way to aug-
ment our statistical data (Mani, 1998). As was remarked
earlier, we did not find examples of summarizersthat did
symbolic analysis on a statistically selected subset, and
this could explain FERNDANDOQO's confusing inability to
help DUTCHMAN.

Future tests would probably have to define a narrower
type of text to summarize; as we discovered, ontological
assumptions about content which were valid for certain
articles were invalid for others— in particular, it doesn't
seem like biographies or instructional texts tend to yeild
to the same techniques as explanatory articles, which are
written with amore specific goal in mind. A larger testing
set, with a narrower range of article types, and a broader
base of human readers, with statistics on how well the
humans believed they summarized the articles, and com-
parisons of the sets of human-identified keywords, would
all aid in evaluating a summarizer.

8 Conclusion

Code-name DUTCHMAN isafairly reasonabletext sum-
marization system, for which further fine-tuning would
no doubt produce better results. Our addition of key-
concept analysis using WordNet has proved helpful in
some subjective cases, and further refinement of thistech-
nique, combined with other uses of WordNet, could facil-
itate the production of better summaries.

It is not clear whether methods that generate sum-
maries out of excerpts can overcomeall difficulties. Since
the technique is limited by the quality of summarization-
grade sentences in the document, it will never be perfect
for certain types of documents. This is a problem that
non-productive summarizers have regardless of whether
they are statistical or symbolic. Many summarizations,
such as the popular Cliff Notes series, are designed to do
more than just abbreviate the text, but to paraphrase and
explain; it would be desirable to have a summarizer that
could do this. However, we do not have any belief that a
system like ours could function in this way without radi-
cal modifications.
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Appendix A: Sample Summaries

Here we include four summaries, both with and without
using FERNANDO for two documents, SAUDI and EN-
GINE, chosen to be representative of “good” documents
(SAUDI) and “bad” documents (ENGINE) for summa-
rization by DUTCHMAN.

SAUDI - No FERNANDO:

A fierce battle for this deserted coastal town ended today
when forces from Saudi Arabia and the emirate of Qatar,
backed by American artillery and air strikes, evicted Iraqi
troops and tanks, and freed two trapped U.S. reconnais-
sance teams. Marine commanders explained that Saudi
forces had responsibility for the defense of the border
area around Khafji, atown of 45,000 people on the Per-
sian Gulf about six miles south of the Kuwait frontier.
Marines provided artillery support and air strikes from
Cobra gunships, but did not participate in the on-again,
off-again ground battle, an occasionally tense confronta-
tion involving close-quarters encounters between tanks
and troops in the middle of town.

SAUDI - With FERNANDO:

A fierce battle for this deserted coastal town ended today
when forces from Saudi Arabia and the emirate of Qatar,
backed by American artillery and air strikes, evicted Iraqi
troops and tanks, and freed two trapped U.S. reconnais-
sance teams. Marine commanders explained that Saudi
forces had responsibility for the defense of the border
area around Khafji, atown of 45,000 people on the Per-
sian Gulf about six miles south of the Kuwait frontier.
But Marine Lt. Col. Garrett, supervising Marine fire
teams, supporting the Saudi counter-strikes, met with the
U.S. officer serving as liaison with the Saudi and Qatari
forces, who checked with Admire and called ameeting to
seeif the Marine reconnai ssance teams could be extracted
using a Saudi tank attack as cover.

ENGINE - No FERNANDO:

With the exhaust valve closed and the intake valve open,
the piston moves down in the cylinder as the engine
crankshaft turns. The operation of the four stroke cycle
style of engine depends on the timing of its valves and
their condition, on the piston rings, and on the cylinder
walls. Thisisthe standard number per cylinder in almost
all four stroke cycle engines, with the exception of some
aircraft engines and racing car engines which have four
valves per cylinder.

ENGINE - With FERNANDO:

The operation of the four stroke cycle style of engine de-
pends on the timing of its valves and their condition, on
the piston rings, and on the cylinder walls. This is the

standard number per cylinder in almost all four stroke cy-
cle engines, with the exception of some aircraft engines
and racing car engines which have four valves per cylin-
der. This causes apartial vacuum in the crankcase to pre-
vent oil from being forced out of the engine past the pis-
ton rings, oil seals and gaskets.

Appendix B: DUTCHMAN'’s Abstract

Here we have used the DUTCHMAN system to generate
an aternate abstract of the DUTCHMAN paper; the orig-
inal abstract, references, and appendices were excluded
from the source document; FERNANDO was used. All
things considered, this summary isterrible.

DUTCHMAN - With FERNANDO:

First, since it requires alarge knowledge base in order to
function, the results do not generalize across languages
well. Many text summarization systems choose to adopt
such arestricted domain, and thus are able to exploit the
self-summarizing nature of such documents. A larger
testing set, with a narrower range of article types, and
a broader base of human readers, with statistics on how
well the humans believed they summarized the articles,
and comparisons of the sets of human-identified key-
words, would all aid in evaluating a summarizer.
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Wor dnet Wor dsense Disambigioution using an
Automatically Generated Ontology

Sven Olsen
Swarthmore College
sol senl@war t hnor e. edu

Abstract

In this paper we present a word sense disam-
biguation method in which ambiguous words
are first disambiguated to senses from an au-
tomatically generated ontology, and from there
mapped to Wordnet senses. We use the " clus-
tering by committee” algorithm to automati-
caly generate sense clusters given untagged
text. The content of each cluster is used to
map ambiguous words from those clusters to
Wordnet senses. The agorithm does not re-
quire any training data, but we suspect that per-
formance could be improved by supplementing
the text to be disambiguated with untagged text
from a similar source. We compare our ago-
rithm to a similar disambiguation scheme that
does not make use of automatically generated
senses, aswell astoo an intermediate algorithm
that makes use of the automatically generated
semantic categories, but does not limit itself to
the actual sense clusters. Whilewhat resultswe
were able to gather show that the direct disam-
biguator outperforms our other two algorithms,
there are a number of reasons not to give up
hope in the approach.

1 Introduction

Word sense disambiguation agorithms are valuable be-
cause there are a number of tasks, such as machine trans-
lation and information extraction, for which being able
to perform effective word sense disambiguation is help-
ful or even necessary. In order to fully define the task
of word sense disambiguation (WSD), we need to know
the set of senses associated with a given word. What set
of senses ought to be associated with any word amost
certainly depends on the context we are working in. In
the case of automatic translation from English to another

language, the best sense set for each word should beinflu-
enced by the set of trandations of that word into the tar-
get language. Translation between distant languages such
as English and Inuit might reguire much finer sense dis-
ambiguation than would be needed when going between
related languages such as English and German.

WSD becomes a much more tractable problem when
we have some understanding of the semantics of the
senses that we are disambiguating. For this reason word
sense disambiguation experiments are usually do assum-
ing the sense sets of large ontologies such as Wordnet.
Using Wordnet senses gives researchers access to infor-
mation regarding the semantic relationships of the senses
of deferent words, and many WSD agorithms rely on
knowledge of these relationships. Using Wordnet senses
may also make the act of sense disambiguation more use-
ful. For example, an information extraction algorithm
may take advantage of the semantic content implied by
Wordnet senses.

However, there are a number of reasons why Word-
net might not be the ideal ontology for any given task.
If we try to use Wordnet in an information retrieval task
we may find that important technical terms are missing
(O'sullivan, 1995). If wetry to use Wordnet for machine
translation tasks, we may find that the sense distinctions
are too fine. In a perfect world, we would have a sep-
arate ontology specifically tailored for each task. How-
ever, compiling ontologies tends to be very difficult, and
so Wordnet is still the de facto standard for most WSD
experiments.

Naturaly there is a demand for algorithms that can
automatically infer ontologies from text, thus providing
researchers with an infinite set of viable alternatives to
Wordnet. While no current automatically generated on-
tology can compete with Wordnet's fine sense distinc-
tions, Pantel and Lin (2002) present an algorithm capable
of generative sense groups of aquality similar to thosein
Roget’sthesaurus (2002). Unlike Wordnet, this automati-
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cally generated ontology has no hierarchical information,
instead it simply provides groups of related words senses.

In this paper we present and algorithm which auto-
matically generates an ontology given untagged text, and
then disambiguates that text into the senses of the gener-
ated ontology. Thus we hope to provide researchers with
a context sensitive alternative to Wordnet based disam-
biguation. We also outline a method for converting our
senses to Wordnet senses. Thisallows usto disambiguate
text to Wordnet senses by first disambiguating to the auto-
matically generated senses, and then mapping the results
to Wordnet. Because we expect the automatically gener-
ated sense clusters to be coarser than those of Wordnet,
and because the act of generating the senses leaves our
algorithm with access to extra information regarding the
ambiguous senses, we expect that disambiguating to the
automatically generated senses will be easy.

There arewaysin which our method of disambiguating
to Wordnet senses might have advantages over more di-
rect approaches. Because the senses used by our system
are inferred from the text to be disambiguated, we can
expect to avoid confusion caused by sensesthat never ap-
pear in our text. Additionally, our system has the advan-
tage of requiring no tagged training data. Mapping the
automatically generated senses to Wordnet senses may
be complicated by the fact that the generated senses are
coarser than Wordnet's, however, we expect that the type
mistakes realized because of this to be similar to those
mistakes that a human would make when tagging text
with the often frustratingly fine Wordnet senses.

2 Related Work

Lin (1994) introduced PRINCIPAR, a broad coverage
English parser that works using amessage passing model.
Among other things, PRINCIPAR can be made to output
aset of "dependency triples’ given any sentence. Recent
work done using MiniPar, PRINCIPAR's publicly avail-
able successor, has shown that these dependency triples
prove quite useful in the context of a number of different
tasks.

Lin (1997) introduces an agorithm for word sense dis-
ambiguation based on information from MiniPar’s depen-
dency triples.

Lin (1998) includes an excellent articulation of the
means through which the syntactic information repre-
sented by the dependency triples can be used to infer
semantic knowledge. Papers such as our own and Pan-
tel and Lin (2002) tend to rush their descriptions of the
methods first outlined in this paper, and readers trying
to implement our agorithms for themselves will be well
served by referring back to it.

Pantel and Lin (2002) presents an agorithm in which
the information from the dependency triples is used to

automatically generate sense categories. The same pa-
per also proposes a method for evaluating the similarity
between sense categories and Wordnet. Using their own
similarity measure, Pantel and Lin found that the cate-
gories they created automatically were more similar to
Wordnet than Roget’s thesaurus.

3 Methods

3.1 Automatic sense clustering

In order to generate our ontology we have implemented
the method described in Pantel (2002). The starting point
of Pantel’s algorithm is the publicity available parser
MiniPar. For each sentencein our corpus, we use MiniPar
to generate aparse tree, and then from that treeinfer a set
of dependency triples. Each dependency triple specifies
two words and the syntactic relationship between them.
For example, one of the triples generated by the sentence
"Bob drinksthewing” is[drink, verb/direct object, wing].
We call the construct [drink, verb/direct object,*] a”fea
ture”. Thefrequency of afeaturefor agivenword w isde-
fined as the number of times that we see that feature with
w filling in the wildcard slot. Thus, if we see”Bob drinks
the wine” in our corpus, one of the frequencies that we
increment is F[d'rink,verb/directobject,*] (’LU’LTLG) The fre-
quency of all features that ever appear with a given word
define that word's frequency vector 2.

In order to quickly compile frequency information for
a large set of sentences, we use a humber of sorted as-
sociative containers (STL maps)?. We use a map from
word-feature pairs to integers to represent a sparse ma-
trix that holds the frequencies of any word/feature pair.
We also use maps from strings to integers to store the
frequencies of each feature and word. We use yet more
maps, these from strings to vectors of strings, to store
lists of the features associated with every word, and con-
versely the words associated with every feature. The
map based representation of our data allows usto quickly
update frequency information given new sets of depen-
dency triples; O(log(n)) string comparisons are required
to lookup a value given the string key, and the data struc-
tures are such that it is easy to insert information corre-
sponding to novel words and features. But once all the
triples have been processed, our map based data structure
becomes needlesdly inefficient. Therefore we convert as
much of the data as possible to an indexed representation,
assigning each word and feature an integer label, and col-
lapsing many of our maps to vectors (dropping lookup
time from O(log(n)) to O(1), and doing away with the

1The concept of feature frequency is explained with more
detail in Lin (1998), and with less detail in Pantel (2002).

2In order to properly analyze the space/time efficiency of our
algorithm, it need to be noted that the version of STL that we
use implements maps using red-black binary search trees.
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need for expensive string comparisons)®.

The basic assumption at the heart of Pantel’s algorithm
is that semantic similarity will be reflected in the syntac-
tic information inherent in the feature frequency vectors.
In other words, if we see [drink, verb/direct object, wing]
alot, and [drink, verb/direct object, beer] alot, then there
is agood chance that beer and wine fit into the same se-
mantic category. We now outline a semantic similarity
measure which reflects this assumption.

For each word we compute its mutual information with
every feature, and store that information in a sparse vec-
tor. The equation for mutual information given aword w
and afeature f is

Fe(w)

N
Zi F;(w) Zi F;(w)
N XT N

Miy,c

As you can see from the equation, the values that
were stored when compiling frequency information were
picked to make calculating each word's mutual informa-
tion vector as fast as possible.

Following the suggestion in Pantel (2002), we multiply
our mutua information score by the following discount-
ing factor:

F.(w)
F.(w)+1

y min(d_,; Fi(w), >, Fi(w))
min(y_, Fi(w), >, Fi(w)) +1

The theory motivating this discounting factor was not
well explained in Pantel (2002), but because we admire
his results we follow Pantel’s lead.

We define the similarity between two words as the co-
sine similarity of the associated mutual information vec-
tors.

In order to perform the main clustering algorithm, we
create a matrix that caches the similarity between any
two words. Taking advantage of the sparse nature of
the dataset, we only calculate the similarity of words
which share a common feature (preliminary tests show
that this strategy allows us to compute the similarity ma-
trix roughly an order of magnitude faster than we could
using the naive approach). Had our similarity matrix cal-
culations gone too slowly, we could have further speed
up the process by applying the " salient feature” heuris-
tic described in Pantel (2002), however never applied the
algorithm to a situation in which the extra speed was nec-
essary. Pantel refers to the processes of setting up the
similarity matrix as” phase 1" of the clustering algorithm.

In "phase 2", the words' mutual information vectors
are clustered using the " clustering by committee” (CBC)

30ur source codeis available for the benefit of readersinter-
ested in finding out more about the details of the data structures
used.

algorithm. The goal of CBC isto create large tight clus-
ters with the additional goal that the centroids of each
cluster not be too similar to each other.

The CBC agorithm is recursive. Given a set of ele-
ments E, each e € E contributes a potential cluster com-
posed of between 3 and 12 of the elements most simi-
lar to e. Potentia clusters are assigned a score equal to
the product of their size and their average pairwise sim-
ilarly. ldeally, we would like to find the highest scoring
subset of the set of e's twelve most similar elements and
use it as e’s potential cluster. Unfortunately, performing
an exhaustive search of al possible subsets is computa-
tionally expensive. Performing hierarchical average-link
clustering seems like one reasonable way to attack the
problem, but we suspected that a straightforward greedy
search might perform better in practice. Thus our own
implementation of CBC uses the greedy search®.

Potential clusters are sorted according to their score.
The sorted list isthen traversed, and each potential cluster
is added to the set of committees C' (initially empty) on
the condition that its centroid not have a cosine similarity
of more than o = .35 with any element of C. If C is
empty (which happensin the case that we were unable to
create any valid potentia clusters in the previous step),
wereturn C'.

We then define the set of residual elements R as all
e such that e does not have a similarity of at least § =
.075 with any of the committee centroids. Finaly the
algorithm is recursively called replacing £ with R, and
we return the union of C' and the result.

The agorithms now proceeds to phase 3. Once com-
mittees have been created, we generate our ontology by
assigning each word to some number of committees; each
committee is taken to represent a semantic category. The
assignment algorithm works as follows: for each word
w, we first select the top 200 committees with centroids
most similar to w’s mutual information vector. Of those,
we consider the committee with centroid most similar to
w to be w’s first sense. Then we remove the common
features of w and the centroid from w’s mutual informa-
tion vector. Now we look for another committee to add
w to that has a centroid similar to the new w vector. If
at any time the similarity between w and the most simi-
lar remaining cluster falls bellow some threshold (in our
case .05), we stop assigning senses to w. This method
alows us to assign words to clusters that represent very
rare senses of that word. Unfortunately, the algorithm is
very slow, as the similarity of each cluster to the word
vector must be recalculated after every step through the
loop.

4t is unclear what method Pantel (2002) uses to create the
potential clusters, our initial interpretation of the paper lead us
to believe that Pantel had used the hierarchical approach, but we
are no longer certain of this.
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There are a couple of things worth noting about the
sense generating algorithm. The committees that a word
is assigned to in phase 3 have no immediate connection
to the committees that the word helped define, and every
word will likely be assigned to some committees that it
had played no part is creating. Note also that there is ho
guarantee aword will be assigned even asingle sense.

Given the committees representing its senses, disam-
biguating a given instance of aword is ssimple. We calcu-
late theimplied feature vector of the instance of the word
asif the word instance were a novel word appearing only
once in the text. We then find the committee with a cen-
troid most similar to that vector, and say that the sense of
the word is the one associated with that committee.

3.2 Disambiguation to Wordnet Senses

Wordnet defines a number of relationships between word
senses. Our agorithms only make use of the hypernym
and hyponym relations. The hypernyms R of word w
are those r for which it is the case that "w is a kind of
r". Conversely, the hyponyms of w are the words P such
that "p isakind of w” istrue. Thus, 'drink’ and 'ine-
briant’ are both hypernyms of a sense of 'wine', whereas
'sake’ and 'vermouth’ are hyponyms of "wine'. (Accord-
ing to Wordnet wineis polysemous, 'wine' can also mean
ashade of dark red).

In order to link sense clusters created by CBC to Word-
net senses we need to decide what Wordnet sense is as-
sociated with every sense of every word in the automati-
cally generated ontology. To do this we search Wordnet
for semantic relatives of each ambiguous word's senses
in order to find semantically similar words that have a
good chance of exhibiting the syntactic featuresthat CBC
would have picked up onin the course of its sense cluster-
ing. We then find the centroid of that group of words, and
decide what Wordnet sense to associate each word’'s CBC
sense with by comparing the centroid of the CBC sense's
committee with the centroid of the group of similar words
gathered from Wordnet.

Asan example, lets say that we some generate the fol-
lowing similarity group for thefirst sense of wine: {sake,
vermouth, champagne, burgundy}. The CBC cluster that
we will associate with the first sense of wine will be one
based on features that tend to arise around nouns that
specify acoholic beverages. The similarity group for the
second sense of wine might look something like {yellow,
rose, pink, red}, and thus its centroid vector would be
filled with features that are associated with colors. Note
that if the text that we are using to generate our senses
does not have any instances in which 'win€' is used to
describe a color, then we could expect that CBC never
added wine to a committee associated with color. In this
case wewouldn’'t map any CBC sense to the second sense
of wine (and thisisagood thing, asit will force all of our

disambiguations of the noun wine to be correct).

Clearly, our mapping method depends on having a
good way of creating similarity groups for a given sense.
In the case of win€e's first sense (vino), the set of hy-
ponyms is very large, and contains nothing but kinds of
wine. We would expect kinds of wine to turn up in the
same syntactic positions as the word 'wine' itself, so in
this case using hyponyms as a similarity set is a good
idea. However, the second sense of wine (color), has no
hyponyms. What we want in this case for a similarity set
are the sisters and uncles of the sense, the hyponyms of
the hypernyms of wine (in this case, other kinds of red,
and other kinds of colors).

Using the case of wine as our only example, we might
conclude that the best way to develop a similarity group
for aword sense is to start by collecting its hyponyms,
and if they prove too small a set, expand to sister, uncle,
and cousin words. Wewant to avoid using words from too
high up in the tree, as’intoxicant’ (one of the hypernyms
of wine-vino) is not likely to be used in the same sorts of
syntactic contexts as’wine'.

But now consider the problem of creating a similarity
group for the word "intoxicant’. Its hyponyms include
things like 'vodka’, which will likely have a very differ-
ent feature vector than 'intoxicant’. The words that we
want to seein asimilarity group of ’intoxicant’ arethings
like "barbiturate’, 'inebriant’, and 'sedative’. These are
all sistersof ’intoxicant’.

Because the hyponym favoring approach runs into
problems in the case of high level words such as intox-
icant, we adopt a method for gathering similar words in
which we favor sister words above all else®, and expand
the similarity group to include both daughters and cousin
wordsif we can’t find enough sistersto make an informa-
tive centroid. Here a similarity group is considered to be
"informative” if it contains 15 words for which we have
gathered frequency information.

One interesting question is whether or not to limit the
allowed members of a similarity group to monosense
words. In the case of wine-color, two of its sister words
are’burgundy’ and’ claret’, both of which also hyponyms
of wine-vino. This example demonstrates a potential
problem for our algorithm, if we happen to create a sim-
ilarity group containing many polysemous words with a
shared second sense, the similarity group might create a
centroid closer to that second sense than to the one that

5|t should be mentioned that the first words added to a sim-
ilarity group are the synonyms. This is a byproduct of the fact
that aword'sfirst sister isitself. The Wordnet C library returns
its search results in the form of word sets; each set contains
aword sense and all of that sense’s synonyms. Thus the first
search result returned when we look for a word’s sisters con-
tains al of that word's synonyms. While we do not consider a
word to be part of its own similarity group, we do add all of its
immediate synonyms.
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we were trying to represent. We have experimented with
limiting similarity groups to monosense words, but found
that because most of the words in Wordnet seem to be
polysemous, the monosense restriction cripples our algo-
rithm'’s ability to come up with similarity groups of any
significant size.

3.3 Direct and Semi-Direct Wordnet
Disambiguation

We have created a direct disambiguation algorithm to
compare with our algorithm for disambiguation via CBC
senses. Our CBC dependent disambiguation algorithm
works by creating a feature vector for the instance of the
word to be disambiguated, then finding the CBC sense
group closest to that vector, and finally finding the Word-
net similarity group closest to the sense group. The di-
rect algorithm just matches the word instance vector with
the closest Wordnet similarity group. Thus, comparing it
with our CBC agorithm provides a measure of whether
or not mapping to the automatically generated sense is
helping or hurting us.

Similarly, we can modify the CBC dependent algo-
rithm by substituting the entire set of committees gen-
erated in phase 2 for the set of CBC senses associated
with the word. This algorithm allows us to avoid the ex-
pensive computation costs inherent in phase 3. Because
the "semi-direct” approach has the potential to take ad-
vantage of some of the advantages of using an automati-
cally generated ontology (because we are moving first to
a coarse sense we can hope that our mistakes will be be-
tween senses with similar meanings). However, because
of the large number of potential committees, it is likely
that the vector that we end up matching with the Wordnet
simgroupswill be reasonably similar to the vector that we
started with, and for this reason our results should tend to
be more like those from the direct approach than those
achieved using the CBC senses.

3.4 Evaluation Method

We have tested our algorithms using the SEMCOR cor-
pus, our version of which was created by transforming the
tags of the Wordnet 1.6 version of SEMCOR to Wordnet
1.7 senses. We comparing our algorithm'’s disambigua-
tion of polysemous nouns and verbs with the SEMCOR’s
stated correct senses. All of our word/feature frequency
statistics are generated from SEMCOR sentences. To
evaluate our performance on a given sentence, we need to
align MiniPar’s parsing of the sentence with the answers
from SEMCOR. This aignment process is necessarily
imperfect. Sometimes MiniPar incorrectly identifies the
part of speech of aword, and when that happens none of
our agorithms have a chance of correctly disambiguating
it. In the case that MiniPar incorrectly claims that aword
whichisnot averb or anoun isone, the extraword makes

sentence alignment difficult. We have implemented some
fairly smpleagorithmsthat attempt to identify and throw
out al such cases. MiniPar will aso group words that it
feels denote a single concept. For example, " Fulton Su-
perior_Court_Judge” is stored as two wordsin SEMCOR,
but MiniPar treatsit is asasingle word. In order to make
sentence alignment as easy as possible, and avoid many
of these kinds of cases, we ignore all proper nouns. Once
sentence alignment is complete, we are left with a set of
nounsand verbs, their correct Wordnet senses as provided
by SEMCOR, and their MiniPar parsetreeindices. Those
indices are used to gather the related dependency triples,
which in turn are feed to our various disambiguation a-
gorithms.

4 Resaults

4.1 Wordnet Similarity Groups

All of our disambiguation algorithms rely on the Word-
net simgroups. However, a brief investigation of the sim-
ilarity groups returned by our program demonstrate some
worrisometrends. For example, we sometimesfail to find
large similarity groups for common senses of words. The
simgroup for the first sense of the verb "know” (to be
cognizant of information) is:

realize,recognise, recognize.

On the other hand, obscure senses of words can turn
up much larger similarity groups. The biblical sense of
"know”, has the similarity group:

bang, bed, breed, do_it, fuck, jazz, love, make_out, mount,
nick, ride, screw, serve, service, tread.

Notice that as feared, many of the words in the similar-
ity group are polysemous, representing relatively obscure
senses of other words.

Another nasty case comes up when an obscure sense
of a word has a meaning very close to that of a more
common sense. For example, the 11*" sense of "know”
(to perceive asfamiliar), has asimilarity group very close
to that of the first sense:
recogni se recognize refresh review.

4.2 Disambiguation Performance

For each of the disambiguation methods that we tested:
direct, CBC sense based, and semi-direct, we gathered
a number of statistics. We store the number of polyse-
mous words which were of sense 1. This allows us to
compare our results to the baseline method of assigning
each word to its most common sense. We aso record the
performance of a disambiguator that simply selectsaran-
dom valid Wordnet sense to assign to each word. Finaly
we store performance for a third baseline disambiguator,
one that uses a "qualified random” approach. The idea
here is that we select randomly between the valid dis-
ambiguators for which we can find non-empty similarity
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groups. Such a disambiguator is useful for figuring out
how much our successis being influenced by the fact that
some word senses are ruled out in the similarity group
generation phase.

Because the agorithms used were extremely memory
greedy, unix tended to kill the processes after they had
run for about an hour. However, one hour was enough
time for our experiments to collect a reasonable amount
of data, though the trials varied slightly in length depend-
ing on what other processes were competing for memory
space.

Properly summarizing our results is made more
complicated by the problems inherent in word align-
ment. For example, during our evaluation of the direct
disambiguator we successfully aligned 54941 nouns and
verbs. 2715 words were discarded because SEMCOR
and MiniPar disagreed about whether the word was a
noun or a verb, and 8486 more of them were discarded
because they were monosense. This information, along
with performance statistics for the direct disambiguator
and the 3 baseline disambiguators is given in tabular
form below (percentages for monosense words and POS
error are calculated relative to the total number of aligned
words, while percentages for disambiguator performance
are calculated relative to the number of attempted words):

Number of Words | Percent
Monosense 8486 155
POS error 2715 49
Attempted 43740 79.6
Direct Disambiguator 14591 333
Random Choice 10082 23.0
Qualified Random 10244 234
First Sense 28392 64.9

Here are results for the semi-direct disambiguator.

Number of Words | Percent

Monosense 9210 15.3
POS error 3039 5.0
Attempted 47758 76.6
Semi-Direct Dis. 13434 28.1
Random Choice 10941 229
Qualified Random 11118 233
First Sense 31029 64.9

The CBC based disambiguator often found itself
trying to disambiguate words that had no associated CBC
senses. Thus we recorded compiled two scores for this
disambiguator, one in which we only recorded success
when aCBC senses existed and we used it to successfully
disambiguate the word, and ” augmented” score in which
we had the disambiguator return sense 1 in all cases
where no sense cluster was associated with the word.
We aso have data for the precision and recall values of
the CBC disambiguator data, though they don't fit nicely

into our chart. Recall was 27.2%, and precision was 35%.

Number of Words | Percent
Monosense 3570 15.4
POS error 1015 4.4
Attempted 18639 80.3
CBC Dis. (augmented) 10149 54.5
CBC Dis. (pure) 1778 9.5
Random Choice 4447 239
Qualified Random 4515 24.2
First Sense 11973 64.2

5 Conclusions

5.1 Wordnet Similarity Groups

All of our algorithms depend heavily on the similarity
groups for the sense of each word. Given the problems
we saw in simgroup generation, it is surprising that any
of our algorithms performed better than chance. In our
future work section we speculate on some ways that the
similarity groups could be improved, and we imagine
that al our algorithms would perform significantly bet-
ter given better similarity groups.

52 CBC

The constant terms that we used in our implementation
of CBC were taken from one of Pantel’s later implemen-
tations of the algorithm. There is dways a chance that
the algorithm might have performed better given differ-
ent parameters, but in this case it seems more likely that
the problem lies in the size of our corpora. Pantel (2002)
uses a 144 million word corporato generate the frequency
information provided to CBC, the SEMCOR data that we
used contains slightly under a million words. It is aso
worth noticing that the corporaused in Pantel (2002) was
a composition newspaper texts, while the Brown corpus
datathat makes up SEMCOR comes from awide range of
sources, including press releases and a number of differ-
ent fictional genres. The heterogenous character of SEM-
COR probably increased the number of different word
senses used in the text, therefore making the sense clus-
tering task more difficult.

5.3 Comparison of the Algorithms

The most comforting number in the performance statis-
ticsisthe very low percent of part of speech errors. This
indicates that MiniPar is doing its job reasonably well,
providing a solid foundation for our algorithms to work
off of. The best performance that we ever see comesfrom
the "aways pick the most common sense” baseline. This
is disheartening, but given the poor quality of the sim-
ilarity groups and the problems we encountered apply-
ing CBC to a dataset as small as SEMCOR, it isimpres-
sive that any of our algorithms we do better than random
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chance. The fact that the qualified random disambigua-
tor performs about as well as the random disambiguator
is also heartening, as it implies that the gaps in our sim-
ilarity sets are not making the disambiguation problem
significantly harder or easier. Thus, what success the al-
gorithms do achieve beyond the random baselineis solely
the function of their ability to use the syntactic informa-
tion inherent in the dependency triples to infer semantic
rel ationships between words.

The direct and semi-direct a gorithms both solidly out-
perform random choice, and this gives us cause to hope
that if the issues with similarity group creation could be
worked out, we would be |eft with a complete system ca-
pable of outperforming the "most common sense” base-
line.

The results for the CBC based disambiguator ook
rather miserable at first glance, as the pure version per-
forms worse than random chance. However, it is worse
noticing that most of the errors are due to the failure
of our application of CBC to create sense cluster, and
that problem is a result of the small dataset size. So
we can hold out hope that given a large corpus to sup-
ply supplementary frequency information, the CBC al-
gorithm might achieve much higher performance. It is
worth noticing that in those cases where it has sense
clusters available to it, the CBC based agorithm has a
precision higher than either of the previous two ago-
rithms. We had hoped that the low precision CBC a-
gorithm could be combined with the highly successful
"most common” baseline. While this project didn’t pan
out (the "augmented” version of CBC is less effective
than the "most common” baseline), we can always hope
that given larger corpora and better similarity groups, we
could have achieved better results.

The fact that the direct disambiguator outperforms that
semi-direct disambiguator does not necessarily mean that
the semi-direct disambiguator is in al ways worse than
the direct disambiguator. Remember that one of the ad-
vantages that we hoped to see in the semi-direct disam-
biguator was errors which had a higher tendency to be
mistakes confusing semantically similar senses of aword.
However, we had no way of adjusting our results to take
into account semantic similarity. While unencouraging,
the performance scores alone are insufficient to disprove
our hypotheses.

6 FutureWork

There are a couple of ways in which the generation of
simgroups for Wordnet senses could be improved. At
the moment, we have only experimented with methods
for generating senses which have a fixed " profile”. That
is to say, al word senses prefer to have their similarity
groups filled with some predefined set of relatives. As
we have implemented our algorithm, sisters are preferred

over everything elsg, first order children over cousins, and
the most distant allowed relatives are third order cousins.
One could imagine changing the set of preferred relations
in hopes of getting better results. However, it seems to
us that the right thing to do would be to build an adap-
tive algorithm that first inferred a word’s position in the
synsnet, and then used that information to define the ap-
propriate profile. Designing such an algorithm would be
areasonably large project, we would attack the issue by
coming up with a loose parametrization for a family of
such adaptive algorithms, and searching that parameter
space for the values that maximized the performance of
our direct disambiguator.

One of the problems that we observed in our similarity
groups was the tendency for rare senses of aword to have
simgroups very similar to those of much more common
senses. Wordnet contains sense frequency information
for each of aword’'s senses, and we would imagine that
our disambiguation methods could beimproved by taking
advantage of that information when mapping a word in-
stance vector to a Wordnet simgroup; the a gorithm could
be designed to only return arare sense in the case that the
match was very good, other wise a more common sense
of the word would be preferred.

In the course of implementing the CBC a gorithm, we
saw a couple of ways in which it might be interesting
to modify the algorithm. For example, in phase 3, CBC
completely removes feature elementsincluded in the cen-
troid of amatched committee. However, it might be more
reasonable to subtract the centroid from the word vec-
tor, then set all the negative terms to O (we thought this
seemed like a better way of defining the "residue” of a
vector). We also suspected that it might be interesting to
enforce the " distance from all other committees’ restric-
tion in phase 2 of the algorithm relative to al previously
generated committees, instead of just those committees
generated in that iteratation of the algorithm. Both of
these modifications to CBC would be easy to implement,
and we would like to see how these changes to the algo-
rithm would effect both the generated senses clusters and
the performance of our disambiguation algorithms.

If the problems hampering our system could be over-
come, it would be interesting to compare our results to
those achieved by the disambiguator presented in Lin
(1997). It represents another "direct approach” that
works on principles rather different that those that we
used, though like our own agorithms functions based
only the dependency triple information.

It is interesting to note that unlike Wordnet, the on-
tology generated in Pantel (2002) had high coverage of
proper nouns, which could make it more suitable for MT
tasks. Al-Onaizan (2000) describes a case in which being
able to guess whether an unknown proper noun is more
likely naming atown or amilitia group can improve MT
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performance. We did not test the performance of our dis-
ambiguators on proper nouns, though the only thing that
prevented us from doing so was a set of relatively minor
technical concerns involving word alignment. |f those
concerns were overcome, it would be very interesting to
see how our algorithms performed in the limited case of
proper noun disambiguation.

If we could prove that the CBC based disambiguation
system was making different sorts of mistakesthan the di-
rect disambiguation system, it would almost certainly be
worth trying to create a hybrid model in hopes of com-
bining the advantages of both approaches. Such a system
could be implemented by a voting algorithm as in Flo-
rian and Wicentowski (2002). It also worth considering
ways in which CBC could be modified to produce clus-
ters that are more appropriate for mapping to Wordnet
senses. One obvious modification on the current system
would be to repeatedly run CBC on SEMCOR in order
to find the similarity thresholds for sense clusters that im-
ply sense distinctions most like Wordnet's. If we found
that the CBC algorithm was lumping two common Word-
net senses together, we would try increasing the degree to
which CBC demanded tight clusters.

Another ideawould beto generate our ontology using a
clustering algorithm in which sense clusters are initially
seeded in a way that reflects Wordnet senses. The sim-
plest way to do this would be to run ak-means clustering
algorithm with initial clusters created from Wordnet sim-
groups. One might try to incorporate some of the ideas of
CBC into such an algorithm by forcing clustersto have a
certain degree of difference from each other.

What we have done in our experiments is to measure
the extent to which disambiguations using CBC senses
clusters can be effectively mapped to disambiguations for
Wordnet senses. However, it might be interesting to de-
sign an experiment that tries to go the other way: we
could run an off the shelf Wordnet disambiguation al-
gorithm and then map the results to sense tags in the
automatically generated ontology. If Wordnet-to-CBC
worked well, but CBC-to-Wordnet worked lesswell, then
we would be able to speculate that CBC was creating
senses using a notion of semantics similar to Wordnet's,
but with uniformly coarser sense distinctions. How-
ever, if Wordnet-to-CBC worked less well than CBC-to-
Wordnet we might start to wonder if Wordnet was miss-
ing some interesting relationships between words that
CBC was somehow picking up on (given the results in
Pantel (2002) it seems likely that this wold be the case
for proper nouns).

One of our hypotheses was that the sorts of mistakes
that might be made by our system would be the result
of confusion between two similar senses of aword. We
further hypothesized that a human attempting to disam-
biguate words to Wordnet senses would be likely to make

mistakes on the same cases that give our system the most
trouble. 1t would be very interesting if these hypothe-
ses were true, however we lack the funding to properly
test them. If we had a couple of graduate students at our
disposal, we could set them on the task of hand tagging
chunks of SEMCOR. Then we could directly comparethe
humans' errors with our system'’s, as well as with other
more direct WSD systems. Instead of merely paying at-
tention to overal correctness, we would attempt to de-
termine, as in Pedersen (2002), which cases were found
most difficult by which systems, and whether or not our
system made mistakes that were more " human-like” than
those of the other statistical systems. If gradstudents
proved to be unavailable, alarge amount of word aigned
text from different languages could be used asin Chugur
and Gonzalo (2002) to develop a notion of sense similar-
ity. Our hypothesis would be supported if most of our
system'’s errors came from labelings with high similarity
to the proper label, while a more conventional system ex-
hibited errors with varied similarity.
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Abstract 2 Previous Work

) ) ] ) Standard approachs to this problem have been developed
Effective word sense disambiguation can play gjng statistical methods. Various approaches include
a crucial role in several important computa- 4jjizing assumptions about one sense per discourse and
tional linguistic tasks. Problems such as infor- 5o sense per collocation (Yarowsky, 1993), (Yarowsky,
mation retrieval and machine translation rely  1995) More recent work challenges and develops these
upon accurate tagging of word senses. This pa-  5gsumptions into complicated statistical models based on
per will present an English word sense classi-  yqhicajity and locality of context surrounding a target
fier based upon connectionist models of learn- -\, 9 be disambiguated. These models all rely on ex-
ing and behavior. Results perform compara- gt calculations of the relevance of given context.
.ny.WIth staf[e of the art statls'_ucal a_pproaches One major exercise in disambiguating word senses has
in finely grained word sense disambiguation. been the SENSEVAL project. By preparing corpora in
English and several other languages, the program'’s de-
signers hope to create a forum for comparing the per-
1 The Problem of Word Senses formance of several approaches to the same problem.
By specifying exactly the training and testing data for
One interesting feature of language, at least from a conthe classifier systems to use, discrepancies between data
putational linguistic standpoint, is its inherent ambtgui and results across experiments should be ameliorated and
Native speakers of a language have very little problerthere should be a fair comparison of all the system’s dis-
adjusting to potentially ambiguous statements, but botambiguating capabilities. The results of this approach
non-native speakers and computers face the difficulty dfave been promising, and it appears that the state of the
extracting a specific semantic meaning from statemenist for word sense disambiguation is 75-80% success both
that could have several. in precision and in recall (Kilgarriff, 1998). Furthermore
An archetypical example of this lexical ambiguity isby making the training and testing corpora used in the ex-
found in the word ’plant. Given a sentenc&he plant ~ ercise widely available, SENSEVAL allows researchers
lived in the chemical plant, a computer attempting, say to test and compare new methods against a solid baseline
machine translation, should be aware that each usage@fother systems’ performances.
plant in the sentence represents a different sense of theThe hypothesis of my work is that, instead of relying
word - in this case, the difference between a living planbn human generated statistical models, a connectionist,
and an industrial plant. It is important to correctly iden-developmental approach can yield as good, if not bet-
tify these difference because the ambiguity is unlikely tder, results. The foundations of this approach are strongly
be exactly duplicated in the target language. For instancenotivated by a desire to base learning and development
the French word for the living plant igdante, while the in machines on our understanding of our own develop-
word for the factory plant isisine. Clearly, a correct mental process and root the learning in biological plau-
translator needs to be able to resolve any sense ambigibility. Additionally, studies suggest that this apprbac
ity. This paper will describe one such approach for unean be as successful as other, more traditional approaches
tangling this problem based around neural networks artd problem solving such as Markov chains and decision
connectionist models. trees (Quinlan, 1994).
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Although most of the previous work has been focused SENSES

on resolving sense ambiguity using statistical methods,

there still exists substantial evidence that a connecdtoni Q Q oo e Q
approach can lead to comparable results within this par-

ticular domain. For instance, Mooney (1996) compares

several available word sense classifiers, and out of 7 pos-

sible classifiers, a neural net approach tied for best. In

this paper, Mooney used a simple perceptron network to

disambiguate instances of the word ’'line.” The network

performs comparably with a Naive Bayesian approach

to disambiguation and signficantly better than five othe
methods, achieving a 70% precision rate. In addition, the
neural network approach both trained and tested faste
than the Naive Bayesian system.

TOPICAL INFORMATION

==

A separate study also reported a neural net having a Figure 1: Network Model
high success rate in identifying the meanings of the words
'line,’ 'serve,’ and 'hard’ (Towell and Voorhees, 1998). .
The study created topical and locational information ne3  The Classifier

works and combined their output to create effective SeNsK i< section will describe the specifics of my approach.

classifiers. The topical approach used general contef_(ﬁst, the architecture of the network model will be de-

mform_atlon surroqndmg a targgt word. Each qud SUlscribed. Second, the data for training and testing my clas-
rounding the ambiguous word in the testing set is give

: . . ) Sifier will be covered. Finally, | will describe the learning
an input into the node, but there is no encoding of an

X . . . aMhethod for the network.
words relation to the target, just that it appears in a simi-

lar context. 3.1 Model

The locational encoding used by Towellal is a more The classifier presented is a very simple neural network
intricate approach which, when encoding words, affixe§omprised of only perceptrons linking topical input to
locational information. Using their example, the senS€nse output. This idea is based on Towell and Voorhees,

tence "John serves loyally” becomes the set [-3zzz -2z2¥h0 describe a similar system performing - somewhat
-1John Oserves 1lloyally 2. 3zzz]. This affixation masSUrprisingly - best without any hidden nodes in the net-
sively expands the vocabulary of context words arountyork (Towell and Voorhees, 1998). Indeed, other re-
a target word to contain locational information for eact$€arch into this subject reveals that the poor performance
word. Every word within this expanded vocabulary isof networks with hidden layers is pervasive (Mooney,
given its own input node to the network. The Iocationallgg(?) ] ) )
approach permits a network to uncover for itself not only Given that I will be testing neural networks on their
what context is important, but whether relative locatiorP€rformance on several different potentially ambiguous
matters as well for disambiguating words. This approaci0rds, a separate network is required for each. The rea-
worked extremely well for its three target words, averagS©n for this is clear when one considers the nature of
ing an 86% success rate. This is not altogether surprising, Single network’s inputs for this task. Each network

given the rather coarse senses used in their experimen{nust be able to disambiguate a word’s meaning based
around that word’s particular context and choose out of

My research reported here, to a large degree, is an de word’s available senses. This requires the network to
tempt to reproduce Towedlt al’s topical neural network have unique inputs and outputs for any target word. To
model and apply it to a different set of training datadisambiguate a new word, a new network with its own
In doing so, | plan to provide two important contribu-unique parameters must be created and trained.
tions. One, | will put a neural network model for word The general architecture of this model is graphically
sense disambiguation in the context of a previously imdepicted in Figure 1. A given network will consist of
plemented general word sense exercise comparing diffe-fixed number of input nodes. The number of input
ent attempts at disambiguation. This will permit accunodes will correspond to the size of the context vocab-
rate comparisons of a neural network to other approachsary found in the corpus. Any word that appears in a
within a broad framework. Secondly, | hope to test thesentence along with the target ambiguous word will have
general connectionist framework for sense tagging in an associated node.
relatively fine-grained sense environment. When confronted with an ambiguous word, the net-
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work will collect all the words in the surrounding sen- word || example meanings |

tence and create an associated vector. This vector will accident| by chance
have the length of the vocabulary, and the topical words collision

will have their associated nodes set to 1.0. Other nodes, band musical group
i.e., words that do not occur in topical context of the cur- ring

rent target, will have their activation set to 0.0.

The output of the network will simply be one node per
available sense of the word. The node with the highest
activation after the network has analyzed the topical input
should correspond to a given sense. This sense, then, is
the network’s classification of the presented instance of slight tiny
the target word. least (superlative)

One important feature of the network is that its struc-
ture almost necessitates that recall on tests will be 100%.
Although a perfect word sense disambiguator would cer-

brilliant || showy
vivid
sanction|| allow
economic penalty

Table 1: Ambiguities in Target Words

tainly have recall that high, current efforts have a much | Word  [| Vocabulary Sze | # of senses |
lower recall(Kilgarriff and Rosenzweig, 2000). In my accident 6129 11
network, the precision-recall trade-off can be approxi- band 8111 22
mated by setting a threshold of certainty on the output brilliant 3783 11
nodes. In other words, during testing, the network only sanction 1125 5
reports results if the highest activated node is greater tha slight 3344 8

all other nodes by a certain margin. Clearly, if two output

nodes have similar activation then the system is having a Table 2: Data Attributes

difficult time choosing between the two senses and preci-

sion could be improved by not having to tag that instance .
P y g g dard for answers. My system uses all of these directly

3.2 Data from the experiment. The resulting network inputs for the

. . training data corresponds to a varied vocabulary range,
The data used for training and testing my model comes ¢ P y rang

. : 'om a little over 1000 fosanction to over 8000 foband.
directly from the SENSEVAL exercise - now referred One final and important note about the SENSEVAL

taggings is that they are extremely fine. In particular,

"Band had over 20 different possible senses defined, and

pare the effectiveness of several different word SeNSE . oiher words although not as extreme, also had nu-

disambiguators on similar data. For the first SENSE- : . .
) . : merous possible senses. This clearly makes the tagging

VAL, words were seperated lexically before being disam- . . 22
. o . ..a more substantial challenge than in other connectionist
biguated, an approach that fits nicely with my necessit

of having one network model per word. The dictionar prroachs (Towell and Voorhees, 1998) that use a very

) ! limited number of possible sense tags. Table 2 reports
and corpus for the exercise come from a project calleﬂfl

HECTOR, which involved the creation of a comprehen: e number of senses and vocabulary sizes for the words

sive hand-tagged sense corpus concurrently with the dtee-Sted'

velopment of a robust dictionary of word senses. 3.3 Leaming Method
Although SENSEVAL included several different
words to disambiguate, | focus on only five of them.The learning method for a given network is the standard
Their selection was based primarily on the relative aburerror backpropagation method used in teaching neural
dance of both training and testing data. My model atnetworks. After feeding the network a training input, the
tempts to disambiguataccident, band, brilliant, sanc-  resulting output is compared to the expected output, error
tion, anddlight. Although the HECTOR sense tags args computed, and weights and biases are adjusted accord-
too fine to recreate here in great detail, Table 1 presentsregly.
few examples of ambiguities in the target words. A more One useful indicator for ending learning is the conver-
complete analysis would undoubtedly test on the entirgence of error of the network to a steady state. Using this
set of SENSEVAL words. Itis unfortunate that, given theas a basis, my network would train until error reached
large training time for a network, | was unable to test myan asymptotic level. In general, this means the networks
system on the entirety of the SENSEVAL data. would learn for 15 to 20 epochs, seemingly quite fast.
For each word, the SENSEVAL exercise providedsiven the size of the training set and the speed in training
training data, a dictionary, testing data, and a gold stamperceptrons, this is not altogether surprising.
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Figure 2: Precision-Recall Performance $anction
| word | precision | F-Measure | give the system the capability to tag a particular word as
accident| 70.4% 82.6% 'unknown.” | implemented this functionality by creating
band 64.4% 78.4% a threshold value to determine the certainty of the net-
brilliant | 32.9% 49.5% work’s output. If the difference between the two highest
sanction| 55.6% 71.5% activated output nodes was not greater than the threshold,
slight 69.7% 82.1% then the system has an unacceptable degree of uncertainty

| about its output and chooses not to tag the word.

Adding this threshold technique for determining sense
Table 3: Performance with 100% Recall outputs, precision should be increased. To test the ef-
fectiveness of the threshold, | sampled a range of thresh-
4 R | olds to plot the relation between recall and precision. We

esults would expect to see an inverse relation. As the network

After training five different networks to disambiguate theStops tagging words that it is relatively unsure of, its re-
target words, | was able to test the network’s performance@l! falls but, since certainty of its taggings is highee-pr
on the SENSEVAL test sets. The test sets were generafijsion has likely increased. The test of this hypothesis
substantially smaller than the training sets. Initialitegt IS reported in Figure 2. Using the network trained to
results are reported in Table 3. disambiguate the worshnction, increasing the certainty
Again, it should be noted that the architecture of théhreshold causes a fall in recall and a rise in precision, the
neural net is set up to give 100% recall. For any givefXpected result.
test sentence, a particular output node will be activated to Although this threshold permits the network to evalu-
a greater extent than any other output node. This 100%e the certainty of various output taggings, the approach
recall can be a problem, as most effective word sense distill has a few weaknesses. For one, the threshold must
ambiguators have a much lower recall. Nonetheless, pdye assigned by an outside observer, and there appears to
formance is still quite good on all words except for bril-be no general rule for assigning the threshold. Instead, |
liant. Also, the system'’s perfect recall leads to rathehhigsampled a variety of possible thresholds for the words
F-Measures. and thereby selected thresholds that yielded seemingly
Given the potential problem that 100% recall is causreasonable results. It would be much more desirable to
ing, a next step in testing was to try to lower the recalhave the network generate its own thresholds and learn
rate and raise precision. To do this, it was necessary foom them.

| average | 58.6% | 72.8%
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| word [ precision | recall [ F-Measure | The full exercise had 35 words with 41 associated disam-

accident| 74.0% | 90.6% 81.5% biguation tasks. These tasks included much more chal-
band 64.5% | 99.0% 78.1% lenging tasks such as words with differing parts of speech

sanction| 63.8% | 74.1% 68.6% and words with limited or no training data. The use of
slight 783% | 69.7% 73.7% data with an ample training set might have unfairly influ-

| enced my system’s performance. Nonetheless, my results
are promising enough in general to prove that the connec-
Table 4: Performance with Lowered Recall tionist approach can potentially compete with excellent
statistical classifiers. Further work is certainly warezht
) ) o to more generally test this approach’s viability.
This well-documented relation between precision and . o
With regard to the specifics of the network perfor-

recall suggests that better results can be achieved by low- . fact is th d for th
ering the sensitivity of the network’s output. Using arpj-Mance, one important fact is the tendency for the net-

trary thresholds, the networks’ precision improved Subworks to only focus on the most frequent senses. Even

stantially, as shown in Table 4. It should be noted tha“t"hen pr_esented with seyeral senses, the network would
brilliant has not been thoroughly tested with a threshl-Jsua‘IIy ignore senses with very low frequency. In gen-

old, due mostly to time constraints involved with findingeral’ the network WO_UId (r)]nly select the two or t_rkl)rlee m(I)st
thresholds for any particular net. common senses as its chosen tags. One possible explana-

Unfortunately, the rise in precision in this approacﬁion for this behavior is the lack of hidden nodes. Hidden
’ nodes would allow the network to develop a more nu-

was met with a more than proportional fall in recall. This .
fact can be seen by observing the change in F-Measur@@ced approach to the context relevant for categorizing

between the two tests. The average is slightly higher dENSes, and, as such, would be more likely to uncover the
to the absence of brilliant’s results, but every individuaPccurrences of less frequent words.

F-Measure is worse than the tests with 100% recall. This

drop in total system performance is certainly unexpected
and actually supports keeping the initial system intact and  Future Work

not using any threshold for determining certainty. One

potential reason for this anomaly is the aforementionegihe |ack of hidden nodes provides an interesting arena
arbitrary nature of the thresholds. A network that had infor future research. The slow Speed of network training

corporated certainty measures throughout learning woulgtohibited an in-depth look at this current time, but | feel

| average | 70.2% [ 83.4%| 75.5%

perhaps perform in a more expected fashion. that future work could look into several interesting areas.
) . As has been previously noted, fine taggings are likely to
5 Discussion be better handled with hidden layers. Additionaly, hid-

Using the results from the SENSEVAL study, the Con_den layers should be able to extract more intricate levels
nectionist approach described here stands up quite wef meaning such as distinct phrases. Toveell discuss

The state of the art for the statistical approaches usé@s pOSSi_b”“_V* describing how diagnostic phlrases. such
in the exercise is around 75-80% for both precision ang@® 'stand in line’ cannot be fully represented in a simple

recall(Kilgarriff and Rosenzweig, 2000). Although my perceptron net based on topicality(Tovx_/eII and Voorhees,
system performs slightly worse on the five words | at1998)- A hidden layer would allow this sort of phrase

tempted, results are nonetheless quite comparable. t _ be characterized directly i_n one hidden n_ode, albeit
more apt comparison would clearly come from Iookindf’v'th th_at node probably handling several possible phrases
at the differing F-Measures for all the systems. Unforirom different contexts.
tunately, SENSEVAL results do not report this statistic Another problem with the approach presented here is
for the evaluated systems. A rough calculation can bigs reliance on having a unique network for every target
made, using the reported results of the best performessord. A more robust possibility would be to create an
If the best systems were between 75-80% in both prenormous neural network that would incorporate the en-
cision and recall, then the system’s F-Measures must ltiee vocabulary from all the training sets as input nodes
bounded between 75-80% as well. Using that as a comand additional input nodes specifying what word is cur-
parison, my system performs admirably, with all testedently ambiguous. The outputs for this network would
words except brilliant having comparable results in thée all the senses of all the words. A network architec-
100% recall test. ture of this type is clearly enormous and is probably pro-
Although the network performed comparably on fourhibitively costly to train or test, but nonetheless could
of the five tested words, the results presented here gpetentially provide a much more general solution to the
not a complete comparison to the SENSEVAL exercisgroblem of word sense disambiguation.
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7 Conclusion Quinlan J. R. 1994. Comparing Connectionist and

] o _ Symbolic Learning Methods.Computational Learn-
This paper has presented a connectionist method of im-jng Theory and Natural Learning Systems: Volume 1:

plementing word sense disambiguation. As this method Constraints and Prospects. MIT Press. 445-456.

is currently underexplored within the domain of natural )
language processing, this paper represents an importdi9ell Geoffrey and Ellen M. Voorhees 1998. Disam-
step in showing the feasibility of using neural networks b!gua_“f?g Highly Ambiguous WordsComputational

for computational linguistic tasks. Further, the tests pre Linguistics. V. 24, N. 1 125-145.

sented lend themselves to easy comparison to other sy&rowksy David. 1993. One Sense Per Collocation.
tems’ attempts at solving the same problem, as it utilizes In Proceedings, ARPA Human Language Technology
the same testing and training corpora that were used in Workshop. Princeton, NJ. 266-71.

the SENSEVAL exercise.
. o Yarowsky David. 1995. Unsupervised Word Sense Dis-
My network has clearly demonstrated its ability to rea ambiguation Rivaling Supervised MethodBroceed-

sonably disambiguate a word given a sentence of context.ings of the 33rd Annual Meeting of the Assocation for
Although the full range of SENSEVAL words was not Computational Linguistics. 189-96.

fully tested, the results perform comparably with the sys-
tems that participated in the exercise, with the F-Measure
of precision and recall averaging around 75%. Clearly, a
fuller testing of all the words should provide a more com-
plete analysis of the viability of a connectionist model.

Steps forward clearly include a deeper look into the
potential advantages of using hidden nodes to allow in-
creased generalization and more subtle analysis of con-
text. Also, the automatic generation of certainty thresh-
olds during training should permit the network to effi-
ciently trade off between precision and recall. Nonethe-
less, this paper has successfully demonstrated that neu-
ral networks provide a reasonable framework for disam-
biguating word senses.
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Abstract has seen a trend towards automation to circumvent the
bottleneck associated with KE.
Many recent information extraction (IE) sys- This trend is fueled by the difficulties inherent in all

tems have ignored the tedious and time-  KE tasks. Extensive, yet required, human involvement
consuming nature of the preparation involved  makes them costly to develop, test, and apply to different
in using them. The abundance of graduate stu-  proplem domains both in time and money. These sys-
dents has eased the pain of providing annotated  tems often require annotated corpora, pre-filled answer
corpora, pre-filled answer templates, and man-  templates, human designed rules, or, if the systems auto-
ual examination of automatically-generated  mate the rule-making process, the manual examination of
rules and final answers. In this paper, we  gych rules to weed out the poor ones. These requirements

present a new system comprised of previously  gre simply unacceptable for many potential applications,
published solutions to differentaspects of IEin a4 we believe they are unnecessary.

an effortto automate as much of the task as pos-

sible while achieving competitive results. 1.2 Relevant Work
Since MUC-1, researchers have been searching for an ef-
1 Introduction fective, autonomous IE system. Showcased at MUC-4,
. Riloff's AutoSlog (1993) program automatically gener-
1.1 Background Information ated a dictionary of concepts which were later used to

The recent availability of large quantities of text in elec-extract information from text similar in category to those
tronic format on the World Wide Web, has greatly in-with which it was trained. This system proved capable
creased the importance of intelligently extracting deef achieving 98% of the performance of a hand-crafted
sired information from such text. The task of informa-dictionary developed by graduate students. The students’
tion extraction is most easily described as that of fillinglictionary took 1500 person-hours to build, while the Au-
a database with information found in structured, semitoSlog dictionary only required 5 person-hoursin order to
structured, or free text. Structured text can be thought dfand-filter automatically-generated rules.

as text in a pre-defined format, like in a printed spread- Despite the obvious benefits of AutoSlog, it was still
sheet. Semi-structured text follows general guidelinesiot practical for real-world use. As input, AutoSlog
but is not as predictable as structured text. It is often urrequired either a set of answer keys or a semantically-
grammatical with a lot of fragmented sentences. An exannotated corpus. This was used to provide AutoSlog
ample of such text might be telegraphic, military commuwith examples of information to be extracted. Conse-
nications, or birthday invitations. Free text is just nofmaquently, AutoSlog does not port well to different domains
prose, as found in a news article or a work of fiction, fosince it takes many person-hours to either fill in a set of
example. answer keys or annotate a corpus.

DARPA recognized the significance of this growing To address these concerns, Riloff developed AutoSlog-
field in the late 1980’s when they funded the first MesTS (1996). This improvement on AutoSlog automatically
sage Understanding Conference (MUC-1). The MUC hagenerated extraction rules given completely unannotated
been held semi-annually since, and has highlighted déext. As input, it requires two texts, one relevant to the
velopments in IE research. Since the early knowledggroblem domain, and one completely irrelevant. It works
engineered (KE) systems developed for MUC-1, the fieldy generating an extraction pattern for every noun phrase
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in a given text. It then compares the extraction patternidre-filler: Filler: Post-filler:
found in the relevant text to those found in the irrelevant) tag: {nn,nng 1) word: undisclosed 1) sem: price
text. Those patterns that show up frequently in the forme?) list: length 2 tag: jj
but not at all in the latter are presumed to be pertinent to
the problem domain. This system is hindered however by
the need for manual examination of the resulting rules, Figure 1: Sample Rule Learned by Rapier
normally about 2,000, in order to discard poor choices.

Another system developed to automate the rule genera- )
tion process is Rapier (Califf and Mooney, 1997). Rapief-2 Rule Representation
takes as input sets of training text paired with a corre2.2.1 Rapier
spondin.g answer key. It then uses this information_, COM- Rapier's rules consist of three parts, a pre-filler pat-
bined with the output of a POS tagger and semantic clagsy, filler pattern, and postfiller pattern. Each pattern
tagger, each given the training text, to create specific €xqnsists of any number of constraints. Constraints can
traction rules that extract the correct answers. Up to thige gefined to match an exact word, any word with a
point, Rapier is quite similar in execution to AutoSIog;giVen POS tag, or any word that matches a given se-
however, the system then goes on to generalize these sRgsniic class as defined by WordNet (Miller et al., 1993).

cific rules in order to make the resulting dictionary morgujithin constraints, expressions can be disjunctive if writ
robust. That robustness is the strength and the point gfy, as{constraini, constraing, ...} where the con-

the Rapier system. straints musts all be either exact words, POS tags, or se-
mantic class tags. For example, to specify that a pattern

2 TheMAXIM System should match with either an adjective or an adverb, the
constraint would bgJJ, ADV}.

2.1 Basisfor MAXIM The appeal of Rapier’s rule representation is its ability

to express a general idea as opposed to relying on specific

(MAXIM) system was developed out of the need forword choice. For example, a rule generated by Rapier
an IE method that required next to no human interver{prextractingthetransaction amount from a newswire re-

tion or preparation but still received satisfactory result garding a corporate acquisition is shown in Figure 1. The

AutoSlog-TS's necessity for manual examination of ru|e¥alue bging 'extracted is in the filler slot and its pre-f'iIIer'
as well as its lack of robustness given the specificity of it@2tern is a list of at most two words whose POS tag is ei-

resultant rules leaves something to be desired. Rapief€" noun or proper noun. The post-filler pattern requires
need for answer keys means many person-hours are feYVordNet semantic category “price”.

quired before training on any particular problem domainy o 5 MAXIM
The respective strengths and weaknesses of these SySte”ﬁapier's slot constraints form the underlying idea of

complement each other well. As a result, we propose .

comp o brop t%e rule representation that we have adopted for MAXIM.

joint system built with the better halves of both. This sys- : . .
i : : . Due to the inconsistencies between the methods used by

tem consists of an implementation of the rule generatio

phase of AutoSlog-TS and a rule generalization proces;/g‘sumSIog'TS and Rapier to generate extraction patterns,
e had to use the pre- and post-filler slots as containers

inspir Rapier’s rule repr nttinnlrnin]:y : : ;
gosrii)therz‘r? by Rapier's rule representation and learning &or extracted values, which contrasts with Rapier’'s use

K . lassified ‘ b hof the filler slot for this purpose. This simple but cru-
. MAXlM ta €s as Input pre-classi 1€ tgxt rom Ot cial alteration in slot design meant that we could not use
inside and outside the problem domaiit.will feed this

h | ; h ¢ | hi Rapier’s rule generalization algorithm without modifica-
thext tbo the ru g,'fge;erat'on phase Ci A‘,Jtosfog'TS w ',(I:tﬁon. Also, the fact that this algorithm was highly depen-
as been modified to represent rules in a format similgfe ; o the answer key provided to Rapier reinforced our

tp that of Rapier's (see Subsecnqn 2'.2)' To minimize th8ecision to abandon this specific generalization algorithm
time spent on the manual examination of the many ree'ntirely

sultant rules, we used a clustering algorithm in order to 5 - implementation of AutoSlog-TS returns the ex-

gr?up 1:E3|m|tl'ar rufkiﬁ' WF wer(ta tfl(tandrsthr?dstlo e?g"n?raction patterns in the form ofnoun phrase <verb
only a fraction ot the rules outputted by AUt0S10g-1.5. phrase-<noun phrasg which aligns nicely with the

pre-filler, filler, and post-filler slot arrangement of the

The Maximally Automated eXtractor of InforMation

1 ” H4 ” H
By "classified text”, we mean a text that is marked rele- isati i
. ' > s rule generalization phase. We set up three constraints
vant or irrelevant. We assume that finding qualified textsikho g b P

not be difficult or time-consuming given that relevant text i for the pre-filler and post-filler slots and one constraint

required for training any system and irrelevant text is figad for the filler slot. The pre and post filler constraints
available online. consist of the maximum number of words in the noun
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phrase max-len a 39-dimensional vector that serves a$AT TERN

a histogram bir? for the POS tags of the words in the <subj> passive-verb
noun phrasePOS-classification-vectpand a required <subj> active-verb
POS tagrequired-POSthat is determined from the noun <subj> verb infin.
phrase’sPOS-classification-vectorThe 39-dimensional <subj> aux noun
vector was composed of 36 Penn Treebank part of speech

tags and three tags that were added later to cover puriassive-verkcdobj>
tuation marks. The constraint associated with the filleactive-verb<dobj>
slot is just a set of words in the verb phrafider-set  infin. <dobj>

Like Rapier, MAXIM avoids this problem by generaliz- verb infin. <dobj >
ing rules using the slot constraints. gerund<dobj >

noun aux<dobj >
2.3 Problem Domain

Our problem domain is articles reporting the results ofioun prep<np>
soccer games. It was chosen based on a mutual inter@stive-verb prepinp>
and the wide availability of such stories. In order to diverpassive-verb pregnp>
sify our training corpus as much as possible while stay-
ing in the domain, we have collected stories from differ-
ent countries and authors, resulting in texts with différen
writing styles. All articles are in English. Our sources in-
clude, the FIFA coverage of the World Cup 2002, the En-
glish Premiere League’s archives of the past seven yea?s5

EXAMPLE

<team> was defeated
<player> scored
<team> attempted totie
<player> was team

kicked <player>
beat<tean>

to card<player-

tried to foul <player>
coaching<teant
coachNamés <coach>

goalagainsi<tean>
beatby <goals>
was injuredat <time>

Figure 2: AutoSlog Heuristics

Implementing AutoSlog-TS

as well as the Major League Soccer’s archives over thﬁnough Riloff generously offered her AutoSlog-TS im-

5\?St| dSI\)/(V')(ljea(/?/- bA” sdo;J]rcesbwere dc,)W”I%adfd"frﬁ_rﬂvft5Iementation for our research, we obtained the code too
orld Wide Web and have been stripped of a late to make use of it. Also, since modifications were nec-

tags.

essary to the rule representation, time to become famil-

Having considered various choices for the irrelevant,. \ith the code would be called for. For these reasons,

text to be input into AutoSlog-TS, we decided that it
would be beneficial to try different sources in order t
compare and contrast how the choice of irrelevant te

e decided to implement what we needed of AutoSlog-
Ors ourselves. Due to the extensive need for using regu-
Xhy expressions and the limited time allotted for develop-

affects results. We have picked the Wall Street Jounglen; e decided to implement AutoSlog-TS with Perl.
corpus for its journalistic style and its specific and ConAutoSIog-TS generates extraction patterns for a given

sistent subject matter. Conversely, we have chosen the :in o stages
Brown corpus for its broad range of writing style and di-

verse subject matter. 251 Stagel

2.4 Building the Relevant Corpus

In the first stage, AutoSlog-TS identifies the noun

phrases using a sentence analyzeor each noun phrase,

Once all the HTML tags had been stripped from our com

it uses 15 heuristic rules to generate extraction patterns

pilation of soccer stories, we performed two tasks in 0rd&f ot il be used in the second stage. These heuristic are

to convert our relevant data to a corpus that was compaty own in Figure 2.
ible with both the AutoSlog-TS and Rapier systems. The
first task was to remove text that was not in a sentencig
format such as headers and game statistics. The sec
task was to put the soccer stories in one-sentence-per-|
format. As a result, we implemented a highly customize
sentence boundary disambiguator which included so
common proper nouns from the problem domain. Th
fnTBL (Ngai and Florian, 2001) POS tagger and texib
chunker was then run on the formatted text, which ins;
cluded about 800,000 tokens.

When the first stage is run on the corpus, a huge dictio-
ary of extraction patterns is created. This list of extrac-
] patterns is capable of extracting every noun phrase
'g‘.ethe corpus. AutoSlog-TS allows multiple rules to be
ctivated if there is more than one match. This results in
Mfe generation of multiple extraction patterns for a single
foun phrase. For example, running our implementation
f AutoSlog-TS on a test set of the WSJ, the sentence
... have to secure additional information and reports....”
produced two patternshave to secure <dobj> andto

%It is not technically a histogram, because the POS counfcure <dobj> in response to the two of the rules in

for the phrase are weighted. More common tags, like NN, for
example, are weighted less than tags like CD, which carrgemor
information. part of fnTBL.

86

3We used the pre-trained englishTextChunker that comes as

Appeared iniProceedings of the Class of 2003 Senior Conferepages 84-91

Computer Science Department, Swarthmore College



Concept Nodes:
<x> was defeated

defeated bycy> Concept Node ——— REL%
<x> was defeated — 87%
. defeated byy> —— 84%
AutoSlog S: D.C. United

Heuristics| ¥ |V: was defeated Relevant T.

PP: by A.C. Milan
\ Sentence Analyze

Concept Nodes: /
Irrelevant T. <x> was defeated
— | Sentence Analyze

defeated byy>

II —

Relevant T.

Figure 3: AutoSlog-TS Stage 1 flowchart Figure 4: AutoSlog-TS Stage 2 flowchart

Figure 2, verb infin<dobj> and infin.<dobj >, respec- rank for patterns with a high frequency. This was done
tively. The relevance statistics performed in the secon save patterns that are common in both relevant and ir-
stage will decide which one of the two extraction patternselevant texts from poor ranking. Both equations 1 and 2
is more representative of the domain. were originally used in AutoSlog-TS. Riloff admits that
The process of Stage 1 is summarized in Figure 3. they are simple and may be improved upon but they were
suitable for her purposes. Even though we feel similarly,
25.2 Stage2 strictly improving AutoSlog-TS was not the focus of our

In this stage, we examine both relevant and irrelevarfork, so we decided to use the equations as presented.

For each pattern in our dictionary, we go through each
sentence in both our relevant and irrelevant corpora art¥6 Rule Clustering & Generalization

keep track of the number of cases that were activated Rjjhen AutoSlog-TS outputs its rule extraction patterns
this pattern. We use this to estimate the conditional probg, sorts them according to the ranking function, there
ably that a text is relevant given that it activates a givefy 5 qanger that some important extraction patterns might
extraction pattern according to the formula: be discarded. For example, in our problem domain of
choice, the phrase<Rookie Ali Curtis > netted<his
second goal” might have been ranked a lot higher than
"<Forward Chris Browp notched<a goa>". If our
rule representation relied solely on the words it found in
where rel-freg; is the number of timesattern; the training text and their ranks, these would be treated
appeared in the relevant corpus whiletal-freq; is @S Separate rules throughout the program and the second
rel-freg; + the number of times pattern; appeared in phrasg may be discarded as irrelevant if the toles
the irrelevant text. The idea behind computing the cond@'® Plindly selected.
tional probability for each pattern is that domain-specific However, MAXIM keeps all the rules from AutoSlog-
expressions will show up more in relevant texts than ir] S: computes the?OS-classification-vectoror both
relevant ones. Since AutoSlog-TS generates thousandstun phrases (i.e. the pre- and post- fillers) and the
extraction patterns, we need to rank each pattern in ord@fer-set for each rule and runs a two-level clustering
of relevance to the domain and discard the less importaRfogram.  This program first clusters the rules with
ones. This will allow for a person to review the most relefhe saméiller-set together. It then calculates the aver-

vant patterns. The ranking function used by AutoSlog-T89€ POS-classification-vectorsf these simple clusters
is a simple one: (simple-cluster; to simple-clustery,) and computes the

cosine similarity between all vectors using twa n ma-
trices (one for the pre-filler slot and the other for the post-
rank; = relevance rate; x logs(total-freq) — (2) filler). Next it chooses the pair of simple clusters that are
most related by finding the pair whose pre-filler and post-
whererelevance rate; is as calculated byg(1) and filler cosine similarities’ sum is highest as long as the pre-
total- freq is also the same as iy(1). Rank is set to filler similarity’s value is above a set threshold and the
0 if relevance rate; is < 0.5. FEq(2) gives a higher post-filler similarity’s value is above a separate thredhol

rel-freg;

P, (rel-text | text contains pattern;) = total-fregq:
- i

1)
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Pre-filler: Filler: Post-filler:

1) max-len 1)filler-set 1) max-len Figure 6: A Filled Template
2) POS-classification-vector ~ 2) POS-classification-vector soccergame temolate
3) required-POS 3) required-POS g P

teams: The Colorado Rapids, the Los Angeles Galaxy 1
score: the Los Angeles Galaxy 1 -0

Figure 5: MAXIM Rule Generalization winner: The Colorado Rapids

scorer: Agogo

ejected: Galaxy defender Ezra Hendrickson

Then it continues this process, not considering the prev

ously paired simple clusters, finding the next most related
pair of simple clusters until either all clusters are paired WSJ Brown
or there are no two clusters with both pre- and post-fillgr Recall | Precision|| Recall | Precision
similarities higher than their respective thresholds. Thie1% 25% of corpus | 19.85% | 68.97% || 19.54% | 65.31%
second stage of the clustering program can be repeatF%d 25% of corpus | 10.53% | 61.33% || 11.91%| 64.2% |
cutting down the number of clusters by half each time.
Once all the rules from AutoSlog-TS are clustered irfable 1: Effect of Writing Style and Irrelevant Text
their respective group, a human will go through eaciChoice on Performance
cluster and link the pre- and post-fillers to the appropri-

ate slot(s) in the template to be filled. Irrelevant clusters ) ) ) ) )
are eliminated at this point and the good clusters are aS2ntain the desired information (as the example outputin

signed template slots and fed in to our rule generalizatign9ureé 6 shows). Note that this is still better than some

program. This is the only phase that requires human i,{_esearch-l.evel systems, \{vhich reFurn the entire sentence
volvement. We timed ourselves doing this task togethdf't contains the desired information.
on 628 simple clusters and it took us just under one hour. Although our training corpus comprises 1,300 soccer
Compared with the 5 hours it took the AutoSlog-TS teanﬁ\rtlcles (8003000 tokens), it was not possmle to train our
to manually assign slots to approximately 2,000 rules arif’Plementation of AutoSlog-TS within the given time
you find that we are already saving time, and this wa@me. As a result, we trained on only4 of our corpus
before the second stage of the clustering, where we cgiZ€- This made it possible to analyze the effect of dif-
those 628 simple clusters into less than 314 clusters. ferent writing styles within our problem domain on the
The generalization program is very similar to our C|usperformance of our system, as we could p'_Ck different
tering algorithm since it relies heavily on POS infor-Parts of our corpus that correspond to the'dlfferent soc-
mation. As discussed in section 2.2, the three corfe" leagues. We tested MAXIM on 200 articles and cal-
culated recall and precision by comparing the templates
filled out by MAXIM to a human-filled answer key. As
can be seen in Table 1, both recall and precision were
t better when we trained on the first 25% section (section

taking the average of the individuRIOS-classification- ) Of the training corpus than the second 25% section

vectors From this vector, we obtain thequired-POSy (section B). This is believed to be due to the fact that
finding the maximum element. When the rules are aF}_his second section contained mostly articles about Pre-
plied to a test set, a sentence has to satisfy a total of folJi€" Léague games while the test corpus contained only
constraints before the content of its pre- and post-fille@rticles from the 2000 MLS season. The writing styles
slots are sent to the template slot as important informér—om the British writers and the American writers varied

tion. The structure of our rule representation is summdléatly. For example, where one British writer writes,
rized in Figure 5. <player> dinked a delightful cross”, the average Amer-

ican writer writes, <player> blasted a cross”.
2.7 Discussion of Results In addition, the result of different choices of irrelevant

ext was analyzed by training our system on both the Wall

We set out to fill a template with five slots: the name Ogtreet Journal (WSJ) and the Brown corgord/e were

the teams that played, the winner of the game, the Scorg ping to show that training on the WSJ corpus would
the scorer(s), and the names of people who were eject

d to better results than training on the Brown due to

from the game. MAXIM allows for multiple values per o .ommonality of the journalistic writing style between
slot using a comma as the delimiter. Ideally, the slots are

filled with only the relevant information. However, the  4Of course, the size of these corpora is proportional to that
slots are generally filled with entire noun phrases, whichbf the relevant text.

straints for the pre and post filler slots anax-len POS-
classification-vectqr and required-POS and the only
constraint for the filler slot is théller-set The POS-
classification-vectofor each cluster is computed by jus
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WSJ Brown . . .
Recall | Prec. Recall | Prec. Figure 7: Recall/Precision as Functions of the Number of
team | 24.74% | 72.39% || 23.47% | 74.80%| Rules
1%t score 11.86% | 95.83% || 11.86% | 92.00% 120 Recall
25% | winner | 15.34% | 83.33% || 7.98% 86.67% Frecis ol
scorer | 21.26% | 60.00% || 23.56% | 55.91% 100 4—
ejected | 10.26% | 100.0% || 12.82% | 55.56% a0
team 9.44% 52.11% || 12.50% | 61.25%
ond [score | 4.64% | 81.82% | 5.15% | 83.33% &0
25% | winner | 7.36% 75.00% || 7.98% 68.42% <0
scorer | 15.13% | 62.70% || 15.90% | 63.36% 20
ejected | 2.56% | 100.0% || 2.56% | 100.0%
] T : T :
Table 2: Breakdown of Results According to Slots
9 4 7 4z 39 T3
| team scorer  winner  score  ejected Mumber of Rules
Rules 73 39 12 7 4
Recall | 24.74% 21.26% 15.34% 11.86% 10.26% WSJ Brown
Prec. 72.39% 60.00% 83.33% 95.83% 100.0% Recall Prec. Recall Prec.

Stage 2 15 25% | 19.85% | 68.97% || 19.54% | 65.31%

Table 3: Number of rules assigned to each slot in the SeCdone once | 2°% 25% | 10.53% | 61.33% || 11.91% | 64.20%

tion A/WSJ rule-set compared to both the recall and PI¢ Stage 2 10 95% | 10.84% | 79.44% || 4.78% | 74.12%

cision for the slot. done twice | 277 25% | 2.65% | 64.81% || 4.62% | 74.39%

this corpus and our relevant training corpus. We thought Table 4: Clustering vs. Recall and Precision

that a group of common journalistic phrases may appear

a lot in the relevant training corpus but hardly at all in the i S .
Wwe are sacrificing precision in order to increase retall.

Brown and thus be deemed as relevant. The results e found that these kinds of decisions were required fre-

inconclusive. We have not been able to link any effects to .
the choice of irrelevant text quently. Unfortunately, we were not able to experiment

The breakdown of our results according to the five Slotenough to become adept at choosing the best choice. We
. W urresu ng v Believe that this, poor choice of rules to keep/delete and
in our template is shown in Table 2. Our recall was gene

r- . . .
L X slots to assign them to, played arole in our less-than-ideal
ally best for theeamandscorerslots. This is true in our g play

results.
r Its from tion A n in the first half of Table 2. . .
esulls Irom sectio as see e first half of Table The effect of the number of times the clustering algo-

These recall values are followed, in descending order, brYthm was run on the performance of our system was also

winner, score ejected These numbers correspond ex- mined. Th nd st f our clustering brodram r
actly with the number of rules that were assigned to thessé(a €d. The secona stage o our clustering program re

slots as clearly shown in Table 3. It is not surprising tha utctis t&zr;]unr:]t;enr.zf g:uztmeztbg;]]glge\tlﬁéysgﬁi I;rlsoru::t'
the more rules assigned to a slot, the higher the recall f Ny uman involv ' y unt.
owever, this is done at the cost of recall, as shown in

that slot there ar reater number of ways to fill t . o
atslot, as there are a greater number of ways to h1eable 4. The most likely reason for this is that more good

slot. : ;
- . rules are discarded because they were grouped with three
The precision values are ordered in exactly the oppo- . :
. . . . other irrelevant rules. This decreases the number of rules
site way (with the exception of th&corerslot) as is also

N R assigned to each slot, which, as was seen in Figure 7,
seen in Figure 7. This is inversely related because th . : . .
o irectly influences recall. The over-all increase in preci-
greater the number of rules, the greater the possibility ot . . .
. L ..sion when clustering again can be explained by the same
a mistake. Also, precision is dependent on how specific

a rule is to the desired information and how commonly>9'¢" though it is somewhat counterintuitive. One may

it is used in the problem domain. For instance, the mostery well expect that precision would decrease with in-

: creased clustering. This was not our experience, though
common rule to fill thescorerslot often appears some-

thing like, "Diallo scored in the 17th minute”. However, we still expect that this behavior may be seen if one were

itis also very common to read, "D.C. United scored in theto cluster more than the two times that we did.

17th m|nute”.. De§p|te the presence of t.h|s set;opd form, SExamples like these are suspected to be the reason for the
we must assign this rule to tiseorerslot since this is the |ow precision of thescorerslot because they are very common,

most likely way that we will find this information. Here thus the anomaly in Figure 7.
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What was reassuring were the results of the clusteringqformation. Finally, and mistakes made by the POS tag-
After clustering twice, with nothing but part-of-speechger directly effected our performance.
information andiller-setinformation, we were left with
less thanl/4 of the "rules” that we started with® Of 2.8 Conclusions

these "rules", or rather, clusters of rUleS, some very dlfAs itis C|ear|y seen in the Results Section' MAXIM suf-
ferentfiller-setswere quite correctly grouped together.fered from low recall. There are several factors that might
Some of these includéblanked, defeated, rocked, rat- e responsible for this. Working towards the elimination
tled}, {knotted, narrowed, had scored, prespethetted, or minimization of these factors, we believe, will improve
notched, missed, scoredtirand{was issued, was shown, poth recall and precision.

assumed, was ejected JorObviously, "missed” and "as-  The ability to train on the whole corpus may improve
sumed” do not belong in their respective clusters, anghca|l as more rules will be detected. This will also avoid
"pressed” is certainly arguable at best, but the rest qfe writing style dependency discussed in the Results sec-
these results are fairly remarkable for the simplicity otijon. If MAXIM trains on MLS, Premier League, and

the system in its current state. . ~_ World Cup stories (the whole corpus), it will have a more
Besides the potential improvements discussed in Segeneric and style-insensitive rule dictionary.

tion 2.8 that could be added to improve MAXIM, there |4 aqdition, we might have been too restrictive and in-

were some issues that could be held accountable for thgyiple with our AutoSlog-TS’s heuristic rules. The ad-
low recall and unexceptional precision. First, in the probgition of rules to Figure 2 that are targeted to our prob-
lem domain we were dealing with, figurative/descriptiv8em domain and the elimination of those which are un-
language was used heavily in order to bring the excitqyely to be useful will resultin a more refined AutoSlog-
ment of the game to the article. This results in the sameg output. We also required our rules to bejgubj¢,
idea being expressed in a multitude of ways and with ggrp idobjc format in order to make the two phases of
variety of action words. We could not adequately trainjaxm compatible (see Section 2.2). However, if we
for this since it just took too long. Resorting to train- 510w isubj¢, verbandverb jdobj¢to exist by themselves

ing on1/4 of our corpus.hurt us here. This is not as big(which means that we have to allow for empty pre- or
a problem for the domains many other IE systems ha"ﬁost- fillers), we could improve our recall.

chosentoteston. Furthermore, we would like to minimize the exact-
Secondly, we found it quite common for authors of anyord-matching dependency of the filler slot. The imple-

article to refer to the previous week's games, or othgentation of this phase was considered using WordNet
games from earlier in the season. So if MAXIM findsy,t preliminary trials indicated this to be a futile effort.

"<player> scored 3 goals” it has no way of determiningro example, WordNet will not considdblanked, de-
whethgr or not this happened during the current game @kateq rattled, rockeflto be in the same semantic class.
a previous one and must assume the former. We aut@yen though these words were grouped together by our
matically get this wrong if the phrase in question is NOkjystering algorithm to form théller-setfor the winner
describing the current game. _ andteamslots, MAXIM will depend on finding one of
Another problem we are sure that we ran into to SOM@ese words in the test set during the application of the
degreeis hu_man error in both generating the answer ke&%neralized rules. The senten®eam A¢, crushed jTeam
and comparing our results to the answer keys. For ong; for example, will not help us extratgamandwinner
thing, any of the problems that MAXIM runs into whenjnformation. The use of a thesaurus or ontology would
extracting information from an article, a human runs intq, 3ve been ideal if, but they just do not currently have a
as well. .Also,'there is alwayg question about what to dch enough synonym base to be of any practical, real-
about things like own goals in soccer. Who to mark agyorid use in any specific problem domain. At least not
the scorer is likely up to debate and this results in inconspe where figurative language is used as often as in the
sistencies. domain we trained and tested on. It is worth noting that
The last major problem that we had was errors fromyhen Rapier incorporated WordNet senses in its rules, its
pre-processing. Some abbreviations escaped detectionfyformance was not significantly better than without this
our sentence boundary disambiguator. Words like "givenformation.
and-go” and "game-winner” were split in_to muItipIe parts Incorporating position information in ouPOS-
and the hyphens were chunked as being outside of tRg;ssification-vectorsight improve our clustering. Cur-
surrounding noun-phrase by fnTBL. Thls broke up SOMEantly, we only keep track of the frequency of each POS
noun-phrases that would have otherwise held extractab(lgg within a noun phrase. If this can be extended to in-

®We had less thaih/4 of the rules because the clustering aI-CIUde some kind of contextual information, e.g. the po-

gorithm discards any rules that are not similar enough teremo  Sition of POS tags or POS taggrams, we may be able
rule. to more accurately group different clusters expressing the
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same idea together. This would both decrease the human
involvement required, by decreasing the amount of at-
tention necessary when examining clusters, and increase
precision, by minimizing the number of irrelevant rules
in any cluster.

Faults aside, we believe we have presented a novel ap-
proach to information extraction that requires less human
preparation and supervision than any system available at
this time. With further research into how to most effec-
tively translate AutoSlog’s rules to MAXIM’s/Rapier’s
format recall can be greatly increased. Similarly,
more work looking into a comprehensive list of extrac-
tion patterns for AutoSlog-TS would be of great bene-
fit. Improved relevancy-rate and ranking functions for
AutoSlog-TS would help to get good rules to the top
of the list’ As mentioned above, an adequate the-
saurus/ontology would be of the greatest benefit when
it comes to generalization. Also, an improvement on
the representation of tiROS-classification-vectavould
be helpful. With improvements made in these areas,
MAXIM may prove to be as effective as other systems
available while requiring at most half as much human in-
volvement. This is a big step towards the development of
IE systems practical for real-world, multi-domain use.
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Latent Semantic Analysis for Computer Vocabulary

Andrew Stout & Todd Gillette
Dept. of Computer Science
Swarthmore College
{stout,gillette }@cs.swarthmore.edu

Abstract apple? A computer has no experience of taste, or hunger,
or touch, or even sight in most NLP settings. Clearly,

In the work described in this paper we under- g conventional computer’s understanding of “apple” is
took a fundamental, proof-of-concept explo-  going to be fairly limited, but it need not be limited to
ration of an unsupervised technique for extract-  merely “noun, for plural add -s, Apfel in German”, etc.
ing and representing word meanings, called La-  What computers do have access to is a large volume of
tent Semantic Analysis. In this paper we de-  text, from which subtle statistical features and constraints
tail an implementation of LSA for the purpose can be gleaned.
of vocabulary acquisition and report prelimi- Significant and fruitful (no pun intended) work has
nary results from testing it on English vocab-  peen carried out in the construction of semantic ontolo-
ulary tests akin to the Test of English as a For- gies such as WordNet (Fellbaum, 1998), which cap-
eign Language (TOEFL). We encountered sev-  tyre important information about the semantics of words.

eral difficulties, which are also described. However, such efforts are dependent on a great deal of
human labor, subject to annotator bias, language-specific,
1 Motivation and above all still lack a lot of information about the

relationships between various words, categories, con-
Most natural language processing research, and partigepts, etc. What we seek is an unsupervised algorithm
ularly most statistical natural language processing revhich constructs a representation allowing the computer
search, focuses on formal aspects of natural language:ground its understanding of the word “apple” in its ‘ex-
parsing and part-of-speech tagging are concerned wigferience’ of ‘reading’ about apples in a vast amount of
the rules of syntax, morphology is concerned with capunannotated text.
turing and employing the formal rules of morphology
in languages. While the machine translation task i9 | atent Semantic Analysis
certainly concerned with semantics, current approaches
work mostly by considering formal structures and formal-atent Semantic Analysis (LSA) (Landauer and Dumais,
methods for word-alignment. In general, rather little at1997) is a statistical method for quantifying meaning in
tention is given to developing computational systems fopatural language, predicated on the notion that the en-
understanding theneaningof natural language. We feel tirety of the contexts in which a word does or does not
that in order to achieve the near-human level of natur@ppear provide a set of constraints capturing the meaning
language competence which must be the ultimate goal 6f that word. The basic approach is to represent words
Natural Language Processing, NLP research must co@s high-dimensional vectors, where similarity in meaning
front the problem of meaning. can be calculated as a function of the difference between

At its core, the problem is a familiar one, at least infwo vectors.

concept, to researchers in Atrtificial Intelligence: it is the Our goal in the work described in this paper was to
problem of symbol grounding. How can a computer unengage in a fundamental exploration of LSA, for the pur-
derstand what, say, an apple is, that is what the word “agpose of solidifying our own understanding of it, and to at-
ple” means, if it is unable to experience fruit in any oftempt to replicate the encouraging results of others’ early
the ways humans do, and by which humans ground theivork on LSA.
understanding of the symbol in natural language meaning The remainder of this paper is organized as follows.
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The next section describes related previous work and ataining. We started LSA runs on a subset of the Ency-
tempted or potential applications of LSA. Section 4 conelopedia Britannica (EB) containing 4,148 unique words,
tains a detailed description of the LSA algorithm, and afactoring out all one letter words, two letter words, and
explanation of our implementation. Section 5 explainsvords that appeared in only one document. There were
our testing of our system, and section 6 analyzes our r&88 documents corresponding to encyclopedia entries,
sults. Finally, we conclude with a more general discuseach of which was approximately a paragraph long. After

sion in section 7. running through the system with the Encyclopedia Bri-
tannica corpus, we chose the 1989 Associate Press corpus

3 Related Work for our full-size corpus, using the natural division of an

31 Method article as a document. The corpus contains over 98,000

) ) ) documents and over 470,000 unique words.
The Latent Semantic Analysis method was pioneered by

Landauer and Dumais (Landauer and Dumais, 19974,2 Preprocessing

and is closely related to Latent Semantic Indexing (Deepynce the training corpus has been divided into docu-
wester et al., 1990). The computational basis for LSA ignents. our system builds a large matfix of word oc-
_descrik_)ed in (Berry etal., 1993). The method is describeg|;rrences. Each entay; ; corresponds to the number of
in section 4 below. times word: appears in documerjt Each entry is then
transformed to “a measure of the first order association of

) ) o a word and its context” by the equation
Many potential and already realized applications of LSA

3.2 Applications

exist. Perhaps the most fundamental is simply to apply log (x;; + 1)

LSA in order to obtain a computational representation i i

of meanings of words. More advanced work on under- —2 <(Zz7> - log <Z-;ﬁi 7))
. ;

standing has also been undertaken, such as understanding
metaphors (Kintsch and Bowles, 2002) (Kintsch, 2000)Landauer et al., 1998b).
LSA has been trained on aligned corpora in different lan- _ .
guages to be applied to machine translation (Landauer‘ét‘?’ Singular Value Decomposition
al., 1998b), although LSA by itself has no production caThe mathematical underpinning of LSA is a linear al-
pability. By averaging the vectors of a paper and compagebraic technique called Singular Value Decomposition
ing to multiple other source documents one can determif&VD), which is a form of eigenvector-eigenvalue analy-
which sources were most useful to the writer of the papesis which states that any rectangular mafXixcan be de-
By modeling the meaning of a large document, sentencé9mposed into three matricég, S, andC which, when
which most closely match the meaning of the whole doomultiplied back together, perfectly recreate
ument can be identified for the purposes of summariza-
: : : X =wscT
tion (Kintsch et al., 2000). By comparing the vector rep-
resentations of one sentence to the next, LSA can pro-
vide a measure of cohesion within a text (Landauer &t
al., 1998b). LSA systems can also be trained to estimatee X is anyw by c rectangular matrix
the evaluation of an essay, and to choose an appropriate
next text to maximize student learning (Landauer et al., ® W is aw by m matrix with linearly independent
1998b). LSA has also been integrated into computer tu-  columns (also callegrinciple componentsr sin-
toring systems (Wiemer-Hastings, 2002). gular vectorg

The most exciting applications of LSA, however, are
those yet to come: LSA offers the potential to develop
NLP systems that understand the meaning of language
and can process or do useful things—from better automatice S is am by m diagonal matrix containing th&ngu-
translation to passing the Turing test-based on that under- lar valuesof X
standing.

here

e C is am by ¢ matrix with linearly independent
columns

WSCT is guaranteed to perfectly recreake provided
4 Implementation m is as large as the smaller efandc. Integral to LSA
is the fact that if one of the singular valuesSnis omit-
ted, along with the corresponding singular vectord1of
Latent Semantic Analysis learns word meanings througandC, the resulting reconstructidi’’s’C’" = X' is the
processing a large volume of unannotated training texbiest least-squares approximation’6fgiven the remain-
this corpus corresponds to what the system ‘knows’ afténg dimensions. By deleting all but thelargest singular

4.1 Corpus
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values fromS, SVD can be used to compress the dimen-
sionality of . When X is a words by documents ma-
trix, the compressedl’’ is called thesemantic spacef

the training corpus from which it was generated.

Before compression, the matrices used for Latent Se
mantic Analysis are very larget00,000 x 98,000 =
8.9 x 10° elements. However, as any document will only
contain a few hundred distinct words, the matrices ar
very sparse. As we discovered the hard way, cookboc
algorithms for Singular Value Decomposition are com:
pletely impractical for matrices of this size. Fortunately
libraries for large sparse matrix Singular Value Decom
position do exist (Berry et al., 1993).

It has been found empirically (Landauer et al., 1998a
that ann (dimension) of between 300 and 400 is gen:
erally the optimal level of compression to synthesiz¢
knowledge for LSA. The exact optimal number of dimen-
sions depends on the particular corpus.

A diagram of our system’s architecture is shown in Fig:
ure 1.

5 Testing

Since we were engaging in a fundamental, proof-of
concept exploration of LSA's potential as a means of cag
turing semantic information, we chose to test our systel
on simple vocabulary tests inspired by the Test of Englis
as a Foreign Language (TOEFL) and manually generat¢
using WordNet synonyms from the lexicon of the AP cor-
pus. An example question is shown in Figure 2.

A guestion is evaluated in the following manner. The
LSA vectors of each word in the target phraskeyfed
in the example in Figure 2) are averaged to give an ave
age meaning for the phrase. The possible options are th
averaged in the same way. Each possible answer is th
compared to the target using cosine similarity: the cc
sine (or, equivalently, normalized dot product) betweel
the target vector and each option vector is computed, a1
the largest cosine indicates the option with meaning mo
similar to the target.

6 Results

We tested the Encyclopedia Britannica corpus semant
space on questions developed for the AP corpus. As v
expected, the results were poor due to the small size
the EB corpus and the mis-match between training ar

Training Corpus
(Encyclopedia Britannica)

Corpus Formatter

Training Corpus ( dwlded into documents)

Word Count

v

Words x Documents
Matrix

v

Word-Context
First-Order
Association

v

Singular Value
Decomposition

v

Dimension
Reduction

v

Words x N Semantic
Space

v

Test
Question

/Lb Test Parser 47/ Answer /

testing. Many of the words were not even in the EB cor

pus, and the few questions that had both question and an-

swers produced poor results. We have so far been unabl

lUnfortunately, the best of them was originally written in
FORTRAN, uses counterintuitive data file formats, has com-
pletely incomprehensible source code, and is poorly docu-
mented (length and mathematical rigor of the accompanying
“manual” notwithstanding).
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For the following question, choose the answer phrase8  Future Work
whose meaning most closely matches the meaning of
the target phrase.
Target:levied
Possible answers:
a.imposed

b. believed

c. requested

d. correlated

With extra time, within reason, it will be possible to test
the AP corpus on the questions. This will allow for a
true test of the success of our implementation of LSA. In
addition, a subset of the AP corpus might provide positive
results in a shorter time frame. In a practical sense, much
of our short-term future work would need to be devoted
to efficient processing of the extremely large amount of
data required for effective Latent Semantic Analysis.

Figure 2: A sample test question. 8.1 Domain Specific LSA

Another solution would be to use a corpus of reduced
ize, though one larger than the EB corpus. Domain spe-
ftic corpora might provide a means to test the system

effectively in a more timely manner. If the lexicon itself

were effectively reduced by reducing the scope of the do-
main, a smaller corpus might turn out to be useful. Some

Our initial tests on a small (5000 word) subset of thelomains would be relatively small, such as news articles

Brown corpus made it clear that the computational comabout a specific topic, such as baseball. There is a rela-

plexity of the SVD algorithm would be a serious obstatively small, consistent lexicon centered around baseball

cle. Standard cookbook SVD recipes (Press et al., 199ifjvolving bases, hits, home runs, etc. It may be that a rel-

(which is what we were using) were simply not viableatively small selection of articles from newspapers and/or

for matrices of the size required for LSA, and both thenagazines would produce a working semantic space for

memory requirements and running time proved to be prahe domain of baseball.

hibitive. (Landauer et al., 1998a) used a psychology textbook in

The sparse matrix SVD package (Berry et al., 1993)rder to make a semantic space of psychology. An intro-
provided an solution for the SVD problem, howeverductory textbook would in no way cover all of the terms

a new problem arose when considering a corpus largmd ideas contained within the study of psychology, but

enough to produce good results. The time necessary fiar the student first being introduced to the field it would

count, process, and compress over 100,000 unique worsisffice. The small semantic space could be used for grad-
and nearly 100,000 documents was too great to fit intmg homeworks, evaluating summaries, or comparing test
the time available. We suspect that the first steps wicores with that of a student. It would be interesting to
take something on the order of a day or two, but it is stilfind out what size of a corpus would be necessary for var-
unknown how long the SVD will take. Given more timeious domains. It would also be interesting to see if a dif-
it might be feasible to carry out the test to completion, buterent number of dimensions are found to be optimal for
we must at this time be satisfied with tests on a smallatifferent domains, as well as how dependent that number
corpus. is on the specific corpus.

to complete the preprocessing on the AP corpus so we
not have results for that data set.

6.1 Complications

7 Conclusion 8.2 Analysis of Dimensions

Another area of interest that could be explored in the fu-
Latent Semantic Analysis has many useful applicationgire is that of what the dimensions of the semantic space
and has been implemented successfully, however thefepresent. By taking words that are thought to be strongly
are many difficulties in producing an effective implemen+elated and seeing if there is a particular dimension of
tation. Once a corpus has been processed and a semamwitich each has a large component, we might be able to
space has been generated, using it is very efficient arfihd out how semantic space is representing our language.
based upon the work of others, effective. By extension this might offer some insight into our orga-

There is still the question of size. How big must anization of thoughts with respect to language.

corpus be to have a certain accuracy? Answering such
a question would be more time consuming than testin
other aspects and uses of LSA. We do know that the sizd@eferences
of the EB corpus was too small, though it was processeglichael Berry, Theresa Do, Gavin O'Brien, Vijay Kr-
very quickly (less than an hour). A corpus of a size in jshna, and Sowmini Varadhan. 1993. SVDPACKC
between our EB and AP corpora could be appropriate for user’'s guide. University of Tennessee Computer Sci-
testing LSA given the resources of our work space. ence Department Technical Report.
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An In Depth Look at Two Approaches to Sentiment
Classification

Shannon McGrael
Swarthmore College
CS97 — Senior Conference
smcgrael@swarthmore.edu

Abstract

There have been a variety of
approaches to the problem of
categorizing text based on
sentiment. Many of these
approaches require a large
amount of user input and effort.
In this paper we compare two
very different manners of
categorizing text, both which
requires minimal user input.
Both techniques parse through
reviews in various domains
(video games, movies, etc) and
attempt to correctly categorize
the review as positive or
negative. Through this process
we will be able to better
understand the problem, as well
as the strengths and weaknesses
of the solutions. From this we
hope to create a basis for
developing a more robust
system.

1. Introduction

As the world enters into the
information age, technologies are
emerging that allow faster and more
complete access to vast bodies of
knowledge and text. The growth in
guantity and diversity means that it has
become increasingly more difficult to

97

Stephen Michael Smith
Swarthmore College
CS 97 — Senior Conference
ssmithl@swarthmore.edu

locate text that is particularly relevant to a
certain topic. In many cases the shear size
of the available data can be a hindrance
causing one to find less data rather than
more. This obstacle has created demand
for a classification system capable of
sorting through text, and going beyond a
regular search engine by taking a user s
personal preferences and the sentiment of
the text into account as well. There are
undoubtedly millions of applications for
this type of technology. What has held it
back is the low accuracy of previous
results and the need for user input that is
difficult to amass. What is needed is a
robust system that can accurately perform
sentient classification with little input
from the user.

2. Applications

Peter Turney (Turney, 2002) and
Ken Lang (Lang, 1995) speak of different
applications and algorithms for addressing
the problem of automated review ranking
and text categorization. This technology
is useful in search engines, news services,
information boards, sales and many other
applications.

There are various applications for
review ranking in search engines. Turney
suggests that a user could type in a query
such as Akumal travel review and the
search engine could then return the result
that There are 5,000 hits, of which 80%
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are thumbs up and 20% are thumbs down
(Turney, 2002). There are millions of
objects that are reviewed on the web; the
problem is compiling it all together. Users
could also ask to see only reviews of a
certain ranking. This way they could sort
through the reviews to get only the data
they needed. This could be useful in
immeasurable ways. An artist or any user
could easily sift through reviews to
understand the criticism of a certain work
of art. Web designers could quickly find
out what features were liked/disliked by
their users. Or it could be as simple as
consumers quickly being able to benefit
from the opinions of othersin an effort to
get the most of their money.

Ken Lang (Lang, 1995) uses this
technology in a netnews-filtering system
called NewsWeeder. This system learns a
user’s preferences through the reviews
they give to certain news articles, and
through the reviews that other users like
them give to news articles. With this
information NewsWeeder is able to
present users with more of the news
articles that are important and relevant to
them and less of those that are not.

These systems could also be used
in order to determine when a particular
piece of text was unusually positive or
negative. Many timesit is very important
that text be impartial and fair, such as
judge s comments, text books, and news
articles. Systems such as the ones
described below could be used to flag text
that is unusually emotional, when that
type of response is not appropriate.
Likewise these systems may even be able
to be adapted to learn to detect ideological
differences in articles. For instance a
system may be able to detect if a
newspaper was particularly liberal or
conservative or feminist or anti-feminist.
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3. Approaches

3.1 Semantic Orientation

Peter Turney utilized the concept
of Semantic Orientation (SO) in his
approach to this task (Turney, 2002). A
phrase has a positive semantic orientation
if it ismost often seen in conjunction with
known positive words such as excellent .
A phrase has a negative semantic
orientation if it is most often used in
conjunction with known negative words
such as poor . His approach to this
problem centers on the idea that adjectives
and adverbs are often present in evaluative
(as opposed to factual) sentences
(Hatzivassiloglou & Wiebe, 2000; Wiebe,
2000; Wiebe et al., 2001). This means
that they often convey the feelings of the
writer more so than any other part of
speech. The algorithm attempts to
estimate semantic orientation of an entire
document (a single review) using
information about the adjective phrases
within that document.

The first step in this approach isto
part-of-speech tag the document and
extract all bigram phrases that contain
adjectives or adverbs. We used the
fnTBL 1.0 englishPOS tagger for the POS
tagging. The bigrams are extracted
because the adjectives or adverbs by
themselves don t necessarily give all of
the information. This is true because
adjectives and adverbs are, by definition,
modifiers, so it is easy to see that their
semantic orientation is influenced by the
words that they are modifying. An
example that Turney givesis:

the adjective unpredictable
may have a negative orientation in
an automotive review, in a phrase
such as unpredictable steering,
but it could have a positive
orientation in a movie review, in a
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phrase such as unpredictable plot
(Turney, 2002)."

So, the modified word acts as
context words to accent the sentiment of
the adjective. See Turney 2002 for the
rules used to extract usable two-word
phrases from reviews.

Turney then estimates the semantic
orientation of each adjective phrase by
making queries to the AltaVista Search
Engine (www.altavista.com), ours looked
likethis:

(<Word1>+AND+<Word2>)+NEAR+poor.
(Word1>+AND+<Word2>)+NEAR+excel lent.

We then recorded the number of
hits for each phrase (well call them
hitsneg and hitspos, respectively). We
also recorded the total number of hits if
we just search for poor and excellent
individually (well call them hitspoor and
hitsex, respectively). Using this
information, we can estimate the SO for a
given adjective phrase by:

SO(phrase) = logy((hitspos * hitspoor) / (hitsneg
* hitsex)).

The nature of this calculation is such that
if hitsex > hitspoor, then SOpprase > O.
Alternatively, if hitspoor > hitsex, then
Sophrase <O0.

To compute the SO for a given
review, we simply take the average of the
SO s for all of the adjectives that we
extracted from this document. In order to
avoid counting phrases that have very
little correlation to either poor or
excellent , we remove any phrase which
gets less than 4 hits for both of the
AltaVista queries from this calculation.
Also, to avoid a possible division by zero,
we added .01 to the number of hits for
every individual phrase. Any document
with an SO greater than zero is considered
to be recommended, and any document
with a negative SO is considered to be
not-recommended.
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3.2Bag of Words

Lang s method, commonly
referred to as the bag of words method,
requires separate training and testing data.
The idea behind this method is that similar
texts will contain similar words. Lang's
method does not take word order or syntax
into account. The method assumes that
most of the information needed to
differentiate between texts is in the words
themselves. For the purposes of this
research we have implemented a system
similar to that described by Ken Lang in
his paper: NewsWeeder: Learning to
Filter Netnews.

In order to implement the bag of
words method, the text must first be
parsed separated into tokens, each token
being aword or punctuation mark. These
tokens are then converted into vectors the
length of the vocabulary. One main vector
is created for the whole corpus that isalist
of every unique token in the corpus. Then
each separate document or review has its
own corresponding vector that contains
numerical values indicating the number of
times a particular word appeared in that
document. A zero for at the location of a
certain word would indicate that it did not
appear in the document, whereas a 20
would indicate that it frequently appeared
in the text.

In order to complete the learning
process a representative vector must be
created for each separate category. First
the document vectors must be changed
into normalized vectors, then by using
|east-squares regression, a numeric value
is assigned to each of them. All the
vectors in the training corpus pre-
determined to be of the same classification
are then averaged to get a representative
vector for each category.

At this point the training processis
completed. To test the system a review
must be parsed and turned into a word
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vector and then given a least-squares
regression value in the same manner as the
vectors in the training corpus. This value
is then compared to each of the
representative category vectors. The
system guesses that the new document is
of the same category of the representative
vector closest to it.

4. Corpus Creation

Our corpus consists of 100 reviews taken
from the Epinions web site
(www.epinions.com). The original idea of
this project was to solve the problem of
sentiment classification on video game
reviews. However, any game that was
popular enough to have more than a
handful of reviews were generally given a
recommended rating. So, we took 50

reviews of the game Tekken Tag
Tournament (10 not recommended Table 2.
Results for 10 Tekken Tag Tournament reviews

For the purposes of comparison, we ran
both algorithms on the smaller corpus of
20 reviews that we separated from our
corpus for testing. The bag of words
method uses the other 80 reviews for
training purposes. Because Turney s
algorithm does not require training data
we were able to run it on the entire corpus
of 100 reviews.

5.1.1 Turney sResults (Comparable
to Lang s Approach)

When run on the test corpus,
Turney s approach receives a 40% on the
video game reviews, and a 60% on the
movie reviews. Tables 2 and 3 show the
results we achieved for the test corpus.

ACTUAL
RECOMMENDED NOT RECOMMENDED
OUR RECOMMENDED 2 2
SYSTEM | NOT RECOMMENDED 6 0

, 40 recommended), and we took
50 reviews of the movie Gladiator (25 not
recommended and 25 recommended) for
our corpus data. Since Lang s algorithm
requires training data, we split the two
halves of the corpus into 40 reviews for
training and 10 reviews for testing. The
results given in this paper are for those 20
reviews we used for testing, with
additional results for Turney s system
having been run on the entire corpus.

5. Results Table 3. Results for 10 Gladiator
reviews

Apparently, the reviewers used
some pretty negative word-choice to
describe their pleasure with the game.
This is understandable since it is a
fighting game and we may be getting
negative feedback from words that the
authors mean to use as positive aspects
(i.e. prolificgore, massive hits, etc.).

ACTUAL
RECOMMENDED NOT RECOMMENDED
OUR RECOMMENDED 2 3
SYSTEM | NOT RECOMMENDED 3 2
100
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Again, the reviewers seem to have
used phrases which in everyday random
text would be viewed as negative, but in
the context of the entire document, it
should be seen as positive. One example
bigram from our corpus is disastrous
effects. This bigram appears in a section
of the review in which the author is
describing something that happens in the
movie, not how he/she feels about the
movie itself. However, our algorithm
would incorporate this bigram into alower
Semantic Orientation score than the
review most likely deserves.

Table 3a shows a comparison of
actual adjective bigrams tested in reviews
that Turney s system correctly classified
as recommended or not-recommended.

Table 3a. Comparison of adjectivesin correctly
classified positive and negative reviews.

SAMPLE SAMPLE BIGRAMS
BIGRAMS from a from a correctly
correctly classified classified NEGATIVE

POSITIVE REVIEW

REVIEW (TEKKEN (GLADIATOR)
TAG)

Nice night Many clues

Extracash Upper hand

Good amount Bad guy

Good characters Pretentious corniness

Main arcade Embarrassingly easy

Different stages Inefficient republic

Pretty cool Natural enemy

Other modes Not interested

Basic fighters Moral development

Different buttons Not entertained

Fairly new Loving violence

Specia combos Violent scenes

Good fighting Elaborate distraction

Awesome graphics L ess distasteful

Widely successful Misogynistic hatred

Joyous sound Questionable moments
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5.1.2 Turney s Extended Results

Since Turney s algorithm does not
require training, we decided it might be
interesting to see how it runs on the entire
corpus of 100 reviews. The final results
for thisrun are asfollows:

1. We correctly classified 21 of the 50
Tekken Tag Tournament reviews,
giving a precision score of 42%, which
is slightly better than the score we
received by only running it on a small
number of reviews.

We correctly classified 26 of the 50
Gladiator reviews,

giving a precision score of 52%, which
isonly slightly better than the baseline
score of 50% if one were to choose
recommended every time.

Table 4a is a compilation of the results
from the 50 Tekken Tag Tournament
reviews, and Table 4b is a compilation of
the results from the 50 Gladiator reviews.

5.2 Lang sResults

For the following tests the data
from Tekken Tag Tournament and
Gladiator were always tested separately.
The corpus was divided into two
categories of reviews, recommended and
non-recommended. In order to train the
system and create the representative
vectors for each category in each domain,
40 of the 50 available reviews were read
in and put into token vectors, as
previously described. The vectors created
from the test documents were then
compared to these two representative
vectors.

The first round of results were very
poor. The results were near 50% for both
domains. The data was difficult to
manipulate because of it very high
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dimensionality. Also commonly used
wordssuchas and, 1, is, etc occur
so frequently that they were outweighing

Table 4a. Results from the complete corpus of
50 Tekken Tag Tournament Reviews

90% on the video game reviews. Tables5
and 6 show the results we achieved for the
test corpus in two different formats.

ACTUAL
RECOMMENDED NOT RECOMMENDED
OUR RECOMMENDED 18 7
SYSTEM | NOT RECOMMENDED 22 3
Table 4b. Results from the complete corpus of
50 Gladiator Reviews
ACTUAL
RECOMMENDED NOT RECOMMENDED
OUR RECOMMENDED 9 8
SYSTEM | NOT RECOMMENDED 16 17

other words that would have had much
more descriptive power. Because of this
the representative vectors for the two
separate categories were so similar that it
was very difficult to differentiate them.

To improve upon our results we
implemented a pruning method that would
[imit the number of words that the system
took into account. After all the training
and testing data was read into the system.
Each token that appeared more than X
number of times in the whole corpus was
eliminated from the

Table 5a

Results for 10 Gladiator reviews
Table 5b.

Actual Rating Our Rating

<K<K |<LZ|1Z|Z|Z|2
Z|1Zz|<|1Z|1Zz|1Z2|1Z2|<|Z2|<

ACTUAL

RECOMMENDED

NOT RECOMMENDED

OUR

RECOMMENDED

8

1

SYSTEM

NOT RECOMMENDED

0

1

word vectors. Then these pruned vectors
were normalized and there cosine
similarity was found. This has the effect
of disregarding words that are used
frequently throughout the corpus and that
have no relevance in determining the
category of a particular document. It also
reduced the dimensionality of the vectors
making them more precise and easier to
manipul ate.

The bag of word s approach is
correct 40% on the movie reviews, and a
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6. Difficulties

As we attempted to create these
systems we came upon many obstacles.
Some of these obstacles were unique to
our chosen method and others were related
to the problem and the way people express
themselves.
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Results for 10 Tekken Tag Tournament Reviews
Table 6a.

recommended and non-recommended
means, where to draw that line, and for

ACTUAL

RECOMMENDED

NOT RECOMMENDED

OUR RECOMMENDED

2 3

SYSTEM | NOT RECOMMENDED

3 2

Table 6b.

Actual Rating Our Rating

<< |=<|<|=<|<|<|<|z|Z
<|=<|=<|<|=<|=<|<|<|z|=<

The test results can be found in greater detail in
appendix A.

One of the largest problems that
we both should have expected but that
became very apparent as we sorted
through our text and results was that
people use very different ways of
expressing themselves. This problem took
a few different forms. What one person
may consider to be a negative attribute
others would consider a positive. Oneline
of text could be indicative of contrasting
emotions depending upon the person, their
manner of speech and their likes and
dislikes. For example: | had never seen
a movie so focused on war, destruction
and lifelike, gory violence as Gladiator.
While one reviewer may hate the movie
for its extensive action scenes and gory
details, others may find that to be one of
its most exciting aspects.

The other case where the diversity of
peopleisabig obstacleisin the
inconsistency of their rankings. Each
review was written by a different
person with a different concept of what
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what reasons. For example, about half the
people that ranked Gladiator as three stars
recommended it and the other half did not.
But, even more difficult to deal with were
the cases where a reviewer would rank the
movie as one or two stars, however would
still recommend the movie.

6. Pros and Cons

6.1 Turney Prosand Con s

In general, this is a very simple
algorithm. The system is standalone, and
requires no training time or training data.
This must be why he called his system
“unsupervised,” even though by hard-
coding the words “poor” and “excellent”
into the estimation algorithm, he
automatically gave his system prior
knowledge that was helpful in solving the
problem.

This system is easily portable to
other domains while remaining
generalizable within the domain of
reviews. Turney showed that he could get
much better results with reviews from
other sub-domains such as automobile
reviews and bank reviews (Turney, 2002).
Also, one could replace the words “poor”
and “excellent” with “conservative” and
“liberal” to create a system which could
read a newspaper article and report which
of those two categories that article was
most heavily associated.
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One positive element of this
system that was not immediately obvious
is how it handles negation. As the bigrams
are extracted, given the rules devel oped by
Turney (Turney, 2002), negation words
such as “not” are extracted and used in the
computation of that document’s SO. For
example, the bigram “not interested”
receives a much more negative SO than
the bigram “more interested” which
appearsin adifferent review.

Turney’s algorithm is easy to
implement (low coding overhead),
however, this fact also makes it easy to
find specific cases that it does not cover.
In this way, the generalizability of the
system negatively affects its accuracy. The
rest of this section will focus on specific
problems that we encountered.

While this algorithm takes
relatively little time to implement and no
time to train, it takes an incredibly long
time to issue all of the queries to the
Search Engine. In fact, Turney’'s
experiment on 420 reviews took over 30
hours to run (Turney, 2002)! This has an
adverse effect on the scalability of the
system.

In a review, it is common for the
author to compare the subject that they are
reviewing with something else that is
well-known in that domain. Adjective
phrases that are associated with anything
other than the reviewed subject should not
have the same impact on the semantic
orientation of that review. However, with
the current approach, we give equal
weight to all adjective bigrams, regardless
of the subject of that particular sentence.
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It seems intuitively obvious that
any system attempting to use the entire
World Wide Web as a source of
information on a language would have
many unforeseeable shortcomings which
could be very difficult evaluate. For
example, any words remotely related to
pornography in a review may have huge
weight in the semantic orientation of a
review, while very specific technical
observations may even be ignored by their
relative non-presence on the Web.

Lastly, one reviewer may use
language that, in the overall scheme of
things, is seen as negative in everyday
language. However, if the reviewer is
using that language as if it is describing
positive events, this algorithm will
wrongly classify those phrases as actually
being negative. Some examples from our
corpus include bigrams such as
“incredibly gruesome”, “mighty blows”,
and “very painful.” Each of these
examples remains ambiguous since it is
possible that one person would find these
things positive in certain contexts.

6.2 Bag of Words Prosand Con s

In the bag of words method there
were many problems that were unique to
the method because it does not take syntax
or word order into account, thus making
sense disambiguation impossible. For
example if areview were to use the word
bad, the system is unable to determine if
this word means awful, or refer to an evil
person, or poor conditions, or even the
slang use of the word that has positive
connotations. The system lumps all of
these uses of the word bad together.
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Another problem can be seen in
the following example taken from the
corpus: Why is this analogy in the
movie? Because it sounds really
cool This is an example of one of the
many speeches used in Gladiator to make
it characters sound neat. This is a
negative review that was wrongly
classified as positive. The system picks
up on the positive words such as redly ,
cool , and neat. It isunableto see that
this reviewer is being sarcastic and does
not at all like the analogy used or the other
long speeches in Gladiator. The system is
unable to pick up on this. Another way a
very similar problem occurs is with the
word not or other negatives. Because
words are not taken in context the system
could easily misinterpret phrases such as
not good or not bad.

However there are a'so many Pro s
to Lang s approach. It is much faster that
Turney s approach and therefore much
more likely to be useful to applications
such as search engines and navigating the
web. Itisalso very easy to implement and
to modify. Aslong asthe training datais
correctly set up and the number of
categories is set correctly the system can
deal with any domain.

7. Improvements

7.1 Ways to improve on Turneys

algorithm

1. Do some pre-processing on the corpus
to tag Subject-Object pairs. This would
allow adjective phrases in certain
sentences to be weighted more than
others. In this case, adjectives in
sentences in which the actual product is
the subject would have more weight
than adjective phrases in sentences about
the author s girlfriend.

2. AsTurney himself pointed out, the SO
estimator is extremely ssmple. A much
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deeper mathematical and statistical
analysis of the problem could give us a
better estimator, and therefore a better
system.

3. Over the next few years, technology is
becoming faster, cheaper, and more
reliable. It seems possible that in avery
short amount of time, we will have the
processing power to actually process
entire documents for meaning,
sentiment, etc., instead of doing a token-
by-token discrete analysis.

4. This algorithm doesn t necessarily get
to the heart of the problem. It seems as
though the semantic orientation of a
phrase can be modified for the better by
one or more informative subroutines
(example, see #1).

7.2 Ways to Improve Results from
Lang sMethod:

1. Pruningthedata
The first step in pruning the data
provided much better results.
However further experimentation in
better methods could further improve
the results.

TF-IDF Weighting

TF-IDF weighting refers to term
frequency/inverse-document
frequency weighting. This is an
accepted and tested technique. It is
based on the idea that the more times a
token t appears in a document d, or the
term frequency, the more likely it is
that t is relevant to the topic of d.
However, the more times that t occurs
throughout all documents, or
document frequency, the more poorly t
discriminates between documents.
The TF-IDF weight of a token is
computed by multiplying the term
frequency by the inverse of the
document frequency.
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b. Minimal Description Length (MDL)
According to Lang the MDL
principal provides an information-
theoretic framework for balancing the
tradeoff between model complexity
and training error (Lang). Thiswould
involve how to determine the weights
of different tokens as well as how to
decide which tokens should be |eft out.

MDL seeks to find the optimal
balance between simpler models and
models that produce smaller error
when explaining the observed data

(Lang).

2. Better Grouping of data

a. Root Words
Words with the same root are
classified as unique tokens. By
combining these tokens it might
decrease dimensionality and give a
more accurate view of sentiment.

b. Punctuation

Uninterrupted punctuation is seen as

one token instead of being 5 instances
of 1. Also !ll isaseparate token.

8. Conclusion

During our analysis of each of
these approaches, we realized that the two
systems differ in the type of review that
they will correctly classify. Turney’'s
approach works better on reviews with full
sentences written as a concise narrative.
These reviews should include little
extraneous material. Also, this system will
lose any benefit of long strings of
adjectives, and al punctuation, since these
strings will be parsed into bigrams, and

106

will not be viewed as a single adjective
phrase. Lang’'s approach, conversely,
works better on reviews written by the
colloquial, informal writer. Sentence
structure can be ignored and strings of
adjectives do not have a negative impact
on the ability of this system to classify a
review correctly. However this system
loses information from negation words
such as“not” and “but”.

After analyzing their alternative
approaches, it seems as though Ken Lang
(Lang, 1995) and Peter Turney (Turney,
2002) developed systems that could be
easily combined in parallel to create a
more robust system. The output of
Turney's system is aranking, from —1.0 to
1.0, with positive rankings indicating a
positive review, and negative rankings
indicating a negative review. Lang’'s
approach gives a similarity ranking, in
degrees, to pre-trained “positive review”
and “negative review” vectors. If both
systems give the same rank (positive or
negative) to the same review, we can be
surer about the correctness of our
classification. If they disagree, we can
normalize Lang’s output by dividing by
360, and compare the magnitude of the
rankings (by taking the absolute value)
given by each approach, choosing the
ranking that is closer to 1.0. This would
basically choose the ranking from the
system that was “most sure” of its ranking.
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Appendix A

Gladiator Results:

Test 1-5 should have been negative and 6-10 should have been positive

PosAvg = 16.0186606915661
NegAvg = 11.8380473345302

TestReview 1 = Positive
Cosine = 23.2709696439365 Positive Average = 16.0186606915661

TestReview 2 = Negative
Cosine = 13.7287385024832 Negative Average = 11.8380473345302

TestReview 3 = Positive
Cosine = 21.0261787760811 Positive Average = 16.0186606915661

TestReview 4 = Negative
Cosine = 11.5234315064659 Negative Average = 11.8380473345302

TestReview 5 = Negative
Cosine = 12.7149150507662 Negative Average = 11.8380473345302

TestReview 6 = Negative
Cosine = 11.4870277804537 Negative Average = 11.8380473345302

TestReview 7 = Negative
Cosine = 13.3473100260505 Negative Average = 11.8380473345302

TestReview 8 = Positive
Cosine = 14.2941176470588 Positive Average = 16.0186606915661

TestReview 9 = Negative
Cosine = 13.1102578104888 Negative Average = 11.8380473345302

TestReview 10 = Negative
Cosine = 11.2413709596575 Negative Average = 11.8380473345302

Tekken Tag Tournament Results:

Test 1 and 2 should have been negative and the 3-10 should have been positive

NegAvg = 11.8229121304717
PosAvg = 13.1909226170445

TestReview 1 = Positive
Cosine = 14.2503313100448 Positive Average = 13.1909226170445

TestReview 2 = Negative
Cosine = 12.5051490549628 Negative Average = 11.8229121304717

107

Appeared inProceedings of the Class of 2003 Senior Confergpages 97-108
Computer Science Department, Swarthmore College



TestReview 3 = Positive
Cosine = 17.0557835789563 Positive Average = 13.1909226170445

TestReview 4 = Positive
Cosine = 15.4480815863922 Positive Average = 13.1909226170445

TestReview 5 = Positive
Cosine = 15.2916255149102 Positive Average = 13.1909226170445

TestReview 6 = Positive
Cosine = 17.4736133305576 Positive Average = 13.1909226170445

TestReview 7 = Positive
Cosine = 18.4138705812283 Positive Average = 13.1909226170445

TestReview 8 = Positive
Cosine = 16.9111365668947 Positive Average = 13.1909226170445

TestReview 9 = Positive
Cosine = 16.9747545634721 Positive Average = 13.1909226170445

TestReview 10 = Positive
Cosine = 13.3273304529849 Positive Average = 13.1909226170445
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L anguage segmentation for Optical Character Recognition using Self
Organizing Maps

Kuzman Ganchev

Abstract Once this has been done, monolingual OCR can be per-
formed on each of the sections of text and the original
Modern optical character recognition (OCR)  document can be subsequently reconstructed. In order
systems perform optimally on single-font  to perform this division, we use self organizing maps
monolingual texts, and have lower performance  (SOMs) to distinguish between characters of one lan-
on bilingual and multilingual texts. For many guage and characters of the other. SOMs are a mecha-
OCR tasks it is necessary to accurately rec-  pism for sorting high dimensional vectors into a two di-
ognize characters from bilingual texts such as  mensional grid, in such a way that similar vectors are
dictionaries or grammar books. We presenta  sorted into grid locations near each other. A more de-
novel approach to segmenting bilingual text,  tajled description of SOMs and how we use them is pro-
easily extensible to more than two languages.  vided in Section 3.
Our approach uses self organizing maps to dis- Our results show that using the approach outlined in
tinguish between characters of different lan-  this paper, we can correctly determine the language of
guages allowing OCR to be performed on each  98.99 of the characters in Uzbek-English dictionary text.
part separately. Our experiments as well as these results are described in
Section 4.

2 Reated Work

Modern optical character recognition (OCR) systems per- o
form optimally on single-font monolingual texts, espe2-1 Self Organizing Maps
cially when they have been trained on a font very simKohonen (1990) provides a concise introduction to self
ilar to the one they need to recognize. Performance asrganizing maps in general, considering their appli-
bilingual texts, however is not nearly as good, especiallgations since their conception. He describes how a
when the two languages that occur in the text have simEOM might work, and notes that it may be necessary
lar characters. The reason for this is that dictionaries artd preprocess the information somehow: ‘“it would of-
language models are usually trained on a per-languatgn be absurd to use primary signal elements, such as
basis. Sometimes the OCR program will assume that. pixels of an image, for the components of [a SOM]
there are multiple fonts for the same language and makirectly”(Kohonen, 1990). Kohonen presents his SOMs
poor guesses about which characters are in which laimthe context of “Vector Quantization” — the assigning of
guage. Despite these difficulties, there are real lines gfuantum values to vectors; similar to what we want to do,
motivation for performing bilingual OCR. For exampleif the image is the vector, then the quantum representation
is the rapid development of translation systems requiregould be the character that produced it or in the case of
large amounts of training data. There are many languagkesguage segmentation, the language that that character
around the world for which collections of texts as well ass in. In this context he also talks about a “codebook” of
dictionaries and grammar books are readily available imectors that are essentially the definition of the quantum
printed form, but not in electronic form. For the task ofto vector relationships. He presents three algorithms for
rapidly developing a translation system, optical charactéLearning Vector Quantization” called LVQ1, LVQ2 and
recognition may be the only viable solution for obtainingLVQ3.
training text. He and Ganchev (2003) use SOMs and neural net-

This paper focuses on a sub-topic of bilingual OCR -works for simple object recognition on a mobile robot,
namely deciding which characters are in which languageuith limited success. The images taken from a camera

1 Introduction
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mounted on a Khepera robot moving in an enclosed spae# the SOM tasks. Finally, we use the trained SOM to
are sorted into a large SOM, after which a neural networdtistinguish between characters of different character set
is used to associate labels to images.

Image
2.2 Optical Character Recognition Thisisapageoftext |- GOCR} -~ Find boxes|

it is wonderful to be a

Berman and Fateman (Berman and Fateman, 1994) deage of text because

of all the recognition

scribe an OCR system for mathematical texts. The mainhat you get. For ‘
application of their work is to recognize printed tables Zj:;ﬁzl‘yhjjjﬁzgwj“ B @@
of integrals, or mathematical proofs. The algorithm they nized ‘
describe requires that images for every variation of ev
ery font be learned separately by the program. They som [

use the Hausdorff asymmetric distance function which i e @@
defined as the largest Euclidean distance from any “or|
pixel in the source image to the nearest “on” pixel in the
destination image. One interesting feature of this metri [ Categorize characters|
is that in one direction it treats characters with missing

t_on _iJl;(elstasr? perf{ect mf”::]Ch’ \tNh'll‘e 'T the (l)ther dlrec'Figure 1: Architecture: The dotted lines represent flow
lon 1t treats characters with extra ‘on pIXelS as a Peros ingormation, while the solid lines represent the flow

fect match. This allows it to deal with broken glyphs an f control. GOCR is used to find the boxes that con-

over-connected characters. Unfortunately the authors Qn characters, the data vectors corresponding to those

not give any numerical results, and the system has to tEJ%xes is extracted and used to train the SOM. Finally the

retrained from scratch for even a slightly different fonttrained SOM is used to categorize the characters into two
or font size. Since a maximum of distances is taken fq[cmguages

the measure; this approach might also be very sensitive

to dust. For example, a spec of dust in the middle of an

“O" would m_ake |_t as far from the model “O” as if it was 32 GOCR
completely filled in.

1

GOCR, developed by Joerg Schulenburg and Bruno Bar-
3 Abstract Implementation beri Gnecco, is a free optical character recognition sys-

tem under continuing development. GOCR reads in an
In order to investigate methods for using SOMs to dividémage file, and scans it for boxes containing a single char-
an image into languages, we developed different versior&ter of text. Each box ideally contains a single character
of a system for classifying characters into two sets basethd is the smallest rectangular area with sides parallel to
on the language which generated them. The first subsdbe z andy axes. In practice boxes may contain more
tion gives an overview of the architecture of this systenthan one character (See figure 3) but in our experience
Subsequent subsections describe each of the system cdhey rarely contain less than a character. After a list of
ponents in more detail. Subsection 3.2 describes the Ghoxes has been generated, GOCR removes dust and pic-
Optical Character Recognition program, Subsection 31Bires that do not need to be recognized, attempts to detect
gives an overview of self organizing maps, and Subsee rotation angle and lines of text within the scanned im-
tion 3.4 describes the system components that we implage, and attempts to correct glued boxes and broken char-

mented. acters. Finally GOCR runs an OCR engine on the sorted
_ _ boxes. As an example of its performance GOCR program
3.1 Architectural Overview gives the following output for the image shown in Figure

Figure 1 shows a graphical representation of the systefn GOCR also added two extraneous new lines between
architecture. In the figure, the dotted lines represent flog@ch pair of lines of text, probably because of the high
of information, while the solid lines represent the flow'€solution of the source image. The' tharacters rep-

of control. Given a source image, we use the Gnu Opf_esent characters that GOCR was not able to recognize.
tical Character Recognition program (GOCR) to find th&9ure 3 shows the boxes and lines of text that GOCR
boxes that contain characters of text. We then wrote 32S found within the image.

program to extract dat_a vectors_ corresponding tc_) c_har—I tcan go. Butthe"30 s

acters of text from the image using the box descriptions

pas_. The el even nus

provided by GOCR. Once this training data has been €X<h sen as the great o
tracted, it is used to train a self organizing map (SOM). per_i odbe_een | 940

We used the SOMPAK (Kohonen et al., 1995) toolkit for
110
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chosen as the great o
period between 1940

’
it can go. But the '30's
past. The eleven mus @
Figure 2: A sample of scanned text used for optical chaFigure 4. A hexagonal SOM topology. This istax 2

acter recognition. Note that the image is very hight rescSOM - it has four rows and two columns.
lution, but imperfect and skewed.

tor. We used Euclidean distance to determine how close
a data vector was to the model vector. We opted for this
approach since it is the default for SOQRRK; an other
" B t th 13073 option would have been to use cosine similarity as the
lt cdan gO- u € distance metric. One way to make one vector closer to
another is to use a weighted average of the two. The rel-
Past, The eleven mus ative weights of the vectors are determined by a learning
rate parameter.

ChOSeH as the great 0 There are two stages of training. During the first short

1 9 4 0 stage the learning rate is set high and the neighborhood of

1 tVV en the vectors is large, so that the SOM roughly but quickly

PerlOd be € organizes the vectors into groups. During the longer sec-
ond stage of training a lower learning rate and smaller

neighborhood are set so that local arrangements can be

Figure 3: The same scanned piece of text, after procesgy je and the model vectors approach ideal characters.
ing by GOCR. The blue lines represent the lines of the agier the training phase is complete the same vectors

text as \(/jvell as thﬁ box bh(_)urr:dari?j. Characte;s ;ordv_vhicu ed for training can be sorted into locations on the grid.
GOCR does not have a high confidence are shaded inrég, |ocation and difference from the nearest model for

Note that the “tw” shaded in red on the bottom line is iNgach vector is recorded for use as described in Subsection

fact a single box. GOCR is not able to recover from thi% 4. We used SOMPAK (Kohonen et al., 1995) as the
error. SOM implementation for our experiments.

o 3.4 Custom Components
3.3 Sdf Organizing Maps i P
Our system relies on a number of small components other

Conceptually, a self organizing map (SOM) is a structurgyan SOMPAK and GOCR. Section 3.4.1 describes how
for sorting vectors into a grid in such a way that vectorgye convert the images described by the character boxes
close together on the grid are similar, and vectors farth%’enerated by GOCR, into data vectors used to train the

away are more dissimilar. After training, each grid l0-5om. Section 3.4.2 describes how we use the trained
cation contains a vector that represents the ideal vectgy\ to segment bilingual text.

at that location called a “model vector”. Typically, SOM

grids are hexagonal, as shown in Figure 4. This allowd4.1 Converting Imagesto Vectors

each cell to be adjacent to six other cells, rather than four In using a SOM to sort images, we need to first convert

with a rectangular grid. the images into some vector representation, since SOMs
Before the SOM can be trained, it is initialized by set-are designed to work with vectors. We do this by using

ting all its model vectors to random values. Training is'1” to designate a white pixel and “0” to designate a black

done as follows: for each data vector, find the model vegixel, and then creating a vector that has one dimension

tor closest to it, and modify that vector and vectors nearbger pixel. For example 8 x 3 image with black top

(in the grid) to make make them closer to the data ve@nd bottom rows and a white middle row would be rep-
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resented as “(0,0,0,1,1,1,0,0,0)". This provides a mecha-
nism to convert an image to a vector and vice-versa, but e ‘
the sizes of the vectors depend on the size of the image, 3e 1
so a“.” character, might be & x 3 image (correspond- T he

ing to a nine dimensional vector) while a “M”character B : ‘
might be much larger. This complicates matters because S 1

a SOM only works with vectors of the same size. We de
scribe two techniques we used to deal with this in Section

4. Original Text Imagenary Image

3.4.2 After Trainin
9 Figure 5: Initial “top left corner” method of converting

Once we have a SOM trained in one language, we m’?uaracter boxes to vectors. On the left is a segment of

characters from an unknown language into that SOM, ; .

. ext with a box (dotted line) drawn around a character
Based on the distance from the character vector to t eoundar on the riaht is the image that will be used to
nearest model vector in the SOM, we decide whether Y 9 9

the character belongs to the same language on which tﬂgnerate the vector for the character.
SOM has been trained or to some other language.

4 E . tal Result the image that were not part of a box. The color of each
Xperimental Resuits character is determined by how close the vector repre-

This section describes the empirical evaluation we peﬁentation of the character is to the nearest model vector
formed on our system. Subsection 4.1 describes our irf? the trained SOM, and hence how confident we are that
tial approach for converting character boxes to vectors tbey are in the language the SOM was trained on. Blue

placing the box at the top left-hand corner of the imaggharacters are c!ose to the SOM model vector, while red
— and describes the problems that produces. Subsectigftgracters are distant.

4.2 describes a refinement to this approach — scaling the
characters — and provides comparative results to those ¢
tained in Subsection 4.1. Subsection 4.3 describes hd
the algorithm performs on hand-selected training data fq = ealrats,

the task of segmenting dictionary text. Finally, Subseg ____' (el O% _ﬂ !!ii {i ﬂ[ﬂ EL’] S
tion 4.4 describes its performance when trained using u
edited “dirty” training data.

¢leVENRILS
4.1 Top Left Corner .

The first approach we use to convert character boxes i S = -
vectors is to place the character box in the top left-hanSSSE SIS A RIS Froiaa i | 1O I
- | LTI\
corner of a white image that is the same size for all thfE = | L'!uﬂ-‘!‘!-‘ I"‘ LWECLLR -
characters. We create a white image, then copy the pixeic

of the character into the top left hand corner of this image.

Figure 5 illustrates this. We can then convert the imagEigure 6: Distance from the nearest matching model vec-
into a vector as described in Section 3.4.1. Since the info" for the characters in the text presented in Figure 2.
age into which we are copying the characters is the sankiUe characters are close to the language the SOM was
for each character, all the vectors will be of the same siZ&ained on, while red characters are classified outside that
and we can use them to train the SOM and to categoriz@"guage. The ideal result would be to color all char-
the characters. acters characters, except for the box that contains “tw”,
This initial approach has a few limitations. Firstly, for Since this is not an English character (itis two).

even a slightly different font or different font-size, the

SOM might have to be retrained from scratch. This is be- We note that the small characters are closer to the mod-
cause a character in a different size or font would showls than the larger ones. This is because of the way we
a significant mismatch of the model vectors pixels, evenonvert the images to vectors; any two small characters
when the fonts are identical. Secondly, when we starteshare a lot of “white space” and can differ only in the top
to test the system to find unlikely characters we found thagft hand corner of the image we use to generate the vec-
this approach gave a considerable advantage to smalters, since we pad the rest of the space with white pixels
characters over larger ones. Figure 6 shows some r®r both small characters. So for example, comparing a

LR

sults that demonstrate this. The grey areas are parts‘df to a “;” the difference ”,” might occupy five pixels,

ASCHOTCATRO
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while two capital “M”s might have a larger difference.
While both “” and “;” occur in English, small charac-
ters in another character set are more likely to be clos

: : : o - e T ey e | e —
g)cts:sll Latin characters than two scans of identical cha i“i]r._] ﬂLl]l!ElI[JLiliH!ﬂFg [‘[.jl_ﬂ

Hndithefmeansito

N 8,

42 Scaling Characters ontthelki7idSPorison
To overcome the problems the “top left corner” techniqu = :
?ncurs with different sizes of the same fon.t and of giv r.nm@ﬁl[:}‘ Ei'ﬂ[ﬂﬂl_i [::l!!,aﬁ@[q
ing an advantage to small characters, we tried scaling tiE S = el
characters when converting them to a vector represen
tion. Again, we create intermediate images of the sa
size for all the characters, but this time we scale the cha
acter to this image. The intermediate image is then co
verted to a vector as above. Figure 7 illustrates the co
version.

Sinofthen

rI‘—"igure 8: Distance from the nearest matching model vec-
tor using the scaling approach on English text. Blue char-
acters are close to the nearest SOM model vector, red
characters are far from all SOM model vectors. Note that
the italicized characters are more pink than the rest of the
text, as expected.

The

box in the figure is a part selected as English. Note that
the word “goalkeeper” was not selected in this process to
save time. The word will be classified as English by the
trained system. As a rough estimate of how much human
Original Text Imagenary Image time this initial selection entailed, selecting English- po
tions from 40 pages of dictionary text took roughly fifteen
Figure 7: The “scaling” method of converting characteminutes.
boxes to vectors. On the left is a segment of text with
a box (dotted line) drawn around a character boundar
on the right is the intermediate image with the characte

nap)ocasda [darvozabon] n n doorkeeper,

i lkeeper
scaled and placed in the top left hand corner. goalke
P P ARPTOX [dargokh] n palace
aapA [dard] n affection, illness

This method produced much better results. Figure [daryo) n river
shows a sample of text color-coded in the same way ¢ aad . et wer
Figure 6. With the exception of the “m”s the boxes con: AepMoR ldaman] n efticasy, poﬁt ain
taining a single character in the main font are colore.. A%PoMAA [daromst] n income, PEOTE: 9
blue, as we would like. The italicized characters and the
box containing the “th” bigram are correctly classified adigure 9: Part of a page from the Uzbek-English dictio-
different than the rest of the text. Section 5 describes po§ary used for the experiment described in Section 4.3.
sible improvements to this approach to deal with misclasthe part of the image enclosed by the box has been se-
sified character like the “m”. The following experiment'eCted as Latin text, and so can be used to train the SOM.

applies this approach to bilingual text.

] It is important to note that the Cyrillic characters are
4.3 Hand-Selected Regions in a bold font while the Latin characters are not, which
To test our system on the task of bilingual text segmentanay help performance. It is probably not unjustified to
tion, we attempted to segment text from the Hippocrenassume that this will often be the case, since changing
Uzbek-English English-Uzbek dictionary (Khakimov,the font also makes it easier for a human to distinguish
1994) into Cyrillic and Latin characters. We train thebetween languages at a glance and a typesetter might do
SOM using regions of a dictionary selected by hand tthis to aid the human reader.
contain English text, and then use the trained SOM to Figure 10 shows part of a dictionary page color-coded
estimate the language of unknown characters. Figurel® the system. Letters closer to blue are more likely to
shows a sample of Latin and Cyrillic as they occur in thée Latin, while those closer to red are more likely to be
dictionary, as well as the part selected as Latin text. Th€yrillic. We see that most of the English text is correctly
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classified — the word “goalkeeper” is most interestingnearly as good as those obtained in the previous experi-
since it was not used during training, and was correctlynents. Figure 11 illustrates the results for the same part
classified except for the “pe” bigram for which GOCRof the page shown in Figure 10.

did not find the bounding box correctly. We also see that

on a word by word basis, the system works pretty well =25
the Cyrillic words are more red than the Latin words, bul &
there are a number of places where we make mistake &
several Latin characters are very pink, and several Cyr
lic characters are very blue.

[darvozabon i ninidoorkeepery

{dargokn]Snipalace

Lonyiillness

Again

Figure 11: Distance from the nearest matching model
vector for dictionary text, when using unedited pages of
the dictionary. Blue characters are classified as Latin, red
characters are classified as Cyrillic.

Quantitative results were obtained as above, after the

Figure 10: Distance from the nearest matching modelystem was trained on unsegmented pages of the dictio-
vector for dictionary text. Blue characters are classifiedary. Overall the system makes the correct estimation
as Latin, red characters are classified as Cyrillic. 72.2% of the time. As a comparison, always choosing
English would have given a performance of 64.7%, so

To obtain quantitative results for this experiment, wehis is not an impressive result at all. The details for each
hand-selected all the English text in a dictionary pagganguage are shown in Table 2.

and saved only this in an image. Similarly we placed all

the Uzbek text from three dictionary pages into one im- Language| Correct | Percentage
age. This gave us 576 characters of English and 312 char- English 339/576 58.9%
acters of Uzbek. We then used our system to classify all Uzbek 302/312 96.8%
the characters in each image. The results are summarized both 641/888| 72.2%

in Table 1. The system made a correct guess of 98.9% of

the time. Table 2: The performance of our system trained on
unedited pages of the dictionary.
Language| Correct | Percentage
English 566/576| 98.3%
Uzbek | 312/312| 100% 5 Conclusionsand Future directions
both 878/888| 98.9%

We presented a novel approach for using self organizing
Table 1: The performance of our system with handmaps to segment bilingual text into its component lan-
selected training data on the task of segmenting dictiguages, with applications to OCR. We tried this approach
nary text. on pages from an Uzbek-English dictionary, and found
that we were able to identify the correct language for
o 100% of the Uzbek characters and 98.3% of the English
4.4 Pagesof aDictionary characters. With this success in mind, there are a number
The results from the previous experiment are encouragf limitations to the approach presented here, and we dis-
ing, but we wanted to investigate whether the human efuss these in Section 5.1. Section 5.2 concludes the paper
fort of segmenting some pages of text was really neceg+th a discussion of possible future work.
sary. To investigate this we repeated the above experi- . .
ment, but instead of training the system on hand-selected. Problemswith this Approach
parts dictionary pages, we trained on entire pages of tfiéhere are a number of limitations to the method presented
dictionary. The idea behind this is to assume that sinde this paper. In order to get the results we obtained, we
most of the characters on the page are of one languageeded to manually select English text on which the SOM
(English for the portion of the dictionary we used), itcould be trained. While this did not take a lot of time, it
may be acceptable to pretend the rest of the charactéssa cost that needs to be incurred for each new book on
are noise. Unfortunately, the results this provides are nathich OCR is to be performed. The method we describe
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is also very computationally intensive and requires a ldkohonen, Hynninen, Kangras, and Laaksonen. 1995.
of space; training the system took several hours on the The self organizing map program package.
available hardware and the training data occupied abo (tauvo Kohonen. 1990. The self-organizing maro-
115 MB of disk space (compared to less than 2.5 M :
. ... ceedings of the IEEE, 78(9).
for the images). We also do not use character position
information in any way, so we may guess that a character
that is part of a long word is of a different language than
the rest of the word. Making the assumption that there
is one language per word would probably considerably
improve our results.

5.2 FutureWork

Investigating the limitations mentioned above would be
the first line of future work. One part of this would be
to investigate how much training data is really necessary.
Perhaps it is enough for a human to segment one page of
training data instead of forty. If a few pages of training
data are sufficient this would also alleviate a lot of the
space requirements we currently have. We also do notin-
vestigate the possibility of training the SOM for a smaller
number of iterations. It would be interesting to find out
how this affects performance.

Extending the method to use position information
would also be a line of future work. The one language
per word assumption would not be difficult to implement
and may improve result — especially when we only have
scarce training data. Further position information could
also be learned on the fly. For example, in our dictionary
all the characters in the left two-thirds of the page were
English. Another easy extension of this work would be
to adapt it to deal with more than two languages.

A more difficult future work (suggested by one of the
anonymous reviewers) would be to combine our approach
with a language model approach. For example, if we
perform OCR on each word in the image assuming it is
in one language, the resulting text would match the lan-
guage model best if we guessed the correct language. We
could repeat this for each possible language before mak-
ing a final decision. Combining this approach with ours
would be helpful, since it could be used to provide train-
ing data with no human involvement, while our approach
would deal with words that do not match the language
model, such as the Latinization of the Cyrillic words in
our dictionary.
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