
Computer Science Department
CPSC 097

Class of 2003
Senior Conference

on Natural Language
Processing

Proceedings of the Conference

Spring 2003
Swarthmore College

Swarthmore, Pennsylvania, USA

Order copies of this proceedings from:

Computer Science Department
Swarthmore College
500 College Avenue
Swarthmore, PA 19081
USA
Tel: +1-610-328-8272
Fax: +1-610-328-8606
richardw@cs.swarthmore.edu

ii

Introduction

About CPSC 097: Senior Conference

This course provides honors and course majors an opportunity to delve more deeply into a particular
topic in computer science, synthesizing material from previous courses. Topics have included advanced
algorithms, networking, evolutionary computation, complexity, encryption and compression, and
parallel processing. CPSC 097 is the usual method used to satisfy the comprehensive requirement for a
computer science major.

During the 2002-2003 academic year, the Senior Conference was led by Richard Wicentowski in the
area of Natural Language Processing.

Computer Science Department

Charles Kelemen, Edward Hicks Magill Professor and Chair
Lisa Meeden, Associate Professor
Tia Newhall, Assistant Professor
Richard Wicentowski, Assistant Professor
Ali Erkan, Visiting Assistant Professor

Program Committee Members

Mark Angelillo Haw-Bin Chai
Julie Corder Hollis Easter
Sean Finney Kuzman Ganchev
Todd Gillette Feng He
Nori Heikkinen Oliver Hsu
Yoshi Komori J. McConnell
Shannon McGrael Erik Osheim
Sven Olsen Jeff Regier
Ben Schak Mike Smith
Michael Spiegel Daniel Sproul
Andrew Stout Yeelin Tan
Anteneh Tesfaye Pascal Troemel
Jonah Volk Richard Wicentowski
Andy Zuppann

Conference Website

http://www.cs.swarthmore.edu/˜richardw/cs97-s03/

iii

Conference Program

Thursday, April 17

2:40-3:05 Hebrew Vowel Restoration With Neural Networks
Michael Spiegel and Jonah Volk

3:05-3:30 One Sense per Collocation for Prepositions
Hollis Easter and Benjamin Schak

3:30-3:55 The Structure, Computational Segmentation, and Translation to English of German
Nominal Compounds
Nori Heikkinen

3:55-4:20 Using Semantic Information from Neural Networks to Detect Context-Sensitive
Spelling Errors
Julie Corder

Tuesday, April 22

2:40-3:05 Part Of Speech Tagging Using A Hybrid System
Sean Finney and Mark Angelillo

3:05-3:30 Disambiguating Between ’wa’ and ’ga’ in Japanese
Yoshihiro Komori

3:30-3:55 Machine Translation Evaluation by Document Classification and Clustering
Feng He and Pascal Troemel

3:55-4:20 Constructing a Lossless and Extensible Part-Of-Speech Tagger
Jeffrey Regier

Thursday, April 24

2:40-3:05 A Hybrid WSD System using Word Space and Semantic Space
Haw-Bin Chai and Hwa-chow Hsu

3:05-3:30 A Minimally-Supervised Malay Affix Learner
Yee Lin Tan

3:30-3:55 code-name DUTCHMAN: A Text Summarization System
Erik Osheim and Daniel Sproul

Tuesday, April 29

2:40-3:05 Wordnet Wordsense Disambiguation using an Automatically Generated Ontology
Sven Olsen

3:05-3:30 A Connectionist Approach to Word Sense Disambiguation
Andy Zuppann

3:30-3:55 Automatic Rule Generation and Generalization for an Information Extraction
System Using MAXIM
J. McConnell and Anteneh Tesfaye

iv

Tuesday, April 29

3:55-4:20 Latent Semantic Analysis for Computer Vocabulary
Andrew Stout and Todd Gillette

Thursday, May 1

2:40-3:05 An In Depth Look at Two Approaches to Sentiment Classification
Shannon McGrael and Stephen Michael Smith

3:05-3:30 Language Segmentation for Optical Character Recognition using Self Organizing Maps
Kuzman Ganchev

v

Table of Contents

Hebrew Vowel Restoration With Neural Networks
Michael Spiegel and Jonah Volk . 1

One Sense per Collocation for Prepositions
Hollis Easter and Benjamin Schak . 8

The Structure, Computational Segmentation, and Translation to English of German Nominal Com-
pounds

Nori Heikkinen . 15

Using Semantic Information from Neural Networks to Detect Context-Sensitive Spelling Errors
Julie Corder . 16

Part Of Speech Tagging Using A Hybrid System
Sean Finney and Mark Angelillo . 23

Disambiguating Between ’wa’ and ’ga’ in Japanese
Yoshihiro Komori . 30

Machine Translation Evaluation by Document Classification and Clustering
Feng He and Pascal Troemel . 35

Constructing a Lossless and Extensible Part-Of-Speech Tagger
Jeffrey Regier . 40

A Hybrid WSD System using Word Space and Semantic Space
Haw-Bin Chai and Hwa-chow Hsu . 46

A Minimally-Supervised Malay Affix Learner
Yee Lin Tan . 55

code-name DUTCHMAN: A Text Summarization System
Erik Osheim and Daniel Sproul . 63

Wordnet Wordsense Disambiguation using an Automatically Generated Ontology
Sven Olsen . 69

A Connectionist Approach to Word Sense Disambiguation
Andy Zuppann . 78

Automatic Rule Generation and Generalization for an Information Extraction System Using MAXIM
J. McConnell and Anteneh Tesfaye . 84

Latent Semantic Analysis for Computer Vocabulary
Andrew Stout and Todd Gillette . 92

An In Depth Look at Two Approaches to Sentiment Classification
Shannon McGrael and Stephen Michael Smith . 97

Language Segmentation for Optical Character Recognition using Self Organizing Maps
Kuzman Ganchev . 109

vii

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

Hebrew Vowel Restoration With Neural Networks

M. Spiegel and J. Volk
Swarthmore College

Computer Science Dept.�
spiegel,volk�@cs.swarthmore.edu

Abstract

Modern Hebrew is written without vowels, presenting a
problem for those wishing to carry out lexical analysis
on Hebrew texts. Although fluent speakers can easily re-
place vowels when reading or speaking from a text, there
are no simple rules that would allow for this task to be
easily automated. Previous work in this field has involved
using statistical methods to try to solve this problem. In-
stead we use neural networks, in which letter and mor-
phology information are fed into a network as input and
the output is the proposed vowel placement. Using a pub-
licly available Hebrew corpus containing vowel and mor-
phological tagging, we were able to restore 85% of the
correct vowels to our test set. We achieved an 87% suc-
cess rate for restoring the correct phonetic value for each
letter. While our results do not compare favorably to pre-
vious results, we believe that, with further experimenta-
tion, our connectionist approach could be made viable.

1 Introduction

As would be expected from the lack of vowels, He-
brew text contains a large amount of ambiguous words.
Levinger et al. (1995) calculated, using a Modern He-
brew newspaper corpus, that 55% of Hebrew words are
ambiguous1. This ambiguity can take several forms: dif-
ferent vowel patterns can be used to distinguish between
multiple verb or noun forms, as well as between multiple
forms of other parts of speech, such as certain preposi-
tions. Vowel patterns also distinguish between two un-
related words in certain cases. As an example of the fol-
lowing, the consonant string SPR2 can be vowel tagged in
one way such that it means “book” and another way such
that it means “to count”. This consonant string also has
four other possible vowel patterns, each with a different

1It is unclear whether this refers to types or tokens.
2Throughout this paper we have used an ASCII representa-

tion in place of actual Hebrew letters and vowels.

translation.
The problem is further complicated by the fact that He-

brew has twelve vowels, designated in our corpus (dis-
cussed below) as�A, F, E, ”, I, O, U, W., :, :A, :E, :F�.
However, the number of vowels can sometimes be sim-
plified by using phonetic groupings. These are groups
of vowels for which all the vowels in the group produce
equivalent (or near-equivalent) sounds. As will be dis-
cussed later, in certain situations it is enough to produce a
vowel from the phonetic group of the target vowel, rather
than having to produce the exact vowel. We have identi-
fied the following phonetic groups:�A, F, :A, :F�, each
of which produce, roughly, the sound “ah” and�E, :E�,
each of which produce, roughly, the sound “eh”.

We believe that there are two main areas to which this
work could be applied, each of which demands somewhat
different goals. The first is automated speech genera-
tion, which, of course, requires vowel restoration. For
this task, we would only need phonetic group accuracy
because the vowels within phonetic groups all make the
same sounds in spoken Hebrew. The second task is the
restoration of vowels to Hebrew texts for the purpose of
aiding people who are learning the language, either chil-
dren learning it as their first language or adults. For this
task, we would not be able to combine phonetic groups.

2 Previous Work

Previous relevant work falls into two main categories:
work done in the field of Hebrew vowel restoration and
work done using neural networks to solve lexical prob-
lems which could be similar to vowel restoration. Note
that these categories are mutually exclusive; to the best
of our knowledge, no previous work has been done which
has attempted to combine these fields as we are.

This work makes use of a number of performance met-
rics which are defined as follows: Word accuracy is the
percentage of words which have their complete vowel
pattern restored exactly. Letter accuracy is the percentage

1

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

of letters which are tagged with the correct vowel. W-
phonetic group accuracy is word accuracy, allowing for
vowels to be substituted for others within a given pho-
netic group. L-phonetic group accuracy is letter accu-
racy, allowing for vowels to be substituted within pho-
netic groups.

In the field of Hebrew vowel restoration, the most re-
cent work can be found in Gal (2002). This paper at-
tempts to perform vowel restoration on both Hebrew and
Arabic using Hidden Markov models. Using a bigram
HMM, Gal achieved 81% word accuracy for Hebrew and
87% W-phonetic group accuracy. He did not calculate
letter accuracy, but we have to assume that it would have
been higher than 81%. Gal also used the Westminster
Database as a corpus and calculated that approximately
30

Similar work was also done in Yarowsky (1994), where
he addressed accent restoration in Spanish and French.
He, like Gal, uses statistical methods - decision lists in
this case. His descision lists rely on both local and
document-wide collocational information. While this
task is quite similar to ours, French and Spanish accent
patterns are much less ambiguous than Hebrew vowel
patterns; Yarowsky cites baseline values in the 97-98%
range. Given this baseline, he is able to achieve 99% ac-
curacy.

Gal also cites a Hebrew morphological analyzer called
Nakdan Text (Choueka and Neeman 1995) which uses
context-dependent syntactic rules and other probabilistic
rules. Nakdan Text uses the morphological information
that it creates as a factor in vowel placement, meaning
that its results are most comparable to ours obtained using
morphology tags. Nakdan Text achieved 95% accuracy,
but the authors do not specify if this is word accuracy or
letter accuracy.

In the field of neural networks, networks have, in a
number of past experiments, been applied to part-of-
speech tagging problems, as well as used to solve other
lexical classification problems. For example, Hasan and
Lua (1996) applied neural nets to the problems of part-
of-speech tagging and semantic category disambiguation
in Chinese. In Schmid (1994), the author describes his
Net-Tagger software which uses a connectionist approach
to solve part-of-speech tagging. Schmid’s Net-Tagger
software performs as well as a trigram-based tagger and
outperforms a tagger based on Hidden Markov Models.
Given these results, it seems likely that a connection-
ist approach would produce satisfactory results when ap-
plied to vowel restoration in Hebrew, given that vowel
restoration is closely linked with lexical categorization.

3 Corpus

We used the Westminster Hebrew Morphological
Database (2001), a publicly available corpus containing

the complete Tanakh (Hebrew Bible), tagged with both
vowels and morphological information. We would have
ideally used a corpus of Modern Hebrew, but to our
knowledge, there are no Modern Hebrew corpora which
are vowel tagged. Throughout this paper we have used
the codes from the Westminster Database in which ASCII
characters are substituted for Hebrew letters and vowels.
Normally, Hebrew is written with the vowels positioned
underneath the consonant, with each consonant taking ei-
ther one vowel or no vowels. In the Westminster notation,
vowels are positioned to the right of vowels. For exam-
ple, the string ’RA’ represents what would be written in
Hebrew as the consonant ’resh’ with the vowel ’qamets’
underneath it.

3.1 Morphology

As mentioned above, the Westminster Database includes
morphological tags. We chose to run our main experi-
ment using these tags as input for our neural network,
given that vowel placement is often tied to morphology.
If this system were to be applied to a corpus which had
no morphology tags, we would assume that the corpus
would be first run through a morphology tagger. In ad-
dition, we ran our network once without morphological
information as a baseline of sorts.

The morphology tagging in the Westminster Corpus is
very broad and varied, although it has certain gaps, as
mentioned in our data analysis section. There are sev-
eral layers of tags, each of which provides more specific
information. The most basic level includes tags to dis-
tinguish between particles, nouns, adjectives, and verbs.
The particle tag is further broken down into tags for ar-
ticles, conjunctions, prepositions, etc. The tags for pro-
nouns, nouns, and adjectives are subdivided by tags for
gender, plurality distinctions, 1st/2nd/3nd person distinc-
tions, etc. The verb tags have a wide range of sub-tags,
including the standard ones mentioned above, but also in-
cluding a variety of tags designed to differentiate between
different Hebrew and Aramaic3 verb forms.

4 Implementation

4.1 Parsing the Corpus

The raw data from our corpus is first run through a se-
ries of parsing scripts before becoming input for our neu-
ral network. First we remove the initial part of the tag
which corresponds to the location in Tanakh (book, chap-
ter, verse, etc.). We then run the following series of pars-
ing tools as necessary:

3Aramaic is an ancient Semitic language closely related to
Hebrew. Portions of the Hebrew Bible are written in Aramaic,
although Genesis, the only section we examined, contains only
Hebrew.

2

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

� We recombine words which are written as one word
in standard Hebrew but which our corpus splits into mul-
tiple words for morphological purposes. These are quite
often particles which can be attached to nouns as pre-
fixes. These include the conjunction W, the prepositions
B,K,L,M, the relative particle $, the definite article H, etc.
The combined word has the morphological tags of both
of its components. To illustrate the way this works, con-
sider the Hebrew word “R“)$IYT” meaning “beginning.”
The prefix “B.:” meaning “in” can be added to form the
compound “B.:R“)$IYT” meaning “in the beginning”4.
In the Westminster Database, the two parts of this word
are included as two separate words, the first of which is
tagged as a preposition and the second of which is tagged
as a noun. For our purposes, we recombine these parts
into one word which is tagged as both a preposition and
a noun.

� The corpus contains certain word pairs which are
slightly modified versions of each other and which oc-
cupy a single morphological position within the sentence.
One of these words is tagged as the Ketiv version (*) and
one is tagged as the Qere version (**). For our purposes
we have eliminated the archaic and unvoweled Ketiv ver-
sion5.

� In some cases, two words are joined together with
either a Maqqef (-) or a compound joint (˜). In these cases
we have split the word into two words, given that they can
both function as independent words.

� While the dagesh (.) could be considered a vowel,
we chose not to attempt to restore it. The dagesh is a
character which can be used to distinguish between cer-
tain consonant pairs. For example, the string ’B’ is pro-
nounced like the English consonant ’v’, while the string
’B.’ is pronounced like the English consonant ’b’. The
dagesh is placed inside the consonant, rather than under
it, as with vowels, and a consonant can have both a vowel
and a dagesh. Thus, using it would force us to modify our
system, which is currently designed to handle one vowel
per consonant. Furthermore, our system does not need to
deal with the dagesh, as its placement always follows a
set of simple rules.

� All other extraneous characters are thrown out: ac-
cents (ˆ), affix/suffix separators(/), etc.

4.2 Implementing the Neural Network

The neural network consists of an input matrix, an out-
put matrix, and, in some cases, a hidden layer (see Fig-

4Technically, a more precise translation would be “in a be-
ginning” or “at first,” but “in the beginning” is the generally
accepted translation.

5During the period when vowels were added to the Hebrew
Bible (1st century CE), occasionally grammatical corrections
were added to “fix” portions of the text. The original unvoweled
text has been preserved as the “ketiv,” and the modified voweled
text is called the “qere.”

Figure 2: Network Error Based on Hidden Layer Size

ure 2). We used a standard feed-forward, fully connected
network. The input matrix consists of a single word with
morphological tags. Before being used as input, the word
is stripped of vowels, so only the consonants are used.
Each word is represented as a two-dimensional array of
24 by 15 nodes, where 24 is the number of letters in the
Hebrew alphabet plus one null character and 15 is the
length of the longest word in the corpus. In addition,
each has 104 nodes which represent morphological tags,
as discussed above. The output matrix consists of a 14 by
15 node array. Each node in the output matrix represents
a possible vowel with one additional node correspond-
ing to the consonant having no associated vowel and one
additional node corresponding to the null letter. The ac-
tivated node in each row signifies the proposed vowel for
the corresponding consonant.

Rather than using the entire Bible as input, we chose to
use half of the Book of Genesis to cut down on computa-
tion time. This consisted of 10306 words, of which 90%
were used for training and 10% for testing.

Although previous literature suggested that hidden
nodes were not desirable for similar tasks, we ran a num-
ber of tests with hidden layers of different sizes, one con-
taining 150 nodes, one with 300, and one with 900.

5 Results

As shown in Figure 2, the neural network with 300 hid-
den nodes outperformed all the other network configu-
rations. Therefore, all of our results are based on that

3

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

ε
ε

ε
ε
ε

ε

ε
ε

ε

ε
ε

ε
ε

ε

ε
ε

ε
ε

ε

ε
104 Morphology Tags 23 characters + null character

15 letters

particle

pronoun

adjective

noun

verb

Hidden Layer

13 vowels + no vowel + null character

15 letters

Input Layer

Output Layer

Figure 1: Neural Network Configuration

A F E “ I O U W. : :A :E :F

Correct Vowels 356 352 216 155 277 224 2 65 381 70 12 0 1193

Table 1: Neural Network correct vowel recognition, with morphology information.

A F E “ I O U W. : :A :E :F �

A 16 4 11 16 10 0 0 23 2 0 0 5 2
F 22 17 4 10 14 0 1 33 3 0 0 11 2
E 11 11 10 11 13 0 0 7 3 0 0 4 0
“ 7 17 9 8 6 0 0 3 0 1 1 3 0
I 7 7 4 5 1 0 0 10 0 0 0 2 1
O 7 12 7 1 4 0 0 6 0 0 0 13 0
U 1 2 1 0 1 2 0 1 0 0 0 0 0
W. 1 2 0 0 0 0 0 5 0 0 0 19 0
: 12 19 8 4 6 8 1 1 0 0 0 9 1

:A 6 3 0 3 2 5 0 0 8 3 0 0 0
:E 1 0 0 2 0 0 0 0 0 0 0 0 0
:F 0 0 0 0 0 0 0 0 1 0 0 0 0

5 3 0 2 3 6 0 1 2 0 0 0 2

Table 2: Neural Network error distribution, with morphology information.

4

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

A F E “ I O U W. : :A :E :F

Correct Vowels 355 334 230 141 242 201 4 69 363 72 14 0 1190

Table 3: Neural Network correct vowel recognition, withoutmorphology information.

A F E “ I O U W. : :A :E :F �

A 22 10 13 15 1 3 1 16 3 1 0 3 2
F 17 19 20 9 12 3 2 34 3 1 2 12 1
E 12 12 7 6 9 0 0 6 4 0 0 0 0
“ 11 20 12 10 7 0 0 6 2 0 0 1 0
I 18 10 8 8 6 0 0 14 0 1 1 6 0
O 10 18 11 5 3 1 2 8 2 0 0 13 0
U 1 3 2 0 0 0 0 0 0 0 0 0 0
W. 1 2 0 0 1 0 0 2 0 0 0 17 0
: 26 24 6 4 9 7 1 1 0 1 0 8 0

:A 7 8 3 1 1 2 2 0 2 0 0 1 1
:E 1 0 0 0 0 0 0 0 0 0 0 0 0
:F 0 0 0 0 0 0 0 0 1 0 0 0 0

3 3 2 0 1 7 0 8 2 0 0 0 1

Table 4: Neural Network error distribution, without morphology information.

configuration. We achieved 85% letter accuracy, getting
3306 vowels correct out of 3883 total vowels. By merg-
ing phonetic groups, we achieved 87% L-phonetic group
accuracy, getting 3363 vowels correct. Table 2 shows the
error distribution for this experiment and Table 1 shows
the distribution of correct results. In these tables,rep-
resents a consonant with no vowel attached to it, and�

represents a null consonant. Further results are forthcom-
ing, including word accuracy, the average percentage of
correct vowels per word, and results which look at the
type level, rather than at the token level.

We also trained a network on the same data set, but
without including morphological information. The hope
was that this would let us achieve a baseline, to which
our later results could be compared. This experiment
achieved a letter accuracy of 74%. Thus, using morphol-
ogy allowed us to increase our results by 11%. Table 4
shows the error distribution for this no-morphology ex-
periment and Table 3 is the distribution of correct results.

6 Data Analysis

Table 2 demonstrates the errors produced by our network
on a vowel by vowel basis. Each entry in the table con-
tains the number of times that the vowel on the row was
expected but the vowel on the column was placed instead.
Based on this information, several trends emerge. The
first is related to the high level of confusion between F
and : (33 errors) and vice versa (19 errors). By exam-
ining our data, we were able to determine that the vast
majority of these errors were due to a morphological fea-

ture of Hebrew: prepositions and articles are attached to
nouns as prefixes and these preposition and article tags
can often be combined to form a single prefix. For exam-
ple, the prefix “L:-” means “to” or “to a6,” as in “I went to
a party.” It can then be combined with the definite article
“HF-” to form the prefix “LF-” meaning “to the,” as in “I
went to the party.” Several other examples exist that fol-
low the same pattern; a complete list of prefixal particles
is included in the section on parsing the corpus. However,
there is no morphological information in the Westminster
corpus that would distinguish between these two prefix
forms. Given that these prefixes occur in very similar sit-
uations, the network was not able to determine the correct
vowel to be used in such situations, leading to errors of
the type that we found.

We also observed that the vowels “patah” and
“qamets,” designated in the Westminster corpus as A and
F, respectively, were frequently confused. We believe that
this is due to the similarity of these vowels. While more
detailed analysis of the Hebrew language would be nec-
essary to determine this for sure, we believe that this sim-
ilarity exists given that, in spoken Hebrew, these vowels
make the same sound (equivalent to the English vowel
’a’). These errors are removed when phonetic group ac-
curacy is calculated, and we believe that using a larger
test set might help to minimize these errors. The large
amount of errors where A was confused with : presum-
ably result from the combination of these two problems,

6Both of these meanings are valid because Hebrew has no
indefinite article.

5

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

and would be solved if the other problems were solved.
Note the far-right column in Table 2. These were in-

stances in which the network suggested that� was the
vowel to be placed under the current consonant. This, of
course, makes no sense, given that� represents the null-
consonant vowel, in other words, the vowel that is to be
placed with a null consonant. We have no idea why these
cases exist, other then that it is simply a quirk of the neu-
ral network. Luckily, there are very few of these cases -
it is not a major problem.

7 Future Work

There are several areas in which we believe our approach
could be improved to hopefully produce results compa-
rable to those obtained through other means. First, we
could use more input text. For our results presented here,
we chose not to use a larger data set due to a desire to
minimize time spent running the network rather than due
to a lack of data. This would potentially minimize errors
produced due to the network never having seen certain
words in the testing corpus.

Second, we could experiment more with hidden layer
sizes. We only tried running the three variations men-
tioned above; perhaps if we had tried others we would
have come across one that outperformed the network with
300 hidden nodes.

Third, we could expand our network input to include
a broader context of text, perhaps one word on either
side of the target word. Given that a bigram model has
been shown to work, there is clearly a correlation between
word context and vowel placement. However, it is possi-
ble that the morphological information that we provide
performs a similar role to the role that would be played
by context information. In addition, if we wanted to in-
clude such information, we would have to find some way
of representing it within the context of the network. A
problem arises because the network is letter-based, so we
would have to figure out how to use words as input. One
solution would be to include only the morphological in-
formation for the preceding and following words, possi-
bly only the part-of-speech tag. It seems possible that this
morphology would be the crucial element in determining
the vowel placement for the word in question.

Finally, we could modify the corpus to include tags that
distinguish between definite and indefinite article-prefix
compounds. The Westminster Database does not include
such tags presumably because this distinction does not
arise outside of these compounds, given the lack of an
indefinite article in Hebrew. This would hopefully solve
the problem mentioned earlier that was accounting for a
large amount of our vowel placement errors.

In addition to applying these measures to improve our
results, a further test of our system would be to apply it to

Modern Hebrew text, such as that from an Israeli newspa-
per archive. The results obtained from such a test would
certainly be poor, given the fairly major differences be-
tween Biblical and Modern Hebrew. In a Modern He-
brew corpus, we would certainly encounter words that
do not appear in the Bible, as well as words which were
in the Bible but have since been modified in some way.
Our morphological information would also potentially be
faulty due to changes in the language over the years. If we
wanted to optimize our system for Modern Hebrew we
would definitely have to obtain a Modern Hebrew vow-
eled corpus, either by finding one or by creating one by
having native speakers tag an unvoweled corpus.

8 Conclusions

From our results, we have to confront the apparent fact
that neural networks are not ideal for solving Hebrew
vowel restoration. Given that we were including mor-
phological information, we would hope that our results
would be comparable to those achieved by Nakdan Text,
the only other Hebrew vowel restorer which takes mor-
phology into account. However, our results are a full 10%
behind Nakdan Text, assuming that Nakdan is citing a let-
ter accuracy (if they are citing a word accuracy, the dif-
ference would be even greater). This data, combined with
the Gal results, certainly seems to suggest that a statisti-
cal approach to the problem may be superior. However,
given the possible improvements to our methods as well
as the fact that our results were at least promising, we be-
lieve that it might be possible to develop a connectionist
system that could perform equally well as, or even out-
perform, a statistical system.

9 References

References

Y. Choeka and Y. Neeman. 1995. Nakdan Text, (an In-
context Text-Vocalizer for Modern Hebrew)BISFAI-
95, The Fifth Bar Ilan Symposium for Artificial Intelli-
gence

Ya’akov Gal. 2002. An HMM Approach to Vowel
Restoration in Arabic and HebrewSemitic Language
Workshop

M. Levinger, U. Ornan, A. Itai. 1995. Learning Morpho-
Lexical Probabilities from an Untagged Corpus with
an Application to HebrewComputational Linguistics,
21(3): 383-404.

Md Maruf Hasan and Kim-Teng Lua. 1996. Neural Net-
works in Chinese Lexical Classification

Westminster Hebrew Institute. 2001. The Groves-
Wheeler Westminster Hebrew Morphology Database,
Release 3.5

6

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 1–7
Computer Science Department, Swarthmore College

David Yarowsky. 1994. Decision Lists for Lexical Am-
biguity Resolution: Applications to Accent Restora-
tion in Spanish and FrenchProceedings of the 32nd
Annual Meeting of the Association for Computational
Linguistics

7

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 8–14
Computer Science Department, Swarthmore College

One sense per collocation for prepositions

Hollis Easter & Benjamin Schak

May 7,th 2003

Abstract

This paper presents an application of the one-sense-per-collocation hypoth-

esis to the problem of word sense disambiguation for prepositions. The hy-

pothesis is tested through translation using a bilingual French-English cor-

pus. The paper shows that one-sense-per-collocation does hold for prepo-

sitions.

1 Introduction

The one-sense-per-collocation hypothesis (Yarowsky 1993) states that words1

tend to occur with only one sense within different instances of the same col-

location. Yarowsky (1993) tested this hypothesis with strong results on coarse-

grained senses of ambiguous nouns, verbs, an adjectives. Although Martinez

and Agirre (2000) achieved weaker results for fine-grained sense distinctions,

the hypothesis can help a wide range of natural language processing tasks.

Since the one-sense-per-collocation hypothesis is implicit in much of the previ-

ous work, such as (Japkowicz, 1991) on translating prepositions, an evaluation

of the Hypothesis could yield improvement in translation systems. This paper

discusses compelling reasons for why the Hypothesis should hold, and tests

the Hypothesis on a bilingual English-French corpus.

Our first problem is how to define senses for prepositions. Yarowsky (1993)

gives several ways to approach this. One way is the “hand-tagged homograph

method,” in which one uses a corpus tagged with the correct senses of each

word. This won’t work for us because no corpus known to us has reliable

sense distinctions for prepositions. We also want to avoid methods based on

1Words with more than one sense are polysemes.

8

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 8–14
Computer Science Department, Swarthmore College

homophones, ambiguities in online character recognition, and pseudo-words

because the closed class of prepositions is too small. So, we equate the notion

of a sense with that of a French translation.

1.1 Subcategorization

As noted above, there are two linguistic observations that recommend the one-

sense-per-collocation hypothesis. The first of these is subcategorization, the no-

tion that every noun, verb, and adjective selects (or “takes”) certain types of

phrases for complements, and can determine the heads of those complements.

For example, consider the English adjective interested, translated into French

as interessé. Sentences (1) and (2) show that interested must take a prepositional

phrase headed by the preposition in as its complement, while interessé must

take a prepositional phrase headed by par.

John is interested ∗math / in math / ∗for math / ∗to math /
∗mathematic / ∗to do math.

(1)

Jacques est interessé ∗les maths / par les maths / ∗pour les maths / ∗

aux maths / ∗mathématique / ∗faire les maths.

(2)

It should be clear that there is nothing about mathematics per se that requires

one preposition or another; while one can be interested in math, one can also

rely on math or be afraid of math or look to math.

1.2 Noun-complement specificity

The second encouraging observation, used by Japkowicz and Wiebe (1991), is

that many nouns may only be complements of certain prepositions. They as-

sert that most nouns may only be used with particular prepositions, and that

analogous nouns in different languages (English and French, for example) ad-

mit different propositions because the languages conceptualize those nouns

differently. For example, in saying on the bus but dans l’autobus (literally “in the

bus”), “English conceptualizes the bus as a surface that can support entities, by

highlighting only its bottom platform, while French conceptualizes the bus as

a volume that can contain entities, by highlighting its bottom surface, its sides,

and its roof altogether.” (Japkowicz, 1991)2

2Readers may wonder when prepositions are determined by a preceding word and when they

are determined by a complement. We suspect that adverbial prepositional phrases, such as Jap-

9

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 8–14
Computer Science Department, Swarthmore College

1.3 Local collocations

In testing one-sense-per-collocation for nouns, verbs, and adjectives, Yarow-

sky (1993) tested only local collocations. That is, he ignored the possibility that

distant content words could give reliable information sense disambiguation.

We do the same here, and with better cause. While it is somewhat plausible

that senses of nouns, verbs, and adjectives—categories whose words are re-

plete with meaning—could be inferred from distant context, such a situation

seems unlikely for prepositions.

1.4 Potential problems

Given these sensible arguments for the Hypothesis, why bother testing it? Tru-

jillo (1992) provides examples where the one-sense-per-collocation hypothesis

fails. He presents an English sentence (3) with three plausible Spanish transla-

tions (4).

She ran under the bridge.(3)

Corrió debajo / por debajo / hasta debajo del puente.(4)

The first translation implies that she was running around under the bridge,

the second that she ran on a path that went under the bridge and kept going,

and the third that she ran up to a position under the bridge and stopped. We

hope, however, that this example is of an infrequent special case, and can be

overcome. Sentence (3) usually translates best with por debajo, and the same

sentence with the verb rested translates best with debajo de.

Another possible problem is that individual speakers may use different pre-

positional phrases for essentially the same concept. While one speaker may

use on top of, another may use atop, another on, and so on. Given these issues,

additional testing is warranted.

2 Methods

To test the Hypothesis, we used the sentence-aligned Hansards of the 36th Par-

liament of Canada, a French-English bilingual corpus. (Hansards, 2001) Our

kowicz and Wiebe’s locatives, are determined by their complements, while prepositional phrases

governed by a preceding noun, verb, or adjective are determined by their governor.

10

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 8–14
Computer Science Department, Swarthmore College

analysis takes four steps:

1. We preprocess the French sentences, changing au to à le, aux to à les, du to

de le, des to de les, and d’ to de.

2. We create a database, for each preposition in our list3, with one record

for each appearance in the training corpus (36.5 million words). Each

record contains the surrounding four English words and the preposi-

tion’s French translation.

3. We create a list, for each preposition, of English context words, along

with the most frequent translation for the preposition given each context

word.

4. We test our list’s predictions on a held-out portion (4.5 million words) of

the Hansard corpus. We also test the performance of a naı̈ve translation

algorithm for a baseline.

The first step is justified because in French a word like au is equivalent to the

preposition à combined with the article le. Since combination with an article

doesn’t affect the sense of a preposition, this is fine to do.

In the second and fourth steps we need the correct translation of each English

preposition. Since the Hansards are not word-aligned, this is difficult to do

accurately. Consider the following sentence pair:

I went to a library yesterday.

Je suis allé à la bibliothèque hier.

We make the (rather large) assumption that if an English preposition is found

n% of the way through a sentence, then its translation will be found n% of the

way through its sentence as well. Since to is word number 2 (starting counting

from 0) out of six words, and since the French sentence has seven words, our

initial guess is that the translation of to is at position 2(7 − 1)/(6 − 1) ≈ 2. We

find the word allé in that position, which is not an acceptable translation (taken

from the Collins-Robert French-English English-French Dictionary (Atkins, 1996)

of to. So, we look in the positions surrounding allé, and find à, an acceptable

3We use the prepositions against, around, at, before, by, during, for, from, in, like, of, off, on, out,

through, up, and with. These were chosen because some are polysemous and some are monosemous,

thereby providing a diverse set of test cases.

11

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 8–14
Computer Science Department, Swarthmore College

translation, and halt. (In fact, we give up after searching four words ahead

and behind.) This approach seems to work fairly well for the Hansard corpus,

in large part because of the stilted, literal translations in it. Clearly, a word-

aligned corpus would make better predictions here, particularly in instances

where either English or French uses a multi-word preposition (e.g., off of or

autour de).

In the fourth step, we get a baseline by measuring how a naı̈ve word-for-

word translation does on our held-out corpus. We simply translate each En-

glish preposition with its most common (or at least most canonical) French

translation: at to à, in to dans, and so on.

3 Results

We tabulated results for each preposition. The following are typical of our re-

sults:

for

Context Precision Accuracy

Two before .9625 .6886

One before .9564 .7027

One after .9683 .6842

Two after .8880 .6938

None 1.0000 .2857

of

Context Precision Accuracy

Two before .9817 .9169

One before .9795 .9175

One after .9826 .9172

Two after .8993 .9155

None 1.0000 .9181

The precision is the number of times our translation list made a prediction

divided by the number of prepositions encountered in the testing corpus. The

accuracy is the number of times our translation list made a correct prediction

divided by the number of times it made any prediction. Clearly, the improve-

ments are much greater for some prepositions than for others. The results for

all prepositions combined are:

12

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 8–14
Computer Science Department, Swarthmore College

Total

Context Precision Accuracy

Two before .9457 .7936

One before .9394 .8084

One after .9510 .8190

Two after .8618 .8166

None 1.0000 .6140

The results show that surrounding context includes sufficient information

to improve translation of most prepositions into French. In general, context

words closer to the preposition give better information. We find this somewhat

strange, since the word directly after a preposition is often an article, which

should contribute little sense information.

Different prepositions give much different results, as shown in the sample

data above. Why, in particular, are our results for of so poor compared with the

baseline? Suppose we are testing the +1 position for of. If the word after of in

our testing corpus is Parliament, for example, our system will guess whatever

the most common translation of of before Parliament was during training. Since

of almost always translates as de, the guessed translation will be de for almost

any context word, and therefore our accuracy results will be much like the

baseline accuracy for de.

4 Conclusion

All four context positions (two before, one before, one after, and two after the

English preposition) were helpful in translation, giving clear benefits over the

baseline. However, the best results came from the word immediately after the

preposition.

There are several ways to improve on these results. First, a word-aligned cor-

pus would erase the error introduced by our translation-guessing algorithm.

Second, we might improve results by looking at more than one context word

at a time, or by weighting the predictions based on some context words higher

than others. However, even our limited results show that the one-sense-per-

collocation hypothesis is often reliable for English prepositions.

It is possible that idiomatic usage occurs in the Hansard corpus enough to

throw off the results. Therefore, it would be interesting to see the preposition-

13

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 8–14
Computer Science Department, Swarthmore College

translation model applied to a number of different languages in parallel. At

present, the lack of multilingual aligned corpora makes this infeasible, but

should they become available, that experiment would have stronger results.

References

[Atk] Atkins, Beryl T., et al. Collins-Robert French-English English-French Dictio-

nary, 3rd ed. New York: HarperCollins Publishers and Dictionnaires Le

Robert, 1996.

[Han] Germann, Ulrich, ed. Aligned Hansards of the 36th Parliament of Canada,

Release 2001-1a. 2001.

[Jap] Japkowicz, Nathalie, and Janyce Wiebe. “A System for Translating Loca-

tive Prepositions from English into French.” Meeting of the Association for

Computational Linguistics 1991: 153-160.

[Mart] Martinez, David, and Eneko Agirre. “One Sense per Collocation and

Genre/Topic Variations.” 2000 Joint SIGDAT Conference on Empirical Meth-

ods in Natural Language Processing and Very Large Corpora: 207-215.

[Word] Princeton University, Cognitive Science Laboratory. WordNet, version

1.7.1.

[Tru] Trujillo, Arturo. “Spatial Lexicalization in the Translation of Preposi-

tional Phrases.” 30th Annual Meeting of the Association for Computational

Linguistics 1992: 306-308.

[Yar] Yarowsky, David. “One Sense per Collocation.” Proceedings, ARPA Work-

shop on Human Language Technology 1993: 266-271.

14

Appeared in:Proceedings of the Class of 2005 Senior Conference, page 15
Computer Science Department, Swarthmore College

The Structure, Computational Segmentation, and Translation to English of
German Nominal Compounds

Nori Heikkinen
Computer Science Department

Swarthmore College
Swarthmore, Pennsylvania, USA

nori@sccs.swarthmore.edu

Abstract

Among the most daunting words in
German to a non-native speaker are
the longest ones – those that near forty
characters in length, and are comprised
of many smaller words. A problem
posed by these words is that of automatic
segmentation into pieces in order to glean
the meaning of the entire word. It is
vital that these words be correctly parsed,
interpreted, and translated as part of the
ongoing work in multilingual computa-
tion linguistics, such as incorporation into
German language spell-checkers.

Here, I describe the problem posed to mor-
phological disambiguation in compound-
ing languages, concentrating on the struc-
ture of German nominal compounds. Us-
ing regularities about their structure, I then
devise a computational model for both de-
termining linking elements of morphemes,
and segmenting the words correctly. I dis-
cuss the inherent problems with such a
model, and speculate about alternative ap-
proaches.

1 Note

This thesis was submitted as part of the requirements
for the Bachelor of Arts in Linguistics and Com-
puter Science. A full copy of this thesis can be ob-
tained from the Linguistics Department at Swarth-
more College.

References

Becker, Thomas. Compounding in German.Rivista di
Linguistica, 4(1):5-36, 1992.

Brill, Eric. Transformation-Based Error-Driven Learn-
ing and Natural Language Processing: A Case Study
in Part-of-Speech Tagging.Computational Linguistics,
21(4):543-565, 1995.

Fleischer, Wolfgang.Wortbildung der deutschen Gegen-
wartssprache. VEB Bibliographisches Institut,
Leipzig, 1969.

Jurafsky, Daniel and Martin, James H.Speech and Lan-
guage Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall, New Jersey, 2000.

Ngai, Grace and Florian, Radu. fnTBL.http://nlp.
cs.jhu.edu/∼rflorian/fntbl/.

Ngai, Grace and Florian, Radu. Transformation-Based
Learning in the Fast Lane. InProceedings of NAACL-
2001, pages 40–47, 2001.

Ortner, Hanspeter and Ortner, Lorelies.Zur Theorie und
Praxis der Kompositaforschung. Gunter Narr Verlag,
Tübingen, 1984.

15

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 16–22
Computer Science Department, Swarthmore College

Using Semantic Information from Neural Networks to Detect
Context-Sensitive Spelling Errors

Julie Corder
Swarthmore College CS97

Spring 2003

Abstract
This paper proposes a means of using the internal representations
of an artificial neural network to represent the semantic contexts in
which a word can appear. Once the network has been trained, its
hidden layer activations are recorded as a representation of the
average context in which a word can appear. This context can then
be compared to the contexts in which a word appears in novel text
to detect context-sensitive spelling errors. While no significant
results are found in the trials described here, several modifications
of the system are proposed that might prove promising in future
work.

Introduction

Context sensitive spelling correction is the process of identifying words in written
text that are spelled correctly but are used in the wrong context. Kukich (1992)
discusses various studies that show that between 25% and 40% of spelling
errors in typed text result in legal words. This category of spelling errors includes
word pairs that are easily mistyped (e.g. “form” and “from”), homophones (e.g.
“they’re”, “their” and “there”) and words with similar usages (e.g. “affect” and
“effect”). Because all of these errors result in words that are valid, an approach
that relies on just a dictionary look-up process will not detect them as spelling
errors. Further, Atwell and Elliott [1987] found that 20% to 38% of errors in texts
from a variety of sources resulted in valid words that did not result in local
syntactic errors. Since dictionary- and syntax-based approaches are not able to
detect most context-sensitive spelling errors, semantic clues must be taken into
account to determine if the correct word is being used in a given context.

Previous Work

Instead of relying on a comparison to a dictionary of valid words, researchers
interested in context sensitive spelling correction must find ways to represent the
semantic context in which a word occurs to determine if it is spelled correctly.
This approach may be as simple as calculating statistical probabilities of words
appearing in certain n-grams, or they may involve greater syntactic and semantic
analysis of a corpus. Jones and Martin [1997] report accuracy rates of 56% to
94% for various sets of confusable words using Latent Semantic Analysis.
Granger [1983], Ramshaw [1989] and others have used expectation-based
techniques. Their systems maintain a list of words that they expect to see next in

16

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 16–22
Computer Science Department, Swarthmore College

a corpus based on semantic, syntactic, and pragmatic information in the text. If
the next word that appears is not on the list of words that were expected, it is
marked as a spelling error. In this way, the systems can both detect spelling
errors and learn the meaning of new words (by comparing to the meanings of the
expected words when a novel word appears).

In all of these cases, though, the researcher must specify the level of information
that is relevant to the task. Jones and Martin [1997], for example, specifically tell
their system to look at a window of seven words before or after the word in
question to build the initial matrices for their analysis. They rely on the researcher
to determine how big the window should be. Further, since they look at words
before and after the word in question, their method is only useful with complete
texts.

These limitations can, perhaps, be avoided by a system that incorporates a
neural network. Artificial neural networks (ANNs) are well-suited to a variety of
NLP tasks; they can develop their own characterization of which features of a
problem are most significant. In addition, simple recurrent networks can store a
copy of their previous hidden layer activations. In this way, they are able to build
up abstract representations of patterns that occur throughout time [Elman et al.
1996]. Thus, a simple recurrent network should be able to develop an abstract
representation of the current context by looking at its internal representation of
any number of the words that come before the current word. Given this context,
an expectation-based system should be able to predict which words should be
able to come next in the text. If the actual next word is not on this list, it should be
marked as a spelling error. Further, this system can be combined with a shortest
path algorithm to select a word from the list as the correct word, as Wang and
Jean [1993] did to correct spelling errors resulting from character merging during
OCR. Because this method does not look at future words, it would be useful in
applications like word processing systems, where the most recently entered word
can be examined for a potential context-sensitive spelling error before more text
is entered.

Methods

One of the most limiting aspects of neural networks is the fact that the time
needed to train them increases rapidly as the size of the network increases. To
test my method, it was necessary to drastically limit the size of the input
representation for the network. Consequently, a very small vocabulary
represented in localist binary vectors was used to encode the corpus. Vocabulary
words were represented by vectors whose length was equal to the number of
words in the vocabulary. For a vocabulary of twenty-five words, then, only
twenty-five bits were needed to represent any given word. Each vector consisted
of exactly one bit that was “on,” and the rest of the bits were set to zero.

17

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 16–22
Computer Science Department, Swarthmore College

Training and testing data came from a part of speech tagged Wall Street Journal
corpus. Several categories of words were collapsed into a single “pseudoword”
based on part of speech as a means of decreasing the vocabulary size. In
particular, the part of speech categories of NN, NNP, NNS, JJ, VBD, VBN, VBZ,
DT, and MD were only recorded in the training data by their part of speech class.
Further, all punctuation marks were collapsed into the single pseudoword
PUNCT. Finally, all numerals and number words were changed to the pseudo
word CD since each number is relatively uncommon in the training text but
numbers can usually appear in the same positions in texts. The remaining words,
including most function words, were not collapsed into pseudowords at all.

Next, the 25 word vocabulary for this project was selected. The three words to be
looked at as possible context-senstive spelling errors were automatically added
to the vocabulary. In this trial, that meant that to, too and CD (which contains
two) were added to the vocabulary. The trianing corpus was then examined, and
the 22 most common words were added to the vocabulary. Sentences in the
corpus that contained words that were not part of the vocabulary were deleted
since they could not be encoded. To ensure that enough data was available
about the three target words, sentences that did not include one of those words
were also deleted; essentially, a new training and testing corpus was generated
by accepting the first sentence that could be encoded that included to, then the
next sentence that included too, and then the next sentence that included cd until
fifty examples of each had been found. This corpus was encoded as described
above and passed to a neural network for training.

25

10

25

Figure 1: Architecture of recurrent neural network with 25 input and output nodes
and a 10-unit hidden layer.

A simple recurrent network was trained on the first half of the encoded corpus.
The network had 25 input nodes, corresponding to the 25-bit vector
representations of words in the corpus. It also had a 10 node hidden layer and a
25 output nodes. The hidden nodes fed into the output as well as back into the
hidden layer. The overall architecture of the network is shown in Figure 1. At
each time step, the network’s task was to predict the word that would come next.

18

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 16–22
Computer Science Department, Swarthmore College

The network was trained on the entire sequence for 50 epochs using back-
propagation.

Once training was completed, the network’s representation of the context in
which each word appeared was of more interest than the network’s prediction of
the next work in the corpus. This context representation is stored in the
activations of the network’s hidden nodes. One final pass through the entire
corpus was completed with learning turned off, and the activations of the hidden
nodes were recorded at each time step. The hidden layer is the place where the
network can establish its own categorization of inputs before having to generate
the correct output, so looking at the hidden layer activations gives an illustration
of the way that the network is categorizing words internally. The average
activation of the hidden layer nodes right before a word was presented was
recorded for each word in the training corpus. Because the hidden layer
represented the network’s representation of the semantic context in which a word
would be expected to appear, this vector will be referred to as the “expectation
vector” for a given word.

The expectation vectors for all of the words in the vocabulary can be mapped in
n-dimensional space; nodes that are closer together in this space can appear in
similar semantic contexts, while nodes that are further apart in this space appear
in more drastically different semantic contexts.

Context-sensitive spelling errors result, in general, when a word appears in the
wrong semantic context. That is, “form” is a spelling error in the sentence “The
letter arrived form Cleveland” because it does not appear in a valid location in the
sentence (and not because it is an invalid word in English). To detect context-
sensitive spelling errors, then, one need only compare the hidden layer
activations representing the current context of a network to the average hidden
layer activations when the next word is about to appear. If the two are
substantially different, the word should be marked as a spelling error, even if it is
a valid word in a dictionary.

For each word in the testing part of the corpus, the euclidean distance between
the expected context (that is, the average context in which the word appeared in
the training corpus) and the actual context (that is, the current hidden layer
activations) is calculated. If the current word is one of the target words, then the
current hidden layer activation is also compared to each of the expectation
vectors of the other target vectors. A large (order of magnitude) difference
between the distances for words found in the corpus and the alternative pairings
of target words would indicate that the use of the wrong target word somewhere
in a novel corpus could be identified by examining the euclidean distance
between its expectation vector and the current hidden layer activation.

19

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 16–22
Computer Science Department, Swarthmore College

Results

Unfortunately, there did not seem to be a clear distinction between expectation
vectors and the actual hidden layer contexts for different target words. The
average euclidean distance between the network’s hidden layer activations and
the expectation vector for the correct next word was 0.921. The average
euclidean distance between the hidden layer activations and the expectation
vectors of the other (wrong) target words’ expectation vectors was 0.975 (Figure
2). The distance values varied greatly from one word to the next; the standard
deviation for both sets of distances was over 0.19, so the difference between the
two is clearly not significant.

Mean distance Standard Deviation
Correct Expectation Vector 0.921 0.191
Wrong Expectation Vector 0.975 0.196

Figure 2: Average Distance between actual hidden layer activations and
the average context for the same (left bar) or different (right bar) target
words. Standard deviation is .191 for same-target and .196 for different-
target words.

This is a disappointing result. Ideally, the distance to the correct expecation
vectors would be significantly smaller than the distance to the wrong expectation
vectors. Then the distance between the current hidden layer activation, for
example, and the next word typed in an application could be used to predict if
there was a context-sensitive spelling error in the current word in the document.
Latent semantic analysis could then be used to suggest words whose expecation
vectors more closely match the current hidden layer activation. Without a clear
distinction between correct and incorrect target words, though, no further
analysis can be conducted in terms of application of this process to an actual
instance of context sensitive spelling correction. These results do not, however,
mean that there is definitely not a way to use an approach of this sort; the
following section discusses some of the limitations inherent in this particular
study and ways that they might be addressed in future work in this area.

Discussion

One of the most substantial limitations of this project was the small vocabulary
size. By collapsing full part of speech categories into a single pseudoword, much
of the semantic content that might originally have been available in the text was
lost. While this simplified the search space, it also may have resulted in a loss of
information that would have been particularly useful to the network in its task.

The solution to this problem is not as simple as just increasing the number of
words in the vocabulary and the corresponding number of nodes in the

20

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 16–22
Computer Science Department, Swarthmore College

representation of each word. For very large networks, the cost of
backpropogating error can be prohibitably expensive. Consequently, a localist
representation quickly becomes unreasonable as vocabulary size increases.

One possible way to address this problem is through a more distributed
representation. Words can be represented, for example, as a binary
representation of their unigrams and bigrams. The first twenty-six nodes in the
representation vector correspond to the unigrams that may be present in a word.
If the current word contains a unigram, then the corresponding node in the input
vector is activated. The rest of the nodes correspond to potential bigrams.
Bigrams may contain any combination of the alphabetic letters, an end of word
marker, and a beginning of word marker. In total, this results in an input vector
whose length is 754. For example, in the representation of “two,” the nodes
representing “t”, “w”, “o”, “_t”, “tw”, “wo” and “o_” would have values of one, while
all other nodes would have values of zero. This representation is drastically
larger than the one used for the trials discussed in this paper. It has the
advantage, though, of scaling well for extremely large vocabularies. In fact, for a
corpus with a vocabulary of more than 754 words, this representation will actually
result in a smaller network than will a localist representation. Since 754 words is
not a very large vocabulary size for a real-life corpus, a representation of this sort
seems essential to further study in this area.

Another possibility is that error was inherent in the process of averaging the
context vectors for each word. If the contexts for a given word are clustered in
two or more drastically different locations, then averaging them together results
in a single vector that is not really representative of any of them. Once the
contexts for each step through the training corpus have been gathered, it may be
beneficial to conduct some sort of clustering analysis on the vectors. This could
avoid the creation of artificial and misrepresentative average vectors that are
currently used as the basis for comparison during testing. Unfortunately, only the
average contexts for each word were recorded in this experiment, so the
presence of this sort of error cannot be confirmed, but it seems like a likely
problem that is worth exploring before future work in this area is conducted.

The final possibility is that better results could be found by adjusting the learning
parameters of the neural network itself. The epsilon, tolerance and momentum
values can all be tweaked. In addition, changes to the number of hidden nodes or
the number of training epochs might provide interesting enhancements in the
overall system performance. Without any reliable means of predicting what sorts
of adjustments would be likely to be beneficial, it was not feasible to test
adjustments of these factors in this trial; varying these parameters on a smaller-
scale problem would not give a useful indication of how they would affect the
larger network or a longer training process, and training a large network takes
long enough that running multiple trials of the entire experiment was not possible.

21

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 16–22
Computer Science Department, Swarthmore College

References
Atwell, E. and S. Elliot. 1987. “Dealing with Ill-formed English Text (Chapter 10).

In The Computational Analysis of English: A Corpus-Based Approach. R.
Garside, G. Leach, G. Sampson, Ed. Longman, Inc. New York.

Elman, Jeffrey L., Elizabeth A. Bates, Mark H. Johnson, Annette Karmiloff-Smith,
Domenico Parisi, and Kim Plunkett. Rethinking Innateness: A Connectionist
Perspective on Development. 1996: Massachusetts Institute of Technology

Granger, R.H. 1983. “The NOMAD system: Expectation-based detection and
correction of errors during understanding of syntactically and semantically ill-
formed text.” American Journal of Computational Linguistics 9, 3-4 (July-
Dec.), 188-196.

Jones, Michael P. and James H. Martin. “Contextual Spelling Correction using
Latent Semantic Analysis.” 1997.

Kukich, Karen. "Techniques for Automatically Correcting Words in Text." ACM
Computing Surveys Vol. 24, No. 4, December 1992.

Ramshaw, L. A. 1989. “Pragmatic knowledge for resolving ill-formedness.” Tech.
Rep. No. 89-18, BBN, Cambridge, Mass.

Wang, Jin and Jack Jean. "Segmentation of Merged Characters by Neural
Networks and Shortest-Path." ACM-SAC 1993.

22

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

Part Of Speech Tagging Using A Hybrid System

Sean Finney
Swarthmore College

finney@cs.swarthmore.edu

Mark Angelillo
Swarthmore College

mark@cs.swarthmore.edu

Abstract

A procedure is proposed for tagging part of
speech using a hybrid system that consists of
a statistical based rule finder and a genetic al-
gorithm which decides how to use those rules.
This procedure will try to improve upon an al-
ready very good method of part of speech tag-
ging.

1 Introduction

The tagging of corpora is an important issue that has been
addressed frequently in computational linguistics for dif-
ferent types of tags. Transformation-Based Learning
(Brill, 1995) is a successful statistical method of tagginga
corpus. It has been useful in part of speech tagging, word
sense disambiguation, and parsing among other things.
This paper describes a hybrid method for tagging part
of speech. The method employs an implementation of
Brill’s Transformation-Based Learning (TBL) as the sta-
tistical part of the system, and a Genetic Algorithm which
tries to modify the transformation ruleset in a way that
will produce better results.

Part of speech taggers are very useful in modern Natu-
ral Language Processing, and have potential applications
in machine translation, speech recognition, and informa-
tion retrieval. They are usually used as a first step on a
block of text, producing a tagged corpus that can then
be worked with. Of course, the better the tagger is, the
more accurate overall results will be. While TBL is a
very successful part of speech tagger, it does still create
some errors. It might be possible to tag a corpus perfectly,
and it might be possible to use TBL, slightly modified, to
acheive that goal.

During Transformation-Based Learning, transforma-
tion rules are learned which will correct errors in an in-
correctly tagged corpus. The incorrectly tagged corpus is
compared to the truth in order to learn these rules. Once

cond 1 transform x

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 4

cond 2

transform x

transform z

transform w

transform x

transform x

transform z

Figure 1: A Sample Ruleset for TBL

the rules are learned, they are applied in an order deter-
mined by a greedy search. The rules are applied to the
corpus to see how many errors they correct. The rule that
corrects the most errors is chosen as the next rule in the
ruleset. This process is inherently shortsighted.

The issue here is the greedy search. As rules are ap-
plied, the number of errors corrected in the text is always
the largest. However, the transformation rules do tend to
create errors, even as they are fixing errors. This process
assumes that those errors are unimportant, or that they
will be corrected later on in the ruleset. This assumption
is made by TBL, and we are hoping to fix this potential
problem. With a careful reordering of the rules, it might
be possible to create a tagged corpus without any errors.

2 Related Work

Other workers in the field have produced non-statistical
systems to solve common NLP problems. There appears

23

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

to be a number of methods that produce varying results.
The Net-Tagger system (Schmid, 1994) used a neural net-
work as its backbone, and was able to perform as well as
a trigram-based tagger.

A group working on a hybrid neural network tagger for
Thai (et al., 2000) was able to get very good results on a
relatively small corpus. They explain that while it is easy
to find corpora for English, languages like Thai are less
likely to have corpora on the order of 1,000,000 words.
The hybrid rule-based and neural network system they
used was able to reach an accuracy of 95.5(22,311 am-
biguous word) corpus. It seems that the strengths of rule-
based statistical and linguistic methods work to counter-
act the inadequacies of a system like a neural network,
and vice versa. It seems logical to combine the learning
capabilities of an AI system with the context based rule
creation capabilities of a statistical system.

3 Genetic Algorithms

The Genetic Algorithm (GA) takes its cue directly from
modern genetic theory. This method entails taking a
problem and representing it as a set of individual chro-
mosomes in a population. Each chromosome is a string
of bits. The GA will go through many generations of
chromosomes. One generation consists of a fitness se-
lection to decide which chromosomes can reproduce, re-
production itself, and finally a chance for post reproduc-
tion defects. The GA generates successive populations
of chromosomes by taking two parent chromosomes se-
lected by a monte carlo approach and applying the basic
genetic reproduction function to them. The chromosomes
are ranked by a fitness function specific to the problem.
The monte carlo approach assures that the two best chro-
mosomes are not always chosen.

The reproduction function iscrossover, in which two
chromosome parents are sliced into two pieces (See Fig-
ure 5 in the appendix). The pieces each take one of the
pieces from the other parent. The resulting two chromo-
some children have part of each of the parents1.

After reproduction, there is a chance thatmutation will
occur, in which some part of the child chromosome is
randomly changed (see Figure 6 in the appendix).

When selection, reproduction, and mutation have fin-
ished, the generation is completed and the process starts
again. The genetic algorithm is a good way to try many
probable solutions to a problem. After a few generations
of a genetic search, it is likely that the solution generated
will already be very good.

Text

 TBL

 Ruleset
Compilable
Chromosome

GA

Figure 2: A Sample Flowchart for Our System

4 Representing the Problem

Given that we are trying to produce the optimal set of
rules, and the order in which to use them, our chromo-
somes are best represented as a set of rules in order. The
first parent from which all successive generations grow is
collected directly from TBL. We let TBL find the rules
that it finds useful, trim that set of rules to a satisfactory
length, and run that through as the first parent of our GA.

One issue that we ran across was how we would repre-
sent each TBL rule as a bitstring. A rule in TBL consists
of a series of predicates acting on the words before and
after the word in question, and a trigger that changes the
tagged part of speech on the word if all of the predicates
are met. A predicate can be either a matching of a part of
speech, or one of a number of string matching rules. The
first of these is a pre or postfix matcher. The second adds
a pre or postfix and checks to see if the resulting string is
a separate word. The third removes a pre or postfix, and
checks if the resulting string is a word. The fourth checks
to see if a certain string is contained within the word. The
fifth checks if the word in question appears to the left or
right of a specified word in a long list of bigrams.

TBL Rule i TBL Rule i+1

...

Pred#i,0 Pred#i,n Action#i

Figure 3: A sample TBL ruleset embbedded in a chromo-
some

In our actual implementation, every C structure con-

1an exception is where the crossover consists of an entire
chromosome from one parent and none from the other

24

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

index lexical meaning contextual meaning
1 type of predicate type of predicate
2 extra info for predi-

cate type
whether or not the
predicate is a range

3 not used if a range, the
start and stopping
bounds

4 index into a ta-
ble of observed
strings/POS’s

index into a ta-
ble of observed
strings/POS’s

Table 1: Meaning of chromosome values to a predicate

tained member variables that could be easily converted to
and from a genetic bitstring. In our population of individ-
ual chromosomes, each chromosome represented a lexi-
cal and contextual ruleset, such that any individual could
be output via a helper function into the files necessary for
fnTBL to run.

Each chromosome is first divided in half, with one half
representing the lexical portion (prefixes, suffixes, et c.)
of the fnTBL tagging rules, and the other representing the
contextual (ngram) portion of the rules.

Both of these halves are then divided into several
smaller parts of equal length, each part representing a sin-
gle rule (see Figure 3). If the reader will recall, a rule
consists of a series of predicates and a resulting action to
execute if the predicates are all matching. The action is an
integer which is computed via a modulo operation against
the number of possible actions, such that it will always
evaluate to the value of an enumerated part of speech.

A predicate is in fact one of two kinds of data struc-
tures, depending on whether it is found in the lexical or in
the contextual portion of the gene sequence. They are of
the same length (16 bytes), but but each 4 byte sequence
may have a different meaning (See Table 1).

Our genetic ”fitness” heuristic takes a chromosome,
and converts it into a structure that conforms to the heirar-
chy discussed above. this structure is then used to output
the necessary data files, which are then used to determine
the error rate, which is then returned as the fitness to the
genetic algorithm.

5 The Process

Our GA process works in series with TBL. We start with
a corpus which gets passed through TBL, but only far
enough to output the ruleset to a file. We then run a script
that generates a compilable chromosome representation
from the TBL ruleset file. That chromosome representa-
tion is then passed to a GA program written in C by Lisa
Meeden of the Swarthmore College Computer Science
Department, and severely hacked by us. In the original
implementation, a chromome ”bitstring” was an array of

integers, where each integer was set to either 1 or 0. The
author hopes that the reader can understand how this will
become prohibitively large for any kind of complex repre-
sentation. We therefore modified Meeden’s code to have
each integer be a random value, and therefore saved the
memory resources required by this program by a factor
of 322.

The GA then loops on itself for as many generations as
we deem necessary. The final ruleset chromosome is then
converted back into a file in the form that TBL likes, and
the results are also written to a file.

The TBL implementation we used is Florian and
Ngai’s fnTBL(Florian and Ngai, 2001). We worked hard
to integrate our scripts and code with their implementa-
tion of TBL, which trying to keep their code as intact as
possible.

As it is implemented, fnTBL has two parts, the first
being a script that trains the ruleset, and the second be-
ing the ruleset applicator. It was fortunate for us that
fnTBL was broken up in this way, because we were able
to take the learned ruleset and run it through our GA, pro-
ducing another ruleset which could then be given to the
fnTBL rule applicator. The results are placed in another
file which can then be tested for accuracy.

6 Annealing the Mutation Rate

In order to make sure that we would get enough varia-
tion in our populations , we used a bit of the methods of
annealing on our mutation rate. For the first few gener-
ations of running, the mutation rate is very high so that
the children will show a lot of difference from the par-
ents. Over time, we bring this mutation rate down so we
converge on a good solution without jumping around as
much. We feel that this method further reduces the risk
of the solution being the greedy path to the goal.

One potential point of contention arises here. It is im-
possible for us to guess what the best place to begin our
mutation rate is. We also need to pick the decay function,
and we cannot choose whether a linear or logarithmic or
exponential decay function would be better without try-
ing them all first. We did speculate that the rate should
start high and follow an exponential decay function. We
want the chaos in the system to start high and come down
fast, so the system has a lot of time to work out all of the
chaos that was introduced in the first few generations of
the GA. We chose to try a linear decay first, with a high
starting mutation rate. The idea here is that much chaos
over a long period of time will produce a ruleset that is
radically different from the parent.

25

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

Figure 4: If only we had a month of cpu time...

7 Results and Discussion

After 100 generations without an annealed mutation rate,
we had a success rate of 84.45%. When compared to
fnTBL’s 94.57% success rate, we actually took a loss
on the performance of the system. This does make
sense, seeing as how the mutation rate was very low,
about 0.001. Essentially the only process being run was
crossover, and when a set of rules is crossed over, more
that likely the better rules at the beginning of the ruleset
will be moved to the end. It certainly does not make sense
to run the less successful rules first.

We experienced much better results once we annealed
the mutation rate and ran the GA for 100 generations.
Our success rate on this run was 89.96better results. One
problem with this approach was the way the mutation rate
was annealed, a strictly linear decay. We hope with an
exponential decay rate, our results will be even better.

Another run with an annealed mutation rate used a
starting mutation rate of .1 instead of the .8 used in the
result above. 100 generations produced a success rate of
89.7even reached the level acheived already by TBL. The
inherent nature of the GA approach is to need many gen-
erations, and a large population size. Unfortuantely, these
runs both took close to 8 hours to complete. We believe
that when taken further, and with more time and genera-
tions, the hybrid approach could allow for a continued in-
crease across the board in NLP problems. With our min-
imal settings, the system took 8 hours to run. Increasing
the population size and the generations would increase
the running time significantly on today’s computers. We
hope that some day this work can be tested on a parallel
or distributed system powerful enough to handle the large
memory and processor requirements.

2there are 32 bits in an integer, so to represent an integer as
a ”bitstring” in Meeden’s code would require 32 real integers!

8 Future Work

The original goal of the project was to try to improve TBL
using artificially intelligent techniques. We feel that we
have adhered to that goal. We are of the mind that lan-
guage and intelligence are very closely related, and that
in order for us to create systems that can use language
effectively, we will first need to have a better model of
intelligence. While the tools we have today in the AI
field are not powerful enough to be considered fully in-
telligent, they can be used to approximate what we might
be able to accomplish in years to come.

Work from others such as (Yang, 1999) tries to concen-
trate on the modelling of development, and argues that a
child’s developing language pattern cannot be described
by any adult’s grammar. Yang also states that develop-
ment is a gradual process, and cannot be described by
any abrupt or binary changes. The same sort of develop-
mental thinking is encompassed by the AI approach, with
a gradual (albeit hopefully faster) learning process based
on human intelligence itself.

As far as our project goes, there are many variables
that we did not have the time to explore. Firstly, our fit-
ness function for the GA was simply based upon the per-
centage correct. Another possible idea would be to have
a fitness function which takes the number of errors, ei-
ther present or created by the ruleset, into account. One
way to do this would be to return a fitness of the number
of correctly tagged words minus a fraction of the errors.
This would discourage the GA from having and causing
errors.

There are also variables associated with TBL for which
we chose values that made sense to us. The number of
rules in a ruleset and the number of predicates in a rule
could both be modified by a weight learning program like
a neural network which would watch over the entire pro-
cess. This way, we would have a more focused idea of
what the optimal size of these variables would be.

9 Acknowledgements

We would like to acknowledge the efforts of our professor
Rich Wicentowski of the Swarthmore College CS Dept.
His encouragement and feedback were invaluable to our
project.

Thanks also go out to Lisa Meeden of the Swarthmore
College CS Dept. for her genetic algorithm code. Our
task would have been much more complicated had we
needed to impliment a genetic search ourselves.

We would also like to extend our gratitude to Florian
and Ngai for their contribution to our project with fnTBL.
Without regard to the countless days, nights, and fol-
lowing mornings spent trying to get fnTBL to work for
us, the task at hand would have been prohibitively more
complicated had we needed to implement TBL ourselves.

26

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

Thanks!
Finally we would like to thank the entire robot lab crew

for being friends comrades, and cohorts throughout the
entire process. Konane!

References

Eric Brill. 1995. Transformation-based Error-driven
Learning and Natural Language Processing: A Case
Study in Part of Speech Tagging.

Qing Ma et al. 2000.Hybrid Neuro and Rule-Based Part
of Speech Taggers. Communication Research Labora-
tory, Iwaoka, Japan.

Radu Florian and Grace Ngai. 2001. Fast
Transofmration-Based Learning Toolkit. Johns Hop-
kins University.

Helmut Schmid. 1994.Part of Speech Tagging with Neu-
ral Networks. Institute for Computational Linguistics,
Stuttgart, Germany.

Charles D. Yang. 1999.A Selectionist Theory of Lan-
guage Acquisition. Massachusetts Institute of Tech-
nology, Cambridge, MA.

27

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

A Appendix

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 2

transform x

transform z

transform w

transform x

transform y

transform z

cond 1 transform z

cond 1

cond 1 transform x

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 4

cond 2

transform x

transform z

transform w

transform x

transform x

transform z

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 2

transform z

transform w

transform x

transform y

transform z

cond 1 transform x

cond 1

transform z

cond 1 transform z

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 4

cond 2

transform x

transform z

transform w

transform x

transform x

transform z

(CROSSOVER)

Figure 5: An example of a crossover operation

28

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 23–29
Computer Science Department, Swarthmore College

cond 1 transform x

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 4

cond 2

transform x

transform z

transform w

transform x

transform x

transform z

cond 2 transform y

cond 3

cond 5

cond 3

cond 1

cond 2

transform x

transform z

transform w

transform x

transform y

transform z

cond 1 transform z

cond 1

(MUTATION)

Figure 6: An example of a mutation operation

29

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 30–34
Computer Science Department, Swarthmore College

Disambiguating between ‘wa’ and ‘ga’ in Japanese

Yoshihiro Komori
500 College Avenue

ykomori1@swarthmore.edu

Abstract

This paper attempts to distinguish when to use
‘wa’ and ‘ga’ in Japanese. The problem is
treated as one of word sense disambiguation,
regarding both ‘wa’ and ‘ga’ as a prototype par-
ticle that indicates the subject of the sentence.
Various statistical and linguistic techniques are
employed to disambiguate the sense, such as
ngram and syntactic analysis. The program
scored 100% recall rate and 83.8% using the
syntactic model.

1 Introduction

The distinction between ‘wa’ and ‘ga’ in Japanese
has been notoriously hard for both Japanese linguists
and those who attempt to learn Japanese as a foreign
language. Both ‘wa’ and ‘ga’ are particles to indicate
the subject but with slightly different connotations. For
example, the English sentence

I am Yoshi.

can be translated to Japanese as

watashi wa yoshi desu.
I (null) Yoshi am.

or

watashi ga yoshi desu.
I (null) Yoshi am.

Whether we should use ‘wa’ or ‘ga’ cannot be deter-
mined locally in many cases, such as in this example.
Those two Japanese sentences are syntactically valid and
commonly used. To determine which particle to use, we
need first determine the semantics of the sentence from
its context.

There are several areas where having a machine that
distinguishes ‘wa’ and ‘ga’ can be helpful. Those include
translation to Japanese from various languages (given a
sentence in a foreign language, should we use ‘wa’ or
‘ga’), Japanese sentence generation (given what we want
to say, should we use ‘wa’ or ‘ga’), and Japanese linguis-
tic theory (what are the conditions that require the use of
‘wa’ or ‘ga’?).

2 Linguistic Theory

Karita Shuji, a Japanese linguist, summarized the works
of recent linguists on the usage of ‘wa’ and ‘ga’. Accord-
ing to Karita, the usage of ‘wa’ and ‘ga’ can be catego-
rized in the following manner:

2.1 Substitution by ’no’

In some cases ‘wa’ can be substituted by ’no’ without
changing the meaning of the sentence, but ‘ga’ can never
be. This is due to the fact that the noun preceded by ‘wa’
does not have to be the actor in the sentence.

2.2 Novelty of the subject

One sense of ‘wa’ and of ‘ga’ is dependent on whether
the subject is novel to the listener. While ‘wa’ is used
when the subject is novel, ‘ga’ is used when the subject
is known, previously mentioned or implied. Even when
the subject is a novel topic in the discourse, ‘ga’ might be
used if the information is implied by information outside
of the discourse. An instance of such cases is:

watashi ga senjitsu email shita
I (null) the other day email did

gakusei desu.
student am.

(I am the student that emailed you the other day.)

30

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 30–34
Computer Science Department, Swarthmore College

The fact of the subject’s emailing the listener makes
the subject a familiar topic even though it may be the first
time it is introduced in the discourse.

2.3 Description vs Judgment

Karita argues that in some cases ‘ga’ is used for describ-
ing a phenomenon, while ‘wa’ is used for expressing a
judgment. For example,

ame ga futte iru
rain (null) raining is

(Rain is falling.) (description)

are ga ume da.
that (null) plum is.

(That is a plum.) (judgment)

In the first case we use ‘ga’, and in the second case
‘wa’. The difference, however, is slight and is hard even
for a native speaker to distinguish.

2.4 Sentence Structure

We use ‘wa’ if the subject specified is the subject of the
entire sentence, and we use ‘ga’ if the subject is only the
subject of a phrase in the sentence. so, for example:

tori ga tobu toki ni wa
bird (null) fly when (null) (null)

kuuki ga ugoku.
air (null) move.

(When a bird flies, the air moves.)

tori wa tobu toki ni
bird (null) fly when (null)

hane wo konna fuu ni suru.
wing (null) like this way (null) do.

(A bird moves its wings like this when it flies.)

The bird in the first sentence is a subject only in a
phrase, where the second bird is the subject of the
entire sentence. Note that being the subject of an entire
sentence is not a necessary condition for using ‘wa’.
However, being a subject inside a phrase is a necessary
condition for using ‘ga’. Therefore, if ‘wa’ or ‘ga’ is to
be used inside a phrase, ‘ga’ must be used all the time.

2.5 Contrast and Exclusion

Karita argues that we use ‘wa’ to indicate contrast and
‘ga’ to indicate exclusion. Two exampler sentences:

ame wa futte iru ga
rain (null) fall (-ing) but

yuki wa futte inai.
snow (null) fall (not -ing)

(Rain is falling but snow isn’t)

yoshi ga seito desu
Yoshi (null) student is.

(Yoshi is the student.)

In the first sentence, ‘wa’ is used to express the contrast
between ‘rain’ and ‘snow,’ while in the second sentence
‘ga’ is used to imply that Yoshi is the only student in the
context.

2.6 Specimen

Two sentences:

chou wa mushi da.
butterfly (null) insect is.

(A butterfly is an insect.)

kore ga kimino chou da.
this (null) your butterfly is.

(This is your butterfly.)

In the first sentence ‘wa’ is used, and ‘ga’ is used
for the second case. The difference between the two
cases is that in the first sentence, a butterfly is a specimen
of the class insect, where in the second case ‘this’ and
‘butterfly’ are in the same class.

2.7 Implication for the project

Karita’s linguistic analysis on the usage of ‘wa’ and ‘ga’
has two implications for this project. First, these charac-
terizations imply that the usage of ‘wa’ and ‘ga’ are deter-
mined by a mixture of syntactic and contextual informa-
tion. Therefore, in order to capture the usage of ‘wa’ and
‘ga’, both syntactic and contextual approach must be em-
ployed. Second, from these characterization one could ar-
gue that both ‘wa’ and ‘ga’ have several different senses.
This implies that in order to achieve the competence of a
native speaker, the problem has to be understood as dis-
ambiguating the sense of the prototype subject indicator

31

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 30–34
Computer Science Department, Swarthmore College

into a dozen senses. However, such a project would re-
quire a huge tagged corpus where each instance of ‘wa’
and ‘ga’ is disambiguated from several senses. Employ-
ing humans to hand-tag such a corpus would be expen-
sive. Thus we will attempt to disambiguate the prototype
subject indicator into only two senses, ‘wa’ and ‘ga’.

3 Related Works

The task of word sense disambiguation has been tack-
led by many NLP researchers, such as Yarowsky (1992,
1993 and 1995). However, the two key assumptions of-
ten made in the task of word sense disambiguation do
not hold in this particular task. The assumption of ’one
sense per discourse’ clearly does not hold here because
both ‘wa’ and ‘ga’ occur in discourses with any topic and
style. The other key assumption, ’one sense per colloca-
tion,’ does not hold here as well as it does in other places,
since both ‘wa’ and ‘ga’ can follow any noun. On the
other hand, the idea of ’one sense per collocation’ can be
useful if we take the collocation to be mainly syntactic
and use it loosely to aid other algorithms.

4 Task Description

The input to this program consists of Japanese copra
tagged with the POS. The tags are produced by a GPL
engine “mecab” developed by Kudo Taku, which claims
to achieve 90% accuracy. At the preprocessing stage we
replace every instance of ‘wa’ and ‘ga’ that are particles
to indicate the subject, determined by the POS, with a
prototype particle *prt*. The output of the program is
‘wa’ or ‘ga’ for each instance of *prt*. The performance
is measured by the ratio of correct determination of ‘wa’
and ‘ga’.

The training corpus consists of three novels by a
Japanese novelist Dazai Osamu, NingenShikkaku, Jo-
seito and Shayou. The testing corpus consists of two
other short stories by the same author, Haha and Hashire
Merosu. The size of each corpus was about 130,000
words and 11,000 words respectively.

5 Algorithms

The algorithms employed in this project can be broadly
divided into three parts: word based, syntactic based and
context based. For word based analysis, simple ngrams
are used to get as much information out of words that
surround *prt*. For syntactic analysis, both ngrams with
POS and sentence-level syntactic analysis are employed.
Finally for context, we will test whether the word preced-
ing *prt* is novel in the discourse.

5.1 Word Ngrams

First we used unigram on ‘wa’ and ‘ga’ on our training
corpus to obtain the ratio between the occurrence of ‘wa’

and ‘ga’. This ratio was used as the baseline in the deter-
mination of the particles. That is, if there are no further
information available on the particular instance of *prt*,
we will put whichever particle that has the higher ratio of
occurrence.

We also use word based bigrams to get information as
to whether ‘wa’ and ‘ga’ are likely to be preceded by cer-
tain words. Upon each instance of *prt*, we see what the
preceding word is, and check how many times ‘wa’ and
‘ga’ have occurred in the particular context. If there is a
difference in the number of occurrences, we will pick the
one with the higher occurrence.

5.2 Syntactic Ngrams

Similar to the word based ngrams, we first compile POS
based ngrams on training copra. Then for each instance
of *prt* in the testing corpus, find the ratio of ‘wa’ and
‘ga’ in that particular POS surroundings. So far we have
only considered the word preceding and the word follow-
ing *prt*. A wider ngram may be employed in the future
work.

5.3 Threshold for ngrams

In combining these two ngram methods, we used a
threshold to increase precision and also to minimize the
effect of infrequent ngrams. The algorithm used for the
threshold is the following:

if (countwa + 3 � 2 * (countga + 3))
return wa

else if (countga + 3 � 2 * (countwa + 3))
return ga

else
return (no answer)

(countwa and countga are the counts of the particular
contexts for ‘wa’ and ‘ga’ in the corresponding ngram
data.)

We first added 3 to both the count of ‘wa’ and ‘ga’ so
that contexts with low counts will not produce extreme
ratio. For example, while the ratio between 0 and 1 is
infinity, by adding 3 to both we get a more reasonable
ratio of 3/4. For either ngram method to return an answer,
we required that the count of the more frequent ngrams
has to be greater than twice the count of the less frequent
ngrams.

5.4 Syntactic Analysis

From Karita’s work we know that if the subject is the sub-
ject of a phrase but not of the sentence, then ‘ga’ is always
to be used and not ‘wa’. We will implement this model by

32

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 30–34
Computer Science Department, Swarthmore College

recall precision

wa 67.5% 86.2%
ga 60.4% 60.5%

total 65.7% 80.4%

Table 1: Performance with word based bigram analysis

sentence level syntactic analysis. Finding sentence struc-
tures requires a full blown syntactic analyzer, which is
difficult and complex enough to dedicate a whole project.
Therefore, instead of designing a thorough syntactic ana-
lyzer, we will use a simple heuristic to determine a phrase
in a given sentence. The heuristic exploits the fact that a
phrase in Japanese is often segmented by a comma and
always contain a verb phrase. Therefore, a prototype is
considered to be inside a phrase if and only if a verb
phrase occurs after the prototype and before a comma.

5.5 Contextual Analysis

One sense of ‘ga’ indicates the fact that the subject is not
a novel topic. Thus by searching through the corpus and
testing to see whether the subject has been mentioned pre-
viously, we can bias the output towards ‘ga’.

6 Results

We counted the occurrences of ‘wa’ and ‘ga’ to obtain the
baseline for this project. In our corpus of 130,000 words,
‘wa’ occurred 3439 times and ‘ga’ occurred 2138 times.
Therefore, if the program guessed ‘wa’ for all instances
of *prt*, we can expect it to be correct 62% of the time.
The baseline in this project is thus considered to be 62%.

The word based bigram model yielded results with
poor recall of 65.7% but precision at 80.4% which is
significantly better than the baseline. The syntactically
based trigram analysis achieved slightly better precision
of 81.1% and huge improvement on recall of 92.6%.
Guessing was not allowed for these tests. Therefore, if
the context of *prt* did not match any ngram in the data,
the program did not return an answer. Thresholds are
not used for these tests, either. The recall rate here is
calculated as the ratio between the count of guesses for
‘wa’ and ‘ga’ and the count of the occurrences of either
particle in the corpus. The precision rate is the ratio be-
tween the count of correct guesses and the count of total
guesses. For example, if ‘wa’ occurred 10 times in the
corpus, the program returned 6 guesses for ‘wa’, and 4 of
them were correct, the recall rate would be 6/10 and the
precision would be 4/6. These results are summarized in
Table 1 and Table 2 respectively.

Two models gave the same answer 88.4% of the time.
When the answers were in conflict, the syntactically
model was correct 55.9% of the time.

recall precision

wa 92.2% 87.0%
ga 94.0% 63.5%

total 92.6% 81.1%

Table 2: Performance with syntactically based trigram
analysis

recall precision

wa 82.6% 88.4%
ga 65.7% 76.1%

total 78.4% 85.9%

Table 3: Performance with both syntactically and word
based ngram analyses

These two ngram methods combined with the thresh-
old algorithm described above yielded results that are bet-
ter in precision but worse in recall compared to the re-
sults from syntactic ngrams alone. The improvement on
the precision rate on ‘ga’ is significant, changing from
63.5% in the syntactic ngrams approach to 76.1% in the
combined methods. When two models gave different an-
swers, the answers given by the syntactic method was al-
ways chosen. The results are summarized in Table 3.

The same algorithm but with random guesses produced
results only slightly poorer in precision. Note that the
precision rates for the models with and without random
guesses are exactly the same. This is due to the fact that
all random guesses were ‘wa’ since ‘wa’ generally occurs
more frequently. The results are in Table 4.

The syntactic method based on the analysis of phrases
in a sentence gave poor results. When used alone, it pre-
dicted correctly the instances of ‘ga’ 56.2% of the time.
When used to disambiguate the cases where the word
based and the syntactic based gave conflicting answers,
the precision dropped to 28%.

The contextual method was a complete failure. It
turned out that in almost all cases, the word preceding
prt is introduced prior in the corpus in other contexts.
In the testing corpus, only one word preceding *prt* was
a novel word in the discourse. Because of this unexpected
result, no further analysis was possible concerning the
distinction between a novel and a familiar topic.

recall precision

wa 100% 85.2%
ga 100% 76.1%

total 100% 83.8%

Table 4: Performance with both syntactically and word
based ngram analyses with random guesses

33

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 30–34
Computer Science Department, Swarthmore College

7 Discussion

The poor recall rate of word based bigram model can be
attributed to the fact that the bigram data compiled from
the training corpus did not contain most of the proper
nouns that occurred in the testing corpus. This is an ir-
redeemable flaw with the word based model. Because
both ‘wa’ and ‘ga’ can follow any proper noun, it is inher-
ently impossible to capture a significant portion of them.
The precision rate for the case of ‘wa’ was surprisingly
high. A closer look at the bigram data revealed that ‘wa’
uniquely followed two common particles, ’de’ and ’ni’,
both of which combined with ‘wa’ indicate topic intro-
duction. The precision was high due to the fact that if the
preceding word were ’de’ or ’ni’, the prediction of ‘wa’
yields almost 100% accuracy.

The higher recall rate for the syntactic model was ex-
pected, since the part of speech tags are vastly more gen-
eral than words. It was interesting to see that its precision
rate was also higher than the word based model, which is
contrary to the expectation regarding its generality. We
can attribute the unexpected precision rate to the fact that
this simple trigram model embodies many of the charac-
terizations put forth by Karita. First, the rule of substitu-
tion by ’no’ is reflected in the trigram model because ’no’
in this sense happens only between two nouns. Second,
it is seen in the trigram data that ‘ga’ is much more likely
to be followed by a verb, which is perhaps due to the fact
that ‘ga’ happens inside a phrase where ’noun-ga-verb’
phrase is common.

The precision rate of 56.2% for the sentential syntactic
analysis is statistically significant even though its abso-
lute value is low. If we recall that the percentage of the
occurrence of ‘ga’ among all occurrences of *prt* is only
25%, answering correctly 56.2% implies that the imple-
mentation captured at least some part of what Karita ar-
gues about ‘ga’ inside a phrase.

It is also worth noting that the testing corpus had an
unusual distribution of ‘wa’ and ‘ga’. Where the distribu-
tion in the much larger training corpus was about 3 to 2,
the distribution in the testing corpus was 3 to 1. This un-
usual trend might have affected the result one way or the
other. Further testing with a different corpus is required
to examine the effect.

8 Conclusion

With the combination of word ngrams, syntactic ngrams
and phrase analysis alone, we have achieved 83.8% preci-
sion with 100% recall. This is promising considering the
fact that we did not use a syntactic analyzer outside of
our heuristics. With such an aid, we can perform a com-
plete analysis of sentential structure, which will probably
boost the precision to the high 80’s. With further work
with a syntactic analyzer, we will perhaps be able to dis-

ambiguate all instances of ‘wa’ and ‘ga’ that have distinct
syntactic contexts.

The project did not succeed in disambiguating the
cases where deeper contextual analysis is required. The
problem of contexts and semantics beyond pure statis-
tics of words is a notoriously difficult one across all NLP
fields. Thus we do not expect that we will be able to solve
the problem without employing an entirely novel method
yet undiscovered in the field of NLP. However, we do
believe that using implementations similar to the cur-
rent one can contribute to practical applications such as
machine translations and grammar checking in Japanese.
Even though by word based ngrams and syntactic analy-
sis alone cannot capture all occurrences of ‘wa’ and ’ga,’
they can give correct answers most of the time for most
of the cases.

9 references

David Yarowsky, 1992. Word-Sense Disambiguation
Using Statistical Models of Roget’s Categories Trained
on Large Copra

David Yarowsky, 1993. One Sense Per Colloca-
tion

David Yarowsky, 1995. Unsupervised Word Sense
Disambiguation Rivaling Supervised Methods

Karita Shuji, ‘wa’ to ‘ga’ wo meguru shomondai ni
tsuite, (http://bakkers.gr.jp/ karita/report/report �������	��
���� ���������
�
�������� �	
"! �#���%$'&)(*(,+��-� ��.-/ � �0�1��2,� � � +,� �3$�()� � �	
4�
�	
 (/5�76 ��8 ��2,9 (�� 9 + �	: (7�

34

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 35–39
Computer Science Department, Swarthmore College

Machine Translation Evaluation by Document Classification and
Clustering

Feng He and Pascal Troemel
Swarthmore College,
500 College Avenue,

Swarthmore PA 19081, USA
{feng,troemel}@cs.swarthmore.edu

Abstract

We propose a Machine Translation evaluation
system which does not require human-translated
reference texts. The system makes use of a comparison
between the performance of a computer’s execution
of NLP tasks on source text and on translated text to
judge how effective the translation is. The difference
in accuracy of the NLP task exectutions is used as
a gauge for judging the competence of the Babelfish
online translation system.

Keywords: Machine Translation Evaluation, Doc-
ument Classification, Clustering.

1 Introduction

1.1 Machine Translation Evalutation

Machine translation research has been going on for
several decades, and there are a number of systems
available for use, mostly between English and a Euro-
pean or Asian language. Notable examples are prod-
ucts from Systran, which are used in Altavista’s Ba-
belfish online translation service. Machine translation
evaluation has long been an extremely arduous task
which requires much human input; more recently, the
BLEU evaluation system [3] has made use of a much
more automated, and thus more practical, approach.
However, the BLEU system still requires the presence
of several correct, human-translated reference texts
(see Section 2.1 for an overview on the BLEU sys-
tem). We propose a system which does not have this
requirement, a system that is capable of judging the
competence of a translation simply by comparing the
source and target texts. We believe that this freedom
from human input is important; human translation is a
time-consuming and costly task in the MT evaluation
process, and to cut it out alltogether will undoubtedly
save resources.

We attempt to either prove or disprove the notion
that although a machine translation may seem ineffec-
tive to a human reader, it still holds sufficient correct
information to allow a computer to adequately perform
the NLP tasks of text classification and clustering on
it. If this is indeed the case, then even though machine
translations may not yet be acceptable as accurate rep-
resentations of works of literature in their original lan-
guage, they may be far from useless to a computer ca-
pable of interpreting (“understanding”) them.

Ultimately, a translation should be judged on how
much information it retains from the original text. Fol-
lowing this notion, we judge the effectiveness of a
translation system by comparing the accuracy results
of a computer’s NLP task execution on the source text
and the target text. We expect a drop in performance
that can then be interpreted as “acceptable” or “unac-
ceptable,” which serves as an evaluation of the system.
Indeed the drop in performance gives us a quantitative
measure of the translation’s effectiveness.

In Section 2, we discuss a few relevant examples of
previous work in the area of machine translation eval-
uation. Section 3 serves to describe how we collect
data. The various experiments we performed are dis-
cussed in Section 4. In Sections 5 and 7 we share our
results and conclusions.

1.2 Text Classification and Clustering

Text classification and clustering are two common
NLP tasks that have been shown to obtain good re-
sults with statistical approaches. Classifications refers
to the assigning of new documents to existing classes.
The models for existing classes are built from docu-
ments known to belong to the classes. Usually a docu-
ment is assigned to a single class, but it is also possible
that a document has multiple class-tags.

Clustering refers to the dividing of a collection of
documents into groups (clusters). These clusters are
not pre-defined, although the number of clusters can
be specified. It is also possible to create a hierarchy

35

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 35–39
Computer Science Department, Swarthmore College

of clusters, in which a cluster is further divided into
sub-clusters.

Classification and clustering have long been stud-
ied, and there are many effective toolkits for both
tasks. These two NLP tasks are natural choices for
our experiments because they can be effectively per-
formed on our data sets.

2 Related Work

2.1 MT Evaluation

The BLEU machine translation evaluation system
[3] proposed in 2002 produced very respectable re-
sults, effectively emulating a human translation judge.
The system produced a score for a given translation by
comparing it to a group of “perfect” human-translated
reference texts using n-gram precision values. After
a few necessary details such as a brevity penalty had
been added, the BLEU system’s scores were found
to correlate closely with those given by a variety of
human judges on a group of test data. The main
weakness of this system is its dependency on human-
translated reference texts. Although it is far more auto-
mated than older, completely human-dependent “sys-
tems,” which relied completely on human evaluation,
the BLEU method still requires several correct trans-
lations. This means that, for every new text that the
MT system is tested on, the BLEU evaluation sys-
tem must first be presented with good reference texts,
which must be produced by a group of humans. This
can get expensive when a machine translation system
is tested on numerous documents, a case that is clearly
possible during the production of a truly effective MT
system.

2.2 Tools

The Bow toolkit [1] was designed for statistical lan-
guage modeling, text retrieval, classification and clus-
tering. It provides a simple means of performing NLP
tasks on a body of newsgroups, and was thus a very
useful tool for us. We produced our results for text
classification and clustering with the help of this sys-
tem.

2.3 Other Related Works

In [4], Weiss et al. showed that newsgroup postings
can be reasonably classified using statistical models.

Palmer et al. [2] investigated the effect of Chi-
nese word segmentation on information retrieval. This
work suggests that well-segmented Chinese text will
improve performances of NLP tasks. Chinese segmen-
tation is an active area of research, partly because cur-
rent systems produce very poor segmentations. As we

do not have a working segmenter for Chinese text, we
expect our results to be accordingly affected.

Finally, Yang [5] gives a good overview of statisti-
cal text classification.

3 Data

The Internet is a rich resource for both English and
Chinese texts. Chinese text on the Internet is encoded
using Chinese character sets. There are several exist-
ing Chinese character sets. The most popular ones
are: GB (simplied Chinese), Big5 (traditional Chi-
nese) and UTF-8. Both GB and Big5 use two bytes to
encode one character; UTF-8, a more recent encoding
standard, uses three bytes. The differences between
these encoding standards complicate data collection,
as a data set must have uniform encoding to be us-
able. Character set detection and conversion are re-
quired. In addition, the character boundaries are often
misaligned in online documents, producing corrupted
Chinese text. These need to be removed from the data
set.

For our experiments, we downloaded newsgroups
articles as our data. Newsgroups are online communi-
ties where people send posts covering many different
topics. There are newsgroups in both Chinese and En-
glish covering similar topics, providing parallel cor-
pora. Postings are self-organized into topics, which
serve as natural labels for document classification. The
following data sets were downloaded:

• Data Set 1: Postings from 5 Chinese newsgroups
were downloaded. The newsgroups and their top-
ics are:

– talk.politics.china – (Chinese politics)

– cn.bbs.rec.movie – (movie reviews)

– cn.sci.medicine – (Chinese medicine)

– cn.culture.buddhism – (Buddhism)

– cn.comp.software.shareware – (soft-
ware/shareware)

These newsgroups are chosen such that they are
terminal groups (they are not further divided into
subgroups), and they cover very different topics.
About 800 postings were downloaded. The post-
ings that contained corrupted Chinese or were too
short (fewer than 50 Chinese characters) were re-
moved, leaving about 400 to 700 usable postings
from each newsgroup. The total number of post-
ings is around 2000.

• Data Set 2: English translations of data set 1. We
used Altavista’s online Babelfish translation.

• Data Set 3: To create a parallel corpus to data set
1, we downloaded articles from 5 English news-
groups. The newsgroups are:

36

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 35–39
Computer Science Department, Swarthmore College

– talk.politics.usa – (American politics)

– rec.arts.movies.reviews – (movie reviews)

– misc.health.alternative – (alternative
medicine)

– soc.religion.christian.bible-study – (bible
study)

– comp.softawre.shareware.announce – (soft-
ware/shareware)

These newsgroups were chosen such that they
cover similar topics as data set 1. About 3500
postings in all, roughly 700 from each group.

• Data Set 4: Chinese translations of data set 3 us-
ing Babelfish

4 Experiments

4.1 Experiment 1: Classification on Chinese
Source

This experiment serves to compare the accuracy in
performance of text classification on Data Sets 1 and
2: Chinese as source text and English as target text.
We expected a significant drop in accuracy between
the source and target performances, marking a loss of
information in the translation. A typical member of
Data Set 2, the target English, follows:

Perhaps in the very many movies, the au-
dience already was used to it the good Lai
shipyard -like violence and the love. But
truly could attract the audience or has the
male is positive just the charm actor, they
usually could initiate audience’s favorable
impression even respect. Below is one good
Lai shipyard cinema world first ten very
male ranks announcement.

Clearly the translated text is not good English,
but it is also relatively clear that the topic of the
posting is the movies, and that the correct newsgroup
classification is cn.bbs.rec.movie, and not one of the
other candidates: cn.comp.software.shareware,
cn.culture.buddhism, cn.sci.medicine, or
talk.politics.china. The purpose of this experi-
ment is to discover whether a classification system is
able to correctly classify documents such as this one.

We used the rainbow toolkit to classify the docu-
ments. To get a more rounded and reliable precision
average for each data set, we performed classification
using each of three different methods: Naive Bayes,
TFIDF, and Probabilistic Indexing. Each data set was
partitioned into training and testing sets. Either 80%
or 60% of the documents from each class was ran-
domly selected as traning data to build the class mod-
els. The remaining 20% or 40% was used as testing

data and were classified. This procedure was repeated
for 5 times each time different subsets was selected as
training and testing data, and results averaged. The
average results from data set 1 and 2 were compared.
Note that the Chinese documents were not segmented,
meaning each character was treated as a token, instead
of a word, which usually consists of several characters.
We expect this to lower classification performance on
the Chinese documents.

4.2 Experiment 2: Classification on English
Source

This experiment serves to compare the accuracy in
performance of text classification on Data Sets 3 and
4: English as source text and Chinese as target text.
Again, we expected a drop in accuracy between the
source and target performances.

4.3 Experiment 3: Clustering on Chinese
Source

In this experiment, we performed clustering on data
sets 1 and 2 using crossbow, which is part of the rain-
bow toolkit. The number of clusters was specified to
be 5, in accordance with the number of newsgroup top-
ics. Note that, since no cluster topics were provided,
the resulting clusters may or may not correspond to
the original newsgroup topics. Indeed it is possible
that articles from one newsgroup be divided into two
clusters, while several newsgroups be merged into one
cluster. However, there is usually a clear correspon-
dence between the clusters and the original topics.

4.4 Experiment 4: Clustering on English
Source

Experiment 4 is a repeat of experiment 3 on data
sets 3 and 4.

5 Results

5.1 Experiment 1 and 2: Accuracy Results

Classname 0 1 2 3 4 Total Accuracy
0 software 318 19 1 22 . 360 88.33%
1 health 5 291 . 34 . 330 88.18%
2 movies 2 3 44 281 . 330 13.33%
3 religion 2 10 . 268 . 280 95.71%
4 politics 3 33 . 114 19 169 11.24%

Table 1. Classification with Probabilistic
Indexing results example for Chinese as
TARGET

37

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 35–39
Computer Science Department, Swarthmore College

Test-Set Size
Method 20% 40%

Naive Bayes 90.45 90.16
TFIDF 92.35 91.79
Probabilistic Indexing 86.85 86.14

Table 2. Classification accuracy, Chinese
as SOURCE

Test-Set Size
Method 20% 40%

Naive Bayes 92.76 93.07
TFIDF 94.32 93.35
Probabilistic Indexing 90.40 90.39

Table 3. Classification accuracy, English
as TARGET

Table 1 shows a typical classification result us-
ing documents from the English newsgroups. The
rows represent the original newsgroup topics. The
columns represent the number of documents assigned
to each class. For example, of the 360 documents
from comp.software.shareware.announce, 318 were
assigned to class 0 (the correct class), 19 were as-
signed to class 1 (mis.health.alternative), and so on.

Tables 2 and 3 summarize results from experiment
1. Each row records results using a specific modelling
method. The size of the testing set was set to be either
20% or 40% of the total number of documents, and the
results are tabled accordingly.

Test-Set Size
Method 20% 40%

Naive Bayes 97.38 97.74
TFIDF 97.60 97.97
Probabilistic Indexing 95.26 95.18

Table 4. Classification accuracy, English
as SOURCE

Tables 3 and 4 summarize results from experiment
2, in which original English documents and their Chi-
nese translations were classified.

5.2 Experiment 3 and 4: Clustering Results

Tables 6 and 7 summarize results from experiments
3 and 4. In each of the experiments, each data set was
divided into 5 groups, which often corresponded to the
original newsgroups. The clusters were matched with
the newsgroups so that the total number of documents
in wrong clusters was minimized. The second column
in each table shows the number of correctly clustered
documents out of the total number of documents. The
third column gives the percentage accuracy.

Test-Set Size
Method 20% 40%

Naive Bayes 90.74 89.75
TFIDF 96.08 96.05
Probabilistic Indexing 65.42 65.38

Table 5. Classification accuracy, Chinese
as TARGET

Texts Accuracy
Chinese as SOURCE 1385/1994 69.46%
English as TARGET 1431/1994 71.77%

Table 6. Clustering Accuracy

Texts Accuracy
English as SOURCE 1961/3674 53.38%
Chinese as TARGET 1817/3674 49.46%

Table 7. Clustering Accuracy

6 Discussion of Results

The results of Experiment 1 are unexpected: the
target text actually performs better on the classifica-
tion than the source text. This should obviously never
occur, unless the machine translation system is so ef-
fective that it actually corrects errors instead of cre-
ating them. Since it is extremely unlikely that Ba-
belfish is such a system, we need an alternate explana-
tion. We propose two hypotheses, namely that either
(1) the task of classifying Chinese text is somehow in-
herently more difficult than classifying English text, or
(2) the lack of any segmentation in our Chinese map-
ping scheme is causing words to be incorrectly inter-
preted by the classification system. These two factors
could easily be the reason that the results in Table 1
are actually lower than those of the target English in
Table 2.

The results of Experiment 2, on the other hand, are
more as expected. The source English performs much
better than the target Chinese, as can be seen in Ta-
bles 3 and 4. These results suggest that the translation
system did not perform very well; the accuracy aver-
age dropped from 96.68% to 82.86%, a 13.82% loss,
which amounts to an error increase of about 500%. It
is evident from Table 4 that the target Chinese results
suffer greatly from the tests performed with the Prob-
abilistic Indexing method. It is likely that informa-
tion somehow key to this particular method was lost
in the translation, and that this loss greatly hampered
the classification of the documents. Table 5 shows

38

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 35–39
Computer Science Department, Swarthmore College

the results of a typical classification test-run using the
PI method, and it is very interesting to note that the
great majority of postings in the “movies” and “poli-
tics” newsgroups were incorrectly placed into the “re-
ligion” newsgroup. Reasons for this misplacement
could be any of several possibilities, such as the all-
encompassing nature of religion.

The same trend was observed in Experiments 3 and
4. Clustering result improved from Chinese docu-
ments to English translations, but deteriorated from
English documents to Chinese translations. One inter-
esting observation is that, clustering performed better
on data sets 1 and 2 than 3 and 4. One possible reason
is that data sets 3 and 4 are a lot bigger (contain almost
twice as many documents).

It is difficult, however, to come up with a concrete
measure of “acceptability” from these numbers. How
do we know what is an acceptable drop in accuracy, or
an unacceptable error increase? The answer to these
questions may depend on the specific purpose of the
MT system under evaluation: if its purpose is simply
to provide a general idea of the original text, perhaps
a 13.82% drop in accuracy is a perfectly adequate per-
formance; but if its purpose is to provide an accurate,
well-organized text fit for publication (which may be
the purpose of future MT systems), a drop of even 2%
may be unacceptable.

7 Conclusion and Future Directions

In this paper we proposed a machine transla-
tion evaluation system that is not bound to human-
translated reference texts, instead making use of a text
classification and clustering performance comparison.
We described our experiments in which we evaluated
the Babelfish translation system on newsgroup post-
ings. The results were mixed. The Chinese to En-
glish translation actually improved classification and
clustering performances, while the English to Chi-
nese translation lowered performances. We hypothe-
size that this is either because Chinese text inherently
does not fit well with the built-in language models in
the Bow toolkit, or that the lack of segmentation ham-
pered performance.

There are some interesting extensions to the ex-
periments described in this paper. It will be interest-
ing to see how much segmentation will improve task
performances on the Chinese documents. We could
also compare performances from other NLP task such
as information retrieval. Finally, given that there are
many NLP packages for English, and relatively few
for Chinese, it is of practical value to see if it is pos-
sible to combine NLP packages with some machine
translation system to obtain NLP packages for other
languages.

References

[1] A. K. McCallum. Bow: A toolkit for statistical language
modeling, text retrieval, classification and clustering.
http://www.cs.cmu.edu/ mccallum/bow, 1996.

[2] D. D. Palmer and J. D. Burger. Chinese word segmenta-
tion and information retrieval. AAAI Spring Symposium
on Cross-Language Text and Speech Retrieval, 1997.

[3] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a
method for automatic evaluation of machine translation.
Proceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, Philadelphia, 2002.

[4] S. A. Weiss, S. Kasif, and E. Brill. Text classification in
usenet newsgroups: A progress report. Proceedings of
the AAAI Spring Symposium on Machine Learning in
Information Access, 1996.

[5] Y. Yang. An evaluation of statistical approaches to text
categorization. Information Retrieval, vol 1:pp 69–90,
1999.

39

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 40–45
Computer Science Department, Swarthmore College

40

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 40–45
Computer Science Department, Swarthmore College

41

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 40–45
Computer Science Department, Swarthmore College

42

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 40–45
Computer Science Department, Swarthmore College

43

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 40–45
Computer Science Department, Swarthmore College

44

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 40–45
Computer Science Department, Swarthmore College

45

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 46–54
Computer Science Department, Swarthmore College

A hybrid WSD system using Word Space and
Semantic Space

Haw-Bin Chai, Hwa-chow Hsu

Dept. of Computer Science
Swarthmore College

{chai, hsu}@cs.swarthmore.edu

Abstract

We describe a hybrid Word Sense

Disambiguation (WSD) system using the
context-based frameworks of both Word
Space and Semantic Space. We develop
confidence measures for the results
generated by each model. To solve a WSD
task, each classifier is run independently
and the results combined using the
confidence measures. The result is a more
robust solution to the disambiguation task.

1. Introduction

Word Sense Disambiguation (WSD) remains a
difficult problem in natural language
processing. The source of the problem lies in
the ambiguity of language – many words, in
many languages, have different meanings in
different contexts and situations. An often
used example is the English word ‘bank’,
which has the institutional sense (as in
‘National Bank’) and the shore sense (‘river
bank’), among others. Native speakers
develop an intuitive ability to recognize these
distinctions, but it is difficult to translate this
ability into computational algorithms or
models.

A variety of approaches have been
attempted, ranging from statistics-based to
connectionist methods. We focus on the Word
Space and Structured Semantic Space
approaches to WSD, two methods that

develop the idea of modeling a language as a
vector space. In the case of Word Space, a
vector space is constructed for a particular
word we wish to disambiguate, and spans all
possible context words with which that word
appears in a training corpus. Each instance of
the ambiguous word is represented by a single
point in this space. Structured Semantic Space
is constructed similarly, but uses semantic
information about context words rather than
the words themselves, and models an entire
language as opposed to a single ambiguous
word.

Given the two methods’ mutually
independent information domains, we
hypothesize that a hybrid system using both
methods can take advantage of the strengths of
each method while compensating for their
weaknesses. One explicit way we hope to
achieve this is by developing confidence
measures for the results of each method and
taking these into account when forming our
final result.

The remainder of the paper is
organized as follows: Section 2 explains the
concepts of Word Space and Semantic Space
in more detail. Section 3 describes our hybrid
system and confidence measures for the
results produced by Word Space and Semantic
Space. Section 4 describes our implementation
of this system. Section 5 presents our results,
of which a discussion follows in Section 6.
Finally, Section 7 describes possible future
work.

46

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 46–54
Computer Science Department, Swarthmore College

2. Related Work

2.1. Word Space

A Word Space (Schütze, 1992) is an n-
dimensional space of contexts of a particular
word w, where n is the total number of unique
words that co-occur with w in a training
corpus, and each dimension of the space
corresponds to one such unique word. Co-
occurrence is determined by considering a
window of a fixed number of characters
before and after each instance of the word w in
the training corpus. For example, a window of
1000 characters would include all words
within 500 characters of an instance of w, both
before and after.

A Word Space is built by taking every
instance i of w in the training corpus. A vector
representing i can be generated by considering
all of the words in the context window of w
along with their frequencies; the vector is non-
zero in those dimensions which correspond to
the words in the context window.

If the context of an ambiguous word is
a good indicator of which sense it carries (this
assumption is the basis for many WSD
techniques), then the vectors associated with
similar senses of w should have spatial locality
in the Word Space for w. Vectors which are
close to each other can be grouped into
clusters, and the centroid of a cluster (the
average of all vectors in the group) can be
thought of as the "sense" for the cluster.
Therefore, a small number of centroid vectors
representing senses of w also exist in the
Word Space of w.
WSD is accomplished by comparing the
vector representing an instance of w in the test
set to each of the centroid vectors determined
through clustering, and assigning it the sense
of the nearest vector, using cosine of the angle
between the vectors as a metric. However,
unless we assign a dictionary definition to
each centroid vector as well, that w has been
determined to carry the sense of a certain

cluster means very little; we don't know what
the cluster itself means! Schütze allowed
assigning of real-world definitions to clusters
by hand in his work with Word Space. Sense-
tagged corpora can be used to automate this
process of assigning definitions.

2.2. Structured Semantic Space

The Structured Semantic Space approach to
WSD (Ji and Huang, 1997) is reminiscent of
Word Space insofar as it involves creating
context vectors and clustering them according
to a similarity metric within an n-dimensional
space. In the "sense space", however,
similarity is measured with respect to the
semantic categories of the context words
rather than the context words themselves.
Each of the n dimensions of the sense space
corresponds to a semantic category, as defined
in a dictionary resource such as Roget's
Thesaurus. Additionally, a corpus tagged with
semantic senses is required to construct the
context vectors of monosense words, which
outline the sense clusters in the space. The
relevance of each particular semantic category
c to the sense of the monosense word w is
captured by a salience value, given by the
formula:

k
NCcw

wcSal
ii |}|{|

),(
∈=

where NCi is the set of all semantic codes for
neighboring words of instance i of word w,
and k is the total number of occurrences of w.
Each unique w that appears in the corpus is
therefore represented by a context vector of
length equal to the number of semantic
categories, where the c'th element of the
vector is equal to the salience of semantic
category c with respect to w:

cvw = <Sal(c1,w), Sal(c2,w),…,Sal(ck,w)>.

47

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 46–54
Computer Science Department, Swarthmore College

 The similarity (distance) metric
between two context vectors is defined as (1 -
cos (cv1, cv2)), where cos(cv1, cv2) is the
cosine of the angle between the two vectors. A
tree-based algorithm that iteratively merges
the most similar context vectors together is
then used to partition the set of context vectors
into a number of sense clusters. A sense
cluster is characterized by its centroid.
 Actual disambiguation of a word takes
place in two steps. First, the words within the
context window of an instance of an
ambiguous word are used to create a context
vector consisting only of 1's and 0's. This
vector is compared to all sense clusters in the
space using the distance metric described
above, and all clusters within a certain
threshold distance are "activated", or selected
as candidates for the next step. Second, a
context vector is created for each dictionary
sense of the ambiguous word, based on the
contents of a collocation dictionary. The
distance between each dictionary sense vector
and each activated cluster is calculated, and
the sense minimizing the distance
(maximizing similarity) is selected for the
ambiguous word.

3. A Hybrid Approach

We describe a hybrid system combining
features of the above mentioned methods with
the following two goals in mind: 1) automatic
assignment of real-world senses to sense
clusters in Word Space, and 2) increased
performance by employing Word Space and
Semantic Space in parallel and combining the
results of both methods, taking into account
available confidence measures.

3.1. Automatic Tagging of Word Space
Clusters

We present a method for implementing
unsupervised tagging of Word Space clusters.
The method requires a sense-tagged corpus,

and simply involves assigning the sense with
the highest representation in a cluster to that
cluster. For any ambiguous word, the more
consistent the mapping between senses and
clusters in the Word Space, the more
confidence we have in the disambiguation
result. If the sense-tagged corpus is small, the
clusters can first be generated from a larger,
untagged corpus. The cosine similarity
between context vectors for instances of each
sense of the ambiguous word in the sense-
tagged corpus and the cluster centroids is then
computed, and the vectors are assigned to
their closest clusters. We tally the number of
times each particular sense was assigned to
each cluster, and expect the tally to be high for
only one sense per cluster, indicating that the
cluster is representative of that sense.
 We define a representativeness
measurement for each sense s of ambiguous
word w in cluster c, given by

t

t

c

c

n
s

n
s

scR =),(

where sc is the number of occurrences of sense
s in cluster c, nc is the total number of sense
occurrences in c, st is the total number of
occurrences of sense s in the corpus, and nt is
the total number of occurrences of w in the
corpus. The numerator describes the ratio of
sense s in cluster c, while the denominator
normalizes according to the number of times s
appears in the corpus. For word w0, a
representativeness value of 1 for sense s0
indicates that the distribution of s0 with respect
to all senses of w0 in cluster c0 is the same as
the distribution of s0 with respect to all senses
of w0 in the entire corpus. Given that vectors
are clustered by similar contexts, we assume
that the more similar a cluster’s sense
distribution is to the sense distribution of the
corpus, the less “unique” the context
represented by the cluster is to its senses.

48

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 46–54
Computer Science Department, Swarthmore College

Under this assumption, cluster c0 provides no
information for disambiguating sense s0. Thus,
representativeness estimates how reliable
disambiguation based on a particular cluster
will be. (For convenience’s sake, we take the
natural log of representativeness values in our
system, shifting the value of neutral
representation from 1 to 0. Positive
representativeness will always mean a sense is
well represented in a cluster, and negative
representativeness will always mean the
opposite. The characteristic representativeness
of a cluster is its largest positive
representativeness value. We test the utility of
this measurement in our experiments.)

3.2. Improving Performance by Employing
Word Space and Semantic Space in Parallel

The orthogonality of different WSD
techniques suggests that using multiple
methods will improve overall performance.
Our approach is to apply both Word Space-
and Semantic Space-based disambiguation in
every disambiguation event. As Ji and Huang
point out, a confidence rating is implicit in the
Semantic Space distance calculated between
word senses and activated clusters; if this
distance is large, it is very unlikely that the
system will select the correct sense.
 Our intuition is that an analogous
confidence rating is implicit in Word Space
distance calculations as well. If the distance
between a word's context vector and its
potential sense clusters is large, or if the sense
clusters are all more or less equidistant from
the context vector such that no single sense is
strongly preferred over the others, we should
put less faith in the system's determination.
 Intelligent consideration of these
confidence measures in conjunction with the
results of both disambiguation methods should
allow the hybrid system to show improvement
over each individual system.

4. Implementation

Our implementation of Word Space involves
the following steps: First, we parse a corpus,
searching for occurrences of words in a list of
target ambiguous words. We build context
vectors for each occurrence. Second, we
reduce the dimensionality of the context
vectors to 100 by means of Singular Value
Decomposition in order to facilitate clustering
by AutoClass, a program for clustering data
by modeling the data as mixture of
conditionally independent classes. (For
comparison, the average unreduced context
vector length in our experiments was 18145.)
Next, we run AutoClass to generate clusters
from the vectors of reduced dimensionality.
The results tell us which vectors belong to
which clusters; we use this information to
compute the centroids of the clusters in the
original space. Finally, to perform WSD on an
instance of an ambiguous word we construct
its context vector, find the cluster with the
highest cosine similarity to it, and assign the
most representative sense of that cluster to the
word.
 In order to test the performance of the
Word Space classifier in the absence of a
sense-tagged corpus, we use pseudowords
(Schütze, 1992). A pseudoword is a set of two
or more monosense words having different
senses which we consider to be a single word
with multiple senses. For testing purposes,
pseudowords may then substitute for a sense-
tagged corpus: for example, we can pick two
words, ‘house’ and ‘dog’ and treat them as
one word with two senses, a ‘house’ sense and
a ‘dog’ sense.
 To evaluate the Word Space
component, we ran four different experiments,
with (CITY, HOME), (FACE, WAR),
(CHILDREN, HAND), and (EYES, SYSTEM)
as our pseudowords. We selected only nouns
under the assumption that they possess the
most distinct context vectors. Our context
window of choice was 1000 characters wide,

49

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 46–54
Computer Science Department, Swarthmore College

which Schütze found to be ideal in his
experiments. We trained on the Brown Corpus
and tested on a 1 million word WSJ corpus.
Since word frequencies between the two
corpora are significantly different, we also test
using the Brown corpus, with the idea that it
can hint at the “best case” performance
potential of our system. The distribution of the
pseudowords in the corpora is given in Table
1:

Pseudoword Brown
corpus

WSJ
corpus

CITY/HOME 415 / 547 316 / 795
FACE/WAR 314 / 310 167 / 167

CHILDREN/HAND 372 / 419 220 / 103
EYES/SYSTEM 394 / 404 36 / 479

Table 1. Frequencies of pseudowords in corpora

 We test the usefulness of the
representativeness measure (section 3.1) by
disregarding clusters in order of increasing
representativeness value and noting the effect
on precision. Finally, we look for a correlation
between correctness of disambiguation and the
distance from the ambiguous words’ context
vectors to the closest cluster centroids.
 We implement Semantic Space in the
following manner: First, we parse the public
domain 1911 version of Roget’s Thesaurus
and create a database of semantic categories.
Second, we map word-POS pairs that appear
only under a single semantic category to the
headers under which they appear, discarding
all word-POS pairs which appear in multiple
categories. These are the monosense words we
are able to identify in a POS-tagged corpus.
We then semantically-tag the Brown Corpus.
To build the Semantic Space, we follow the
same procedure as described in section 2.2,
with the exception that we choose to try
AutoClass as our clustering method instead of
the trie method described by Ji and Huang. To
test disambiguation, we construct a
pseudoword by selecting two or more words
with distinct senses from the tagged,

unambiguous words. Next, we can generate
the equivalent of a collocation from the
context of the selected words. Because this
collocation is generated from a corpus which
may not be representative of all contexts in
which the words may appear, it may not be as
general as a collocation taken from a
collocation dictionary. However, we hope it
adequately reflects the semantic nature of
most contexts. If the content of the test corpus
is of the same genre as that of the training
corpus, we expect this to be the case. A larger
and more representative training corpus may
obviate this problem.
 To simulate disambiguation of the
pseudoword in a test corpus, we follow the
same procedure as described in section 2.2.
We search for occurrences of the pseudoword,
using the semantic-category thesaurus to tag
context words, and from these build either
normalized Boolean or frequency vectors. We
activate nearby sense clusters in Semantic
Space with this context vector, and determine
which word in the pseudoword set is closest to
one of the activated clusters, according to the
collocation for each such word found earlier.
 Unfortunately, due to time and
computer hardware limitations, we have to
date been unable to obtain useful data from
the Semantic Space component of our system.

5. Results

Tables 2, 3, 4, and 5 summarize the results of
our experiments with regard to the
representativeness measure. The first row
shows the precision of the system taking into
account all clusters; each successive row
drops the cluster with the lowest
representativeness value until only one cluster
is left. The second column shows the results
using the WSJ corpus; the last column shows
the result using the Brown corpus.
 The recall value for all experiments is
100%, because our system in its current form
returns an answer for every instance of the

50

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 46–54
Computer Science Department, Swarthmore College

clusters
dropped

WSJ
Corpus

Brown
Corpus

0 .455856 .587929
1 .455856 .551509
2 .35045 .547347
3 .35045 .569199
4 .410811 .578564
5 .384685 .573361
6 .317117 .562955
7 .501802 .57232
8 .547748 .619147
9 .363063 .526535

10 .361261 .539022
11 .284685 .430801
12 .284685 .430801

Table 2. Precision results for Test #1

clusters
dropped

WSJ
Corpus

Brown
Corpus

0 .462462 .659905
1 .477477 .677804
2 .477477 .71957
3 .468468 .720764
4 .459459 .626492
5 .435435 .610979
6 .45045 .613365
7 .465465 .713604
8 .513514 .554893
9 .498498 .557279

Table 3. Precision results for Test #2

ambiguous word – no thresholding or other
means of filtering results are currently
employed.
 Figure 1 shows the results with respect
to the distance values for the experiments
using the WSJ corpus in graphical form, while
Figure 2 shows the results for the same
experiments using the Brown corpus. Note
that the values on the vertical scale are cosine
similarity values; thus, a low cosine similarity
value indicates a large distance.

clusters
dropped WSJ Corpus Brown

Corpus
0 .313665 .635572
1 .31677 .631841
2 .319876 .646766
3 .60559 .656716
4 .590062 .661692
5 .590062 .655473
6 .639752 .619403
7 .649068 .61194
8 .680124 .468905
9 .680124 .468905

10 .680124 .468905

Table 4. Precision results for Test #3

clusters
dropped

WSJ
Corpus

Brown
Corpus

0 .680934 .818293
1 .363813 .858537
2 .363813 .859756
3 .344358 .858537
4 .392996 .868293
5 .441634 .871951
6 .929961 .510976
7 .929961 .510976
8 .929961 .510976
9 .929961 .510976

10 .929961 .510976
11 .929961 .510976
12 .929961 .510976
Table 5. Precision results for Test #4

6. Discussion

Generally, our results do not match the
reported performance in Schütze’s paper. We
believe that this may be due to training data
sparseness. Another reason for the low
performance on the WSJ tests is the fact that
we are testing on a different corpus than the
one we are training on; the Brown and WSJ
corpora might have sufficiently different types

51

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 46–54
Computer Science Department, Swarthmore College

Figure 1. Distances for correct and incorrect
classifications (WSJ corpus)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

1 2 3 4 5 6 7 8 9 10 11 12
of Clusters dropped

di
st

an
ce

 (c
os

 s
im

ila
rit

y)

Test #1 WSJ Avg dist
correct

Test #1 WSJ Avg dist
incorrect

Test #2 WSJ Avg dist
correct

Test #2 WSJ Avg dist
incorrect

Test #3 WSJ Avg dist
correct

Test #3 WSJ Avg dist
incorrect

Test #4 WSJ Avg dist
correct

Test #4 WSJ Avg dist
incorrect

Figure 2. Distances for correct and incorrect
classifications (Brown corpus)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7 8 9 10 11 12
of Clusters dropped

di
st

an
ce

 (
co

s
si

m
ila

rit
y)

Test #1 Brow n Avg dist
correct

Test #1 Brow n Avg dist
incorrect

Test #2 Brow n Avg dist
correct

Test #2 Brow n Avg dist
incorrect

Test #3 Brow n Avg dist
correct

Test #3 Brow n Avg dist
incorrect

Test #4 Brow n Avg dist
correct

Test #4 Brow n Avg dist
incorrect

52

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 46–54
Computer Science Department, Swarthmore College

of information that the context vectors are too
dissimilar to produce good results.
Nevertheless, despite the overall low
performance, we wish to discuss several
trends that we observed.

6.1. Representativeness

An interesting trend we observed is that in all
four tests and with both testing corpora (with
the exception of test #4 using the WSJ corpus;
we provide an explanation of this anomaly
later), the precision of our system is never at
its peak with all clusters used. Instead, as we
drop the first several clusters, a general trend
of increasing precision sets in, leading up to
the peak performance. A possible explanation
is that because the dropped clusters have low
representativeness values, they contribute little
to word sense disambiguation. In fact,
allowing these clusters to remain in the system
impairs performance by “attracting” context
vectors in their vicinities that otherwise would
be assigned to sense clusters with higher
representativeness values. As we drop even
more clusters, we begin to lose important
clusters and the system performance degrades.
 Note that towards the end of each
column, the precision values have a tendency
to remain constant. This indicates that all
remaining clusters lean towards the same
sense; all instances of the ambiguous word are
automatically assigned that sense, and the
precision value obtained is identical to the
ratio of that sense in the testing corpus. In the
case of test #4, this leads to an absurdly high
precision value of 93% when using the WSJ
corpus for testing. Of course, no attention
should be paid to these values.
 As mentioned earlier, Test #4 using the
WSJ corpus performs best when all clusters
are considered. However, during the clustering
phase of the Word Space, the most populated
cluster turned out to be representative of the
SYSTEM pseudosense. At the same time, this
cluster’s representativeness value was the

lowest. We also recall that the WSJ corpus has
a SYSTEM/EYES ratio of 479/36. Thus, the
high initial precision can be attributed to the
fact that the SYSTEM cluster described above
very likely attracted many context vectors
during the testing phase (since it attracted the
most context vectors during the training
phase), and since there were many more
SYSTEM instances than EYES instances in
the testing corpus, these taggings turned out to
be correct. Once we dropped that cluster,
some of these context vectors were assigned
incorrectly to EYES clusters, thus lowering
the performance.
 Another exception to this trend is
found in Test #3 using the WSJ corpus, which
fails to exhibit the behavior of dropping
precision as more clusters are dropped. This
can be explained by two facts: that the highest
representativeness clusters were all of the
CHILDREN pseudosense, and. that
CHILDREN appeared twice as many times as
HAND in the test corpus.
 Another interesting trend is that there
seems to be some correlation between the
points of highest precision when using the
Brown corpus and when using the WSJ corpus.
This suggests that the training corpus used to
generate a Word Space can also be used to
find the optimum cutoff point for dropping
clusters and thus optimize actual
disambiguation.

6.2. Distance value as confidence
measurement

Figures 1 and 2 show that there is very little
consistency in the cosine similarity values
between correctly and incorrectly classified
instances. The average cosine similarity of the
correctly classified instances was greater than
incorrectly classified instances in some cases
(for example, test #2 in Figure 1), whereas in
the other cases, surprisingly, the opposite was
true (test #1 in Figure 1). In the Brown corpus
results, the values were generally too close

53

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 46–54
Computer Science Department, Swarthmore College

together for any distinction between correct
and incorrect classifications to be reasonable.
We conclude that distance to the closest
cluster is not a good confidence measure for
results obtained from Word Space.

7. Future Work

Future work would of course entail
completing our proposed hybrid system,
followed by implementing a voting system
between the Word Space and Semantic Space
components of the system. Although we found
the distance to the closest cluster in Word
Space to be an unreliable confidence measure,
perhaps the representativeness measure can in
some way be used instead.
 Performing additional experiments
using new pseudowords would allow us test
the validity of our interpretation of the
relationship between the optimal cutoff point
for dropping clusters in the training corpus
and testing corpus.
 Another way of using the
representativeness measure could be to
perform screening on disambiguation results.
Instead of dropping clusters, we could set
some minimum representativeness threshold.
For disambiguation attempts that do not break
that threshold, we do not return an answer,
thus lowering the recall rate of the system. But
since clusters with low representativeness
values in general do not disambiguate well,
we expect the precision to increase as a result
of the thresholding.
 We would also like to experiment on
different languages with the hybrid system. Ji
and Huang claim that the Semantic Space
approach is language independent; we expect
Word Space to be as well. We currently have
the resources to perform tests in Chinese.
 We have also discovered that the
AutoClass clustering package generates some
weight measures for each class found during
the clustering process. This information can

possibly be used to supplement existing
confidence measures.

8. References

Hasan, Md Maruf; Lua, Kim Teng. Neural

Networks in Chinese Lexical
Classification.
http://citeseer.nj.nec.com/8440.html

Ji, Donghong; Huang, Changning. 1997. Word

Sense Disambiguation based on Structured
Semantic Space. Proceedings of the
Second Conference on Empirical Methods
in Natural Language Processing.
Association for Computational Linguistics.

Schütze, Hinrich. 1992. Dimensions of

Meaning. In Proceedings of
Supercomputing '92, Minneapolis, pages
787 – 796.

Yarowsky, David. 1992. Word-sense

Disambiguation using Statistical Models
of Roget’s Categories Trained on Large
Corpora. In Proceedings of COLING ‘92,
pages 454 – 460.

54

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 55–62
Computer Science Department, Swarthmore College

A Minimally-Supervised Malay Affix Learner

Yee Lin Tan
Swarthmore College

Swarthmore, PA 19081
yeelin@cs.swarthmore.edu

Abstract

This paper presents a minimally-supervised
system capable of learning Malay affixation. In
particular, the algorithm we describe focuses
on identifying p-similar words, and building
an affix inventory using a semantic-based ap-
proach. We believe that orthographic and
semantic analyzes play complementary roles
in extracting morphological relationships from
text corpora. Using a limited Malay corpus, the
system achieved F-scores of 36% and 86% on
prefix and suffix identification. We are confi-
dent that results would improve given a larger
Malay corpus. In future work, we plan to ex-
tend our algorithm to include automatic discov-
ery of morphological rules.

1 Introduction

1.1 Overview

There are over 18 million speakers of Malay in United
Arab Emirates, the US, and southeast Asian countries
such as Malaysia, Indonesia, Brunei, Singapore, Thai-
land, and Myanmar (Ethnologue, 2002). Malay uses both
Roman and Arabic scripts, and belongs to the Western
Malayo-Polynesian group of languages in the giant Aus-
tronesian family of over 1200 languages (Ethnologue,
2002).

1.2 Malay Morphology

Malay morphological processes include affixation
(prefixal, suffixal, and infixal) as well as reduplication;
however, prefixation is one of the most productive
of these processes. There is a total of 21 prefixes in
Malay (Tatabahasa Dewan, 1993) and the more common
ones includemen-, pen-, ber-, se-, ter-, and di-. (See
Appendix for the full list.) With the exception ofmen-
and pen-, prefixes typically do not result in changes
to the stem. However, prefixesmen-, pen-, and their
allomorphs (which we will denote asmeN- and peN-
respectively), take on different forms depending on the
initial letter of the stem. The allomorphs of the prefix
meN-areme-, mem-, men-, meny-, meng-, andmenge-.

Similarly, the allomorphs ofpeN- are pe-, pem-, pen-,
peny-, peng-, and penge-. The use of the allomorphs
of meN-, which parallels that ofpeN-, is illustrated as
follows:

(a) me- is typically used with stems that begin with
the letters l, m, n, ng, ny, r, w or y. For example,me-+
’nanti’ (wait) = ’menanti’ (to wait).
(b) mem-is typically used with stems that begin with the
letter b, or cognate verbs that begin with f, p, or v. For
example,mem-+ ’beri’ (give) = ’memberi’ (to give), and
mem-+ ’proses’ (process) = ’memproses’ (to process).
(c) men-is typically used with stems that begin with the
letters c, d, j, sy, z or cognates that begin with the letters t
or s. For example,men-+ ’cari’ (search) = ’mencari’ (to
search), andmen-+ ’sintesis’ (synthesis) = ’mensintesis’
(to synthesize).
(d) meng- is typically used with stems that begin
with vowels, the letters g, gh, kh, or cognates that
begin with k. For example,meng-+ ’ambil’ (take) =
’mengambil’ (to take), andmeng-+ ’kritik’ (critique) =
’mengkritik’ (to criticize).
(e) meny-is typically used with stems that begin with
the letter s, which is dropped in the inflected form. For
example,meny-+ ’sumpah’ (swear) = ’menyumpah’ (to
swear).
(f) menge-is used with monosyllabic stems. For exam-
ple, menge-+ ’cat’ (paint) = ’mengecat’ (to paint), and
menge-+ ’kod’ (code) = ’mengekod’ (to encode).

Unlike prefixation, suffixation in Malay never results
in a change to the stem.-i, -an, and -kan are the only
three suffixes in the language. These suffixes can be at-
tached to words to form nouns, verbs, and adjectives. For
example, ’air’ (water) +-i = ’airi’ (to irrigate), ’lukis’
(draw) +-an = ’lukisan’ (drawing), and ’kirim’ (send) +
-kan = ’kirim kan’ (to send). Suffixes can also be com-
bined with prefixes.peN- and ke- are frequently com-
bined with -an to form nouns, while combinations like
meN-...-i, meN-...-kan, di-...-i, di-...-kan, ber-...-kan, and
ber-...-angenerally form verbs.

In addition to prefixes and suffixes, Malay has four
infixes, namely-el-, -em-, -er-, and -in-. Compared to
the other two affix categories, infixes are used relatively

55

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 55–62
Computer Science Department, Swarthmore College

infrequently since only a very small subset of words in
Malay take infixes. The following are examples of such
words: ’tunjuk’ + -el- = ’telunjuk’ (index finger), ’gi-
lang’ + -em- = ’gemilang’ (splendid), ’gigi’ + -er- =
’gerigi’ (serrated), and ’sambung’ +-in- = ’sinambung’
(continue).

Nested affixation occurs in Malay as well. Fortunately,
unlike some agglutinative languages, no more than three
layers of affixation is allowed in Malay. For exam-
ple, the stem ’orang’ (person) can be prepended with
the prefixse- to form the word ’seorang’ (alone), fol-
lowed by the layerke-...-an, resulting in ’keseorangan’
(loneliness), and finally the prefixber- to form the word
’berkeseorangan’ (to suffer from loneliness). Similarly,
the word ’kesinambungan’ (continuity) can be decom-
posed toke-+ s +-in- + ambung +-an, in which the stem
’sambung’ (continue) undergoes two layers of affixation.

Aside from nested affixation, reduplication is also
common to Malay. Reduplication is the process of re-
peating phonological segments of a word. There are
three types of reduplication in Malay, namely full and
partial reduplication, and reduplication that results in a
certain rhythmic phonetic change (Tatabahasa Dewan,
1993). The first two processes typically produce in-
definite plurals and words that convey a sense of re-
semblance or homogenity, while the latter usually re-
sults in words that describe repetitive or continuous ac-
tions, heterogenity, and level of intensity or extensive-
ness. For example, ’pulau-pulau’ (islands) results from
the full duplication of the word ’pulau’ (island) while
’sesiku’(triangle/drawing tool) results from the partial
reduplication of the word ’siku’ (elbow). Partial redu-
plication is not limited to the front segment of a word, as
duplicated phonetic segments can be added to the end of
a word as well (e.g. ’berlari-lari ’ and ’kasih-mengasihi’).
In rhythmic reduplication, the entire stem is repeated but
with phonetical changes that can either be a free phonetic
change or involve rhythmic vowel and consonant repeti-
tion. The following examples illustrate the different types
of rhythmic reduplication (Tatabahasa Dewan, 1993).
Vowel reduplication: ’sayur-mayur’ (vegetables)
Consonant reduplication: ’gunung-ganang’ (mountains)
Free reduplication: ’saudara-mara’ (relatives)

1.3 Motivation and Goals

Automated morphological analysis can be incorporated
into information retrieval systems as well as grammar
and spell checkers. With the increase in the number of
computer and internet users in southeast Asia, perfor-
mance of such systems is becoming increasingly impor-
tant. According to a 1999 International Data Corpora-
tion (IDC) report, internet users in the Asia Pacific region
show preference for viewing the World Wide Web in their
native language, especially when English is not their na-

tive tongue. Nevertheless, a recent check on Google re-
vealed that there is still no option to limit a search query
to only webpages written in Malay. Furthermore, while
a Malay grammar and spell checker is currently available
on Microsoft Word, a quick check showed that it does
not catch errors that pertain to word order or incorrectly
inflected words.

In this paper, we propose an algorithm that automati-
cally induces a subset of Malay morphology. In partic-
ular, this algorithm takes as input a text corpus and pro-
duces as output an affix inventory of prefixes and suffixes.
This system ignores infixes since they are not productive
in modern Malay and their use is limited to a very small
subset of words (Tatabahasa Dewan, 1993).

Although Malay is a reduplicative language, word
reduplication will be ignored here as well since the goal
of this system is to obtain an affix inventory for a highly
prefixal language, not to perform a complete morpholog-
ical analysis of Malay. The proposed algorithm can be
used as part of the design of a complete morphological
analyzer. Since Malay morphology is similar to that of
Indonesian, this algorithm is likely to be portable to In-
donesian as well.

2 Related Work

Most of the existing morphological analyzers focus
on suffixal languages. With the exception of Schone
and Jurafsky (2001), whose work we will describe in
Section 2.1, few have considered prefixes, circumfixes,
infixes, or languages that are agglutinative or reduplica-
tive. Previous unsupervised morphology induction sys-
tems can be divided into two main categories based on
whether the goal is to obtain an affix inventory or to per-
form a more comprehensive morphological analysis.

2.1 Morphological Analysis

Gaussier (1999) uses an inflectional lexicon to analyze
derivational morphology. His system automatically in-
duces suffixes by splitting words based onp-similarity,
that is words that are similar in exactly the firstp charac-
ters. Schone and Jurafsky (2000), on the other hand, ex-
tract affixes by inserting words into a trie, and observing
places in the trie where branching occurs, an approach
similar to identifyingp-similar words. Using only the
200 most-frequent affixes, they generate a list of pairs of
morphological variants (PPMVs). Their system then de-
termines the semantic relationships between word pairs
via Latent Semantic Analysis. Word pairs with high se-
mantic correlations form conflation sets. Schone and Ju-
rafsky (2001) extended their semantic-based algorithm
to include orthographic and syntactic cues, and applied
their algorithm to induce more extensive morphological
relationships (prefixes as well as circumfixes) in German,
Dutch, and English.

56

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 55–62
Computer Science Department, Swarthmore College

2.2 Affix Inventories

Brentet al (1995), uses a Minimum Description Length
approach to obtain suffixes that result in the maximum
compression for any given corpus. DéJean (1998) uses
an algorithm that exploits the entropy of the next char-
acter in a word. His algorithm decomposes a word into
stem and suffix when the number of possible characters
following a sequence of characters in a word exceeds a
certain threshold. Like Brentet al, his goal, too, was to
obtain an affix inventory using statistical methods.

2.3 Previous Work in Malay Morphology

Very little work on morphology induction has been
done in Malay. The most recent work with regard to
Malay morphology is an automated stemmer proposed by
Tai et al (2000) as part of the design of an information re-
trieval system for Malay. In addition to a set of heuristics,
their system is given a list of prefixes and suffixes along
with an explicit set of rules under which affixes may be
removed from words. Their overall goal is different from
ours: Taiet al seek an efficient, but highly supervised
stemming system, while we seek a minimally-supervised
system that is capable of inducing affixation in Malay via
semantic-based analysis. The output of our system may
be used to eliminate the need for an explicit affix list that
is required by their stemming algorithm.

3 Current Approach

We propose to extend Schone and Jurafsky’s semantic-
based approach to analyzing a highly prefixal, agglutina-
tive language. Like Schone and Jurafsky (2000), our al-
gorithm can be decomposed into four phases, namely (1)
building an initial affix inventory, (2) identifying pairs of
potential morphological variants (PPMVs), (3) comput-
ing semantic correlation of PPMVs, and finally (4) iden-
tifying valid affixes by selecting morphological variants
with high semantic correlation. We use a text corpus con-
sisting of news articles from an online Malaysian news-
paper, and words from an online Malay dictionary.

3.1 Phase 1: Selecting Potential Affixes

In the first phase of analysis, we build two tries via in-
order and reverse order insertion of words from the cor-
pus along with their frequencies. Before describing the
algorithm that extracts potential prefixes from these tries,
we define the following terms:
(1) type count: Each distinct word in the corpus is con-
sidered a unique type. Hence, type count refers to the
frequency of occurrence of a unique word.
(2) branching factor: When two or morep-similar words
are inserted into a trie, branching occurs at thep-th
node. For instance, in the reverse trie shown in Figure 2,
branching occurs at the fourth node from the root since

Valid Affixes
Identify

Correlation of PPMVs
Compute Semantic

Identify PPMVs

Potential Affixes
Select

Figure 1: System architecture.

’cuba’ (try), ’dicuba’ (tried), and ’mencuba’ (trying) are
similar in exactly the last four characters. The branching
factor is the number of branches that hang off a node in
the trie. In the previous example, the branching factor at
’c’ is 3.

To extract candidate prefixes from the reverse trie,
the system needs to identifyp-similar words. However,
we believe that a constantp value is unsuitable for this
task since errorneous splitting points may be proposed.
Hence, we try to automatically induce an appropriatep
value for different sets of words. To do this, we observe
places in the trie where� , the ratio between the branch-
ing factor and the type count is exactly 1. We call these
places potential breaking points (PBPs). Splitting words
into stem and affix when the� ratio is 1 gives us an esti-
mate of a suitablep value for any given subtrie.

Once a potential breaking point is identified, each can-
didate prefix that hangs off that PBP is checked for its
overall frequency in the corpus. Only theT most frequent
candidate prefixes, as determined by their frequencies in
the forward trie, are selected as potential prefixes, and
thus, added to the potential prefix inventory.

A reverse selection process is performed to determine
potential suffixes. That is, candidate suffixes are identi-
fied from PBPs in the forward trie, and depending on their
overall frequencies in the reverse trie, the system decides
whether or not to add these candidate suffixes to the po-
tential suffix inventory.

3.2 Phase 2: Identifying PPMVs

Pairs of potential morphological variants are constructed
from words that descend from the same root node in the
trie, share a common PBP, and contain a potential affix

57

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 55–62
Computer Science Department, Swarthmore College

a

b

u

c

i

d

n

e

m

PBP
τ = 1.0

Figure 2: Structure of reverse trie with the words
’dicuba’, ’mencuba’, and ’cuba’ inserted. The empty
nodes represent end-of-word markers.

in the initial inventory. For instance, ifdi-, men-, and
NULL were candidate prefixes that were added to the in-
ventory at the PBP shown in Figure 2, then the pairs of
morphological variants would be (’dicuba’, ’mencuba’),
(’dicuba’, ’cuba’), and (’mencuba’, ’cuba’). The three af-
fixes

�
di-, men-, NULL� form what we call the affix set

for the stem ’cuba’. The same construction process is re-
peated to obtain PPMVs for words containing candidate
suffixes.

3.3 Phase 3: Computing Semantic Correlation of
PPMVs

Morphologically-related words frequently share similar
semantics. Accordingly, we determine the validity of
candidate affixes in the potential affix inventory by com-
puting the semantic correlation of the PPMVs. The cor-
relation score of each PPMV gives us an estimate of the
validity of the two affixes it contributed to the initial in-
ventory. For this purpose, we construct a co-occurrence
vector with a� 5-word window for each word in the
PPMV using the corpus from Phase 1. We then compute
the cosine of the angle between the two vectors using the
standard formula:

��� ��� 	
 ��� � ��	 � ������ 	 ����� �

The dot product is the projection of one vector onto
the other, and is thus a measure of the similarity, or
more accurately, the co-directionality of two vectors. In
view of this, the cosine of the angle between two co-
occurrence vectors is commonly used as a measure of

i

u

d . . .

a

b

u

c

n

e

m

b

a

a

b

u

c

c

root

Figure 3: Structure of forward trie with the words
’dicuba’, ’mencuba’, and ’cuba’ inserted.

the semantic correlation of two words. Ideally, a pair
of morphologically-related words would have a large dot
product, and thus, a high cosine score.

3.4 Phase 4: Identifying Valid Affixes

Using the cosine scores of the PPMVs computed in the
previous phase, we determine the ”goodness” and ”bad-
ness” of each candidate affix in the initial inventory. For
every PPMV with a cosine score above the cosine thresh-
old, C, we increment the ”goodness” of the affixes corre-
sponding to that PPMV by 1. Likewise, for every score
below the threshold, the ”badness” of the correspond-
ing affixes is incremented by 1. For instance, assum-
ing a cosine threshold of 0.2, the goodness ofdi- and
men-corresponding to the PPMV (’dicuba’, ’mencuba’)
from Table 1 will be incremented by 1 each. Similarly,
the goodness ofmen-and NULL is incremented since
the pair (’mencuba’, ’cuba’) has a cosine score greater
than the threshold we defined earlier. However, the co-
sine score for (’dicuba’, ’cuba’) is below the threshold;
consequently, the affixesdi- and NULL will have their

PPMV Cosine score

(’dicuba’, ’mencuba’) 0.22
(’dicuba’, ’cuba’) 0.19
(’mencuba’, ’cuba’) 0.32

Table 1: Cosine scores of PPMVs formed from the stem
’cuba’ and affixes in the set

�
di-, men-, NULL�.

58

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 55–62
Computer Science Department, Swarthmore College

badness scores incremented by 1. The goodness and bad-
ness scores of each candidate affix in the affix set

�
di-,

men-, NULL� corresponding to the stem ’cuba’ are sum-
marized in Table 2.

A new inventory is constructed from candidate affixes
in the initial inventory whose goodness scores are greater
than or equal to their badness scores. From the previous
example, bothdi- and men-would be considered valid
affixes for the stem ’cuba’, and hence, added to the new
inventory.

Affix Goodness Badness

di- 1 1
men- 2 0
NULL 1 1

Table 2: Scores of affixes in the set
�
di-, men-, NULL�

corresponding to the stem ’cuba’. These scores were ob-
tained using the validity heuristic described in Phase 4.

4 Results

4.1 Prefixes

Before Semantic Analysis: In order to determine a rea-
sonable value forT, frequency thresholds were varied be-
tween 0 and 500 in increments 5 (with the exception of
the interval between 35 and 40 in whichT was incre-
mented by 1), and proposed affix inventories were evalu-
ated for recall and precision. Figures 4 and 5 summarize
the results of this evaluation. Since we valued recall over
precision in the initial phase, and did not wish to lose
any correctly identified affixes prior to semantic analysis,
we fixed T at 36. The later phases would serve to in-
crease precision by eliminating incorrectly hypothesized
prefixes. Thus, with aT value of 36, the system achieved
100% recall, 7.95% precision, and 14.74% on F-measure.

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500
Frequency Threshold

Precision
Recall

F-measure

Figure 4: Precision, recall, and F-measure as a function
of the frequency threshold,T, in the initial phase of prefix
identification. Recall is highest for 0� T � 36.

Frequency Threshold = 36

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50 60 70 80 90 100

P
re

ci
si

on

Recall

Figure 5: Precision versus recall for prefixes. At 100%
recall, precision is highest at a frequency threshold
T of 36.

After Semantic Analysis: Cosine thresholds were var-
ied between 0.2 and 1.0, and the new prefix inventories
were re-evaluated. Figure 6 shows that, at a cosine thresh-
old C of 0.45, our system obtained 150.62% relative in-
crease in precision but suffered 19.05% relative decrease
in recall. The F-measure climbed 170% after semantic
analysis.

Cosine Threshold = 0.45

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cosine Threshold

Precision
Recall

F−measure

Figure 6: Precision, recall, and F-measure as a func-
tion of the cosine threshold,C, in prefix identification.
F-measure is highest atC = 0.45.

4.2 Suffixes

Before Semantic Analysis: As a consequence of the low
precision in prefix identification, our system did not at-
tempt to remove prefixes from words in the corpus be-
fore they were reinserted into the tries for potential suffix
selection, as suggested by Schone and Jurafsky (2001).
To identify candidates for the initial suffix inventory, we
employed the method described for prefixes, that is, we
varied the value of the frequency thresholdT between
0 and 2000 in increments of 5, and evaluated the pro-
posed inventories for recall and precision. Figure 7 shows
the evaluation results. The system achieved 100% recall,
60% precision, and 75% on F-measure forT values be-
tween 1500 and 1745.

59

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 55–62
Computer Science Department, Swarthmore College

 0

 20

 40

 60

 80

 100

 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Frequency Threshold

Precision
Recall

F-measure

Figure 7: Precision, recall, and F-measure as a function
of the frequency threshold,T, in the initial phase of suffix
identification. At 100% recall, precision is highest for
1500� T � 1745.

After Semantic Analysis: The new suffix inventories
that were obtained with cosine thresholds varied between
0.2 and 1.0 were re-evaluated as described in section 4.1.
At a cosine threshold of 0.65 (see Figure 8), the system
was able to achieve 80% precision and 10.71% increase
in F-measure while maintaining recall at 100%. The iden-
tified suffixes were-i, -an, -kan, and-a. Of these, the first
three were correct.

Table 3 provides a summary of the precision, recall and
unweighted F-scores obtained by the system before and
after semantic analysis.

 50

 60

 70

 80

 90

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cosine Threshold

Precision
Recall

F−measure

Figure 8: Precision, recall, and F-measure as a func-
tion of the cosine threshold,C, in suffix identification.
F-measure is highest for 0.65� C � 1.0.

5 Discussion

5.1 Corpus Size

The results from prefix identification were rather disap-
pointing. However, we believe that this is not a short-
coming of our algorithm, but rather of the training cor-
pus itself. While it is typically easy to find unlabelled

Prefix Suffix

Recall Before 100.0 100.0
After 80.95 100.0

Precision Before 7.95 22.97
After 22.97 75.0

F-measure Before 14.74 75.0
After 35.70 85.71

Table 3: Summary of precision, recall, and unweighted
F-measure before and after semantic analysis.

corpora in English, building a large corpus in Malay
proved rather difficult. Our corpus contains just over
22,000 unique words, compiled from two online sources:
a Malaysian newspaper and a Malay dictionary. Since
English is widely spoken in Malaysia, English words fre-
quently find their way into Malaysian news articles, and
thus our corpus. Extending the news corpus to include en-
tries from the dictionary increased the number of prefixes
found in the initial phase, but doing so presented a sig-
nificant problem in the semantic analysis phase because
many of the words from the dictionary were not found in
the news articles.

Although the results from suffix identification could
improve with a larger corpus as well, the size of the train-
ing corpus was not an issue in the case of suffixes. This
is because the size of the corpus relative to the number
of suffixes the system had to identify was approximately
7,000 to 1, while the ratio was only 1,000 to 1 in the case
of prefixes.

5.2 Potential Issues with Validity Heuristic

While the validity heuristic employed in Phase 4 gener-
ally works well, it has potential issues that are not ad-
dressed in current work. A problem arises when there
are many spurious PPMVs associated with a given stem.
Consider the addition ofs- to the affix set

�
di-, men-,

NULL� in our earlier example. We present the corre-
sponding PPMVs and their cosine scores in Table 4.

PPMV Cosine score

(’dicuba’, ’mencuba’) 0.22
(’dicuba’, ’cuba’) 0.19
(’mencuba’, ’cuba’) 0.32
(’dicuba’, ’scuba’) � 0.01
(’mencuba’, ’scuba’) � 0.01
(’cuba’, ’scuba’) � 0.01

Table 4: Cosine scores of PPMVs constructed from the
affix set

�
di-, men-, NULL, s-� and the stem ’cuba’.

As mentioned earlier, our corpus has the potential of
containing English words, thus there is a chance that a

60

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 55–62
Computer Science Department, Swarthmore College

word like ’scuba’ may appear in the training corpus. Be-
cause of the presence of spurious PPMVs (due to the ad-
dition of s-), the hypothesized badness of each affix in
the original set

�
di-, men-, NULL� has increased. In Ta-

ble 5, we list the new goodness and badness scores with
the addition of candidate prefixs-.

Affix Goodness Badness

di- 1 2
men- 2 1
NULL 1 2
s- 0 3

Table 5: Validity scores of candidate affixes in
�
di-, men-,

NULL, s-�, assuming a cosine threshold of 0.2.

Although few instances like this were encountered in
our current work, it is conceivable that such a problem
would be significantly detrimental to our system’s per-
formance, especially in future work when a larger corpus
is used. A more robust solution would be to compute the
goodness and badness of each candidate in the affix set,
remove any affix with a goodness score of 0, and then
recompute the validity of each affix in that set by decre-
menting each of their badness scores by 1.

With s- removed, and the badness scores recomputed,
the validity ofdi-, men-, andNULL would be restored to
their original values as shown in Table 2.

This method of determining affix validity suffers from
another drawback in that it would incorrectly identify af-
fixes as invalid if there is a partition within an affix set
associated with a given stem. A partition exists in an
affix set if the PPMVs that are constructed from those
affixes belong to two disjoint, morphologically-unrelated
sets. Although we did not find an example like this in
the Malay corpus, such a phenomenon occurs in lan-
guages like French. Consider the two verbs ’fonder’ and
’fondre’ whose simple past forms are

�
’fondai’, ’fonda’�

and
�
’fondis’, ’fondit’ � respectively. On seeing these

four inflected words, our system would propose
�
-ai, -a,

-is, -it� as the affixes associated with the stem ’fond’.
The problem arises from the fact that the four words
’fondai’, ’fonda’, ’fondis’, and ’fondit’ belong to two
morphologically-unrelated sets. Consequently, our valid-
ity heuristic would propose the scores shown in Table 6.
Since none of the affixes have goodness scores greater
than or equal to their badness scores, all of them would
be erroneously discarded by our algorithm.

Fortunately, this phenomenon rarely occurs in most
languages. Even in cases where it does, it is highly likely
that the affixes, which are mistakenly discarded by the
system, would be associated with other stems that do not
suffer from the same problem.

Affix Goodness Badness

-ai 1 2
-a 1 2
-is 1 2
-it 1 2

Table 6: Validity scores of suffixes from the example in
French.

5.3 Unsupervised Selection of Thresholds

Although the values of the frequency and cosine thresh-
olds in this experiment were hand-picked to obtain the
best results, these values can be obtained automatically.
The following is a potential algorithm for doing so:

(1) Set the frequency thresholdT to a reasonably
small number, say, 5, in order to eliminate potential typos
as well as the possibility of foreign words in the corpus.
(2) Run Phase 1 withT = 5 to obtain an initial affix
inventory,I.
(3) Build a vocabulary of all distinct words in the corpus.
Attach each affixa � I to each word in the corpus. Check
if we still have a valid word in the vocabulary. If we do,
adda to the new inventory,I’ .
(4) Next, run Phase 2 for each affix inI’ .
(5) Now, run Phase 3 with varying cosine thresholds,
starting at 0. With each different threshold, check to see
if we have lost any affix inI’ . Increase the threshold as
long as we have 100% recall on the affixes inI’ . Save the
cosine thresholdC’ prior to the drop in recall onI’ .

C’ should give us a good estimate of the optimal
cosine threshold for the initial inventoryI. SinceI’ is a
subset ofI, we are guaranteed that recall on the affixes in
I would drop beforeC’. Having estimated the value of the
cosine threshold, we can now return to running Phase 2
with I, and Phases 3 and 4 with a cosine threshold ofC’.

6 Conclusion

Despite relatively disappointing results, we are confident
that this algorithm would be more successful on a
larger corpus. Being one of the first systems built to
analyze Malay affixation, this system shows promise of
analyzing highly prefixal languages. More importantly,
this system provides a starting point for future work in
Malay morphological analysis.

Acknowledgements

Many thanks to Richard Wicentowski and five anony-
mous reviewers for useful suggestions and comments on
a first version of this paper.

61

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 55–62
Computer Science Department, Swarthmore College

References

Michael R. Brent, Sreerama K. Murthy, Andrew Lund-
berg. 1995. Discovering Morphemic Suffixes: A Case
Study In MDL Induction.Proceedings of 5th Interna-
tional Workshop on Artificial Intelligence and Statis-
tics.

Hervé DéJean. 1998. Morphemes as Necessary Con-
cept for Structures Discovery from Untagged Corpora.
Workshop on Paradigms and Grounding in Natural
Language Learning.

Ethnologue Report for Language Code: MLI. 2003. Eth-
nologue.http://www.ethnologue.com/.

Éric Gaussier. 1999. Unsupervised Learning of Deriva-
tional Morphology from Inflectional Lexicons.ACL
’99 Workshop Proceedings: Unsupervised Learning
in Natural Language Processing, University of Mary-
land.

Asia/Pacific’s Internet Users Demand Localized
Web Content, IDC Finds. 1999. Techmall.
http://www8.techmall.com/techdocs/TS991104-4.html

Nik S. Karim, Farid M. Onn, Hashim Hj. Musa, Abdul H.
Mahmood. 1993.Tatabahasa DewanEdisi Baharu.
Dewan Bahasa dan Pustaka, Kuala Lumpur, Malaysia.

Patrick Schone, Daniel Jurafsky. 2000. Knowledge-Free
Induction of Morphology Using Latent Semantic Anal-
ysis. Proceedings of the Computational Natural Lan-
guage Learning Conference.

Patrick Schone, Daniel Jurafsky. 2001. Knowledge-Free
Induction of Inflectional Morphologies.Second Meet-
ing of the North American Chapter of the Association
for Computational Linguistics.

Sock Y. Tai, Cheng S. Ong, Noor A. Abdullah. 2000.
On Designing an Automated Malaysian Stemmer for
the Malay language. Proceedings of the 5th Inter-
national Workshop International Retrieval with Asian
Languages.

Appendix: Affix List

Affix Type Nouns Verbs Adjectives

Prefix pe- me- ter-
pem- mem- se-
pen- men-
peng- meng-
penge- menge-
pel- memper-
per- di-
ke- diper-
juru- bel-

ber-
ter-

Suffix -an -kan
-i

Prefix and Suffix pe-...-an me-...-kan ke-...-an
Combination pem-...-an mem-...-kan

pen-...-an men-...-kan
peng-...-an meng-...-kan
penge-...-an menge-...-kan
per-...-an me-...-i
pel-...-an mem-...-i
ke-...-an men-...-i

meng-...-i
menge-...-i
memper-...-kan
memper-...-i
di-...-kan
di-...-i
diper-...-kan
diper-...-i
ber-...-kan
ber-...-an
ke-...-an

Infix -el- -el-
-er- -er-
-em- -em-

-in-

62

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 63–68
Computer Science Department, Swarthmore College

code-name DUTCHMAN:
A Text Summarization System

Erik Osheim
Swarthmore College

osheim@sccs.swarthmore.edu

Daniel Sproul
Swarthmore College

sproul@sccs.swarthmore.edu

Abstract

Text summarization is an interesting and chal-
lenging problem in natural language process-
ing, and one that has numerous potential appli-
cations in the realm of data-mining, text search-
ing, and information retrieval. We have im-
plemented a summarization system appropriate
for articles and technical texts.

The system, code-named DUTCHMAN, at-
tempts to identify which sentences in the doc-
ument are most appropriate for inclusion in a
summary based on analysis using key noun-
phrases. The system employs WordNet in or-
der to extend the notion of key phrases to key
concepts.

The system, in its current instantiation, only
achieves mediocre results, but our work does
suggest some promising avenues for future re-
search in text summarization.

1 Introduction

The general problem of text summarization is very broad
and difficult: Given some document of arbitrary length,
can we produce a second document of roughly constant
length (ie. a few sentences) that conveys the general
meaning of the original? How can we process a text to
determine what the text is about, and then reformulate
that information to produce a viable summary? Certainly,
humans are able to do this, but this is typically contin-
gent on our ability to not only parse and read, but also
understand the document in question. Thus, to fully ad-
dress text summarization in general, we would need to
first solve a large number of difficult and currently unre-
solved natural language processing and artificial intelli-
gence problems.

One option would be to use a knowledge base to iden-
tify semantic facts and topics in a document; without

fully solving things like the symbol grounding problem,
we can still hope to understand the text’s subject. Sum-
marizers which take this approach are known as symbolic
summarizers. However, there are some difficulties with
taking a heavily symbolic approach. First, since it re-
quires a large knowledge base in order to function, the
results do not generalize across languages well. Sec-
ond, symoblic approaches are especially vulnerable to the
depth vs. robustness trade-off. Simply put, systems that
are created to analyze a certain type of document can re-
strict themselves to that domain, allowing them to make
more assumptions about the source texts and thus per-
form better, at the expense of generality (Hovy, 2000).
Since symbolic summarizers have to make a lot of as-
sumptions about the text’s content, they tend to do es-
pecially well when they can specialize; however, this
makes a general summarization tool difficult to imple-
ment symbolically. Theme and topic recognition (two
common methods of symbolic summarization) are stag-
geringly complex in the most general cases (Mani, 1998).

Fortunately, in certain domains, documents tend to
contain sentences which are self-summarizing. For ex-
ample, journal and newspaper articles, and technical doc-
uments, tend to begin with, and, more generally, contain
sentences which address the purpose and nature of the
document as a whole. We cannot expect this sort of sen-
tence to be found in certain other domains, for example
fiction, where no part of the text can be expected to per-
tain to the text as a whole. Many text summarization sys-
tems (eg. (Barker, 1998), (Szpakowicz, 1996)) choose to
adopt such a restricted domain, and thus are able to ex-
ploit the self-summarizing nature of such documents.

Within this restricted domain, we can reformulate the
problem of text summarization as follows: How do we
select the best sentences for inclusion in a summary, and
what do we do with these sentences after we have se-
lected them? We have based our work on the work of the
Text Summarization Group at the University of Ottowa

63

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 63–68
Computer Science Department, Swarthmore College

Department of Computer Science (Barker, 1998). Their
general method involves identifying key noun phrases
within a document, and then applying various heuristics
to weight sentences based on key phrase frequency, then
just concatenating the sentences in order to produce a
summary.

Our text summarization system, code-named DUTCH-
MAN, is structured similarly, but we have extended the
key phrase analysis to a form of conceptual analysis
based on WordNet, allowing us to increase the empha-
sis placed on certain key phrases which are representa-
tive of general concepts in which other key phrases in the
document participate. For example, in a paper about en-
gines, given that engine, camshaft, and piston are all key
phrases, the salience of the word engine will be increased,
because camshaft and piston are both parts of engines.

2 Related Work

Due to renewed intereset in text summarization, sev-
eral conferences have recently addressed the problem.
From these talks, it is obvious that researchers some-
what divided over the best methods of text summariza-
tion. While many researchers favor statistical approaches
similar to the one pursued in DUTCHMAN, there are also
symbolic summarizers, which place more weight on try-
ing to find important topics through world-level concepts
(Hovy, 2000). These systems try to identify an underly-
ing topic (or topics) before ranking phrases and sentences
on their score. (?) In this context, DUTCHMAN is a sta-
tistical summarizer which utilizes symbolic information
(via WordNet) in an attempt to improve its statistically
generated keywords.

Most other projects that use symbolic information do
so before their statistical processing, or do the two forms
of processing independently and then attempt to integrate
the results ((Szpakowicz, 1996), (Mani, 1998)). How-
ever, there are many varieites of symbolic summarizers;
its unclear what the best use of ontologies is, especially
given the depth/robustness trade-off. Some examples
of symbolic summarization methods from the TIPSTER
conference are:

• use a graph of theme nodes linked via a custom the-
saurus (CIR).

• use sentences determined to be about frequently
mentioned individuals via co-reference resolution
(Penn)

• use morphological analysis, name tagging, and co-
reference resolution to weight sentences (SRA)

Ad hoc summaries (undirected summaries like the
kind DUTCHMAN generates) only comprise some of the
goal of summarization systems. Most systems also sup-
port interactive summarization (after being questioned,

i.e. (Mani, 1998) and (Szpakowicz, 1996)), and topic-
specific summarization (summarization with regard to
specific set of interests, i.e. terrorist activity (Mani,
1998)). These systems serve different purposes, but most
summarization methods can be used fairly effectively in
any of the realms. (Mani, 1998)

3 DUTCHMAN Base System

As noted, our general approach is to identify key noun
phrases within a document which indicate that the sen-
tences in which they participate might be relevant sum-
mary sentences, ie. might contain content which is rele-
vant to the overall meaning of the text.

Given an input text, our basic algorithm is as follows:

1. Split the document into sentences

2. Apply part-of-speech tagging, text-chunking, and
noun-phrase identification

3. Identify key noun-phrases based on frequency

4. Select sentences based on key phrase frequencies

5. Concatenate sentences to generate the final sum-
mary

Lacking sophistacated sentence splitting tools,
DUTCHMAN currently relies on a simple and imperfect
script to handle sentence chunking.

POS tagging, text chunking, and NP identification
are accomplished using the pre-trained fnTBL rule sets
which are distributed with the fnTBL system (fnTBL is a
freely-distributed rule-based machine-learning tool com-
monly employed in natural language processing tasks;
TBL stands for Transformation-Based Learning) (Flo-
rian, 2001).

The remainder of the base system was implemented
using Python. After sentence chunking and NP identifi-
cation, we construct a database of frequencies for each
noun-phrase in the document. In addtion to noun-phrases
identified by fnTBL, we also add to the database individ-
ual nouns and noun-phrases connected by prepositional
phrases; in this manner, given the string “King of Prus-
sia Mall”,rather than merely adding “King” and “Prus-
sia Mall” to the database, we also add “Mall” and “King
of Prussia Mall”,which are, one might imagine, the truly
salient key-phrases for the document in question.

We then identify 10 noun-phrases as “key phrases”,ie.
phrases whose sentence content is likely to pertain to the
overall meaning of the document, and thus make good
summary sentences. In the base system, the key-phrases
are chosen based purely on which noun-phrases have the
greatest frequencies. The scores for noun-phrases which
are contained in larger noun-phrases (eg. “King” is con-
tained in “King of Prussia”) are discounted somewhat by

64

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 63–68
Computer Science Department, Swarthmore College

the scores of their containing phrases. We used 10 key-
phrases because, given the length of our test documents,
this tended to cover about 10-25implementation might in-
clude dynamic selection based on a fixed target percent-
age, but DUTCHMAN does not currently support this.

Each sentence is then scored based on the summed
weights of the key phrases in the sentence. When a key
phrase occurs more than once within the same sentence,
an interesting issue arises. The most obvious approach
would be to simply multiply by the key phrase’s count in
the sentence, but the problem with this is that we would
like to in some manner reward diversity of key phrases for
our summary sentences. Thus, a sentence which contains
a single key phrase twice ought to, on average, fair poorer
than a sentence which contains two distinct key phrases
once each. We accomplish this by multiplying by the
square-root of the count rather than just the count; thus,
additional instances of a key phrase increase the score of
a sentence, but always by an amount less than the prior
instance. The resulting scoring equation is as follows:

score(S) =
∑

w∈S

weight(w) ·
√

freq(w)

The final summary is then generated by selecting the
three highest-scoring sentences in the text, and concate-
nating them in the order in which they occur in the text.
We found that since our algorithm tended to pick longer
sentences from the text, choosing the best three tended to
produce summaries which had fairly varied content, but
with brevity. While the longer sentences naturally tend
to score higher, it is still a useful result, as longer sen-
tences are often used to link various indepentently occur-
ing ideas within a text.

4 Key-Concept Analysis

We refine our key phrase analysis by generalizing to a
notion of key concepts. Within a given text, many of the
key phrases will in some manner be related to a similar
concept. For example, in an article about engines, both
pistons and camshafts are parts of an engine, and thus
can be said to participate in the concept engine.

In order to implement our key concept analysis, we
employed WordNet. WordNet is an ontology; it con-
tains information linking words in the English language.
It stores many different types of relationships, such as
hypernymy, holonymy, synonymy, and sense. Langauge
processing systems which take advantage of WordNet
have information about words and language that is fun-
damentally richer than those that do not (Miller, 1998).

After experimenting with WordNet, and creating a pro-
totype summarization system without it, we found that
the only two relations which seemed to provide us with
useful information for summarization were hypernymy

and holonymy (-hypen and -hholn). Hypernymy iden-
tifies hierarchical “is a” relationships (thus a query for
“tabby” might return “tabby IS cat IS mammal IS animal
IS organism IS entity”), whereas holonymy returns a va-
riety of containment relationships, eg. “is a” or “part of”
in a non-hierarchical fashion (thus a query for “tabby”
might return “tabby IS A cat”, whereas a query for “pis-
ton” might return “piston PART OF reciprocating en-
gine”). In order to facilitate interfacing DUTCHMAN
with WordNet, we implemented a WordNet subsystem
which we termed FERNANDO.

Because our summarizer is not generative, there was
no good way to take advantage of noun phrases which
WordNet found to be related to the article, but which did
not appear in the article. Therefore, we use the Word-
Net analysis to reconsider the weights in the noun-phrase
frequency database, giving added weight to those noun-
phrases which represent concepts in which other noun-
phrases in the document participate. Thus, if the words
“cat”, “tabby”, and “calico” all appear in a document, the
score for “cat” would be increased because both “tabby”
and “calico” are identified as being kinds of “cat”. We
then select the 10 most salient key phrases based on the
adjusted weights.

This modified algorithm is reflected by adding an extra
step in relation to the base-system algorithm:

3a Use WordNet to modify key noun-phrase values
based on key-concept analysis

Our algorithm generates a tree of noun phrases for each
keyphrase. It then weights each noun phrase in the tree
based on the number of keyphrases in whose trees it par-
ticipates, and how directly it is linked to them. We wish to
favor relationships which are closer to the source words,
thus given the example “tabby IS cat IS mammal IS ...”,
if both “cat” and “mammal” occur in the document, we
wish to increase the score for “cat” more than the score
for “mammal”,because we are seeking to achieve the cor-
rect level of generalization which encompasses the salient
noun-phrases in the document and yet still addresses the
meaning of the document as a whole. An article might
contain “tabby”,“calico”, “siamese”, etc., and thus is
most likely about cats and not about mammals. How-
ever, an article which contains not only those words but
also “labrador” and “squirrel” is more likely about mam-
mals; here, despite the fact that the score for “cat” was
increased more than the score for “mammal” by the var-
ious types of cat, all words which are kinds of mammal
contribute to “mammal”,so in most cases “mammal” will
win out over “cat”.

For each noun-phrase considered in WordNet analysis,
we must now compute a score offset. In essence, we need
a decaying distance function for the relevant internode
distances, which we achieve with a decaying exponential.

65

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 63–68
Computer Science Department, Swarthmore College

Average Score
Document Random no WordNet WordNet
ADA 1.2 3.6 2.4
SAUDI 1.0 4.4 2.8
GW 2.6 3.6 2.8
ENGINE 1.2 1.8 1.6
PIRATE 1.6 4.0 2.8
Average 1.52 3.48 2.48

Table 1: Human-assigned summary scores

To determine the score offset for each noun-phrase N , we
then sum over each considered noun-phrases n, for each
adding its originally computed frequency weight times
the decaying distance function:

∆score(N) =
∑

n∈noun-phrases

freq(n) · αdistance(N,n)

where α, a constant, was empirically chosen to be 0.7, a
value which helped acheive the aforementioned desired
level of concept generalization.

5 Results

One of the inherent difficulties of the text summarization
problem is that it is rather difficult to evaluate quantita-
tively. What makes a summary “good” varies from per-
son to person and from document to document. Nonethe-
less, some attempt can be made to evaluate the quality of
a summary.

We selected a set of five test documents: an article
about the Americans with Disabilities Act (ADA), a text
regarding a Gulf-War era Iraqi occupation of a Saudi Ara-
bian town (SAUDI), a brief biography of George W. Bush
(GW), an excerpt from a text about engines (ENGINE),
and a brief article about pirates (PIRATE). For each, we
generated summaries both with and without using FER-
NANDO. In addition, in order to establish a baseline for
our system, we generated summaries based on purely ran-
dom selection of sentences.

Our first evaluation scheme involved getting a group
of human evaluators to score each summary on a scale
from 1 (bad) to 5 (good). The results of this evaluation
are displayed in Table 1. It is sadly apparent that FER-
NANDO seems more to detract than add to the quality of
a summary, but nonetheless both are notably better than
the results acheived by random selection.

Our second evaluation scheme involved using preci-
sion and recall metrics. For each document, human eval-
uators identified a list of what they felt were the ten most
relevant key noun phrases, and then each summary was
scored for precision and recall of this list. We calcu-
lated precision as the percentage of nouns in the sum-
mary which were in the key phrase list; in this manner,

Random
Document Precision Recall
ADA 25% 30%
SAUDI 13% 10%
GW 36% 50%
ENGINE 0% 0%
PIRATE 33% 60%
Average 21% 30%

Table 2: Baseline Precision and Recall

no WordNet with WordNet
Document Precision Recall Precision Recall
ADA 57% 90% 61% 90%
SAUDI 42% 100% 50% 100%
GW 31% 40% 23% 40%
ENGINE 63% 40% 48% 40%
PIRATE 45% 50% 43% 40%
Average 48% 64% 45% 62%

Table 3: Precision and Recall for test documents

we prevent the possible favoring of gibberish sentences
like “Engine engine engine.” Recall was simply the per-
centage of words in the list which were contained in the
summary. In the text summarization domain, a good re-
call score will indicate that a summary addressed the ma-
jor content elements of the document, whereas a good
precision score indicates that a summary is targeted and
concise. Arguably, recall is a more important metric than
precision in this domain, but both convey meaning re-
garding the quality of a summary. The baseline (random
summary) results are displayed in Table 2 and the actual
summary results are displayed in Table 3.

6 Discussion

On the surface, it appears as if incorporating WordNet
into our system has made it slightly worse rather than bet-
ter, as we get the same recall but, on average, slightly
worse precision. However, the engine and George W.
Bush texts presented unique challenges to summariza-
tion, being that the engine article contained many lists of
engine parts and very few summary-relevant sentences,
and the Bush text was just very short, which meant that
there were not enough key words present to make our
WordNet analysis particularly meaningful. This suggests
that perhaps the size of our keyword set needs to be
allocated dynamically based on document length rather
than constant. Also, in neither of the two problem cases
did the sentences in the article have any real unifying
themes, other than a very shallow description (“biogra-
phy of George Bush”, or “Mechanic’s Textbook”) which
was not actually present in the text. Thus, our use of
WordNet depends upon the assumption that the general

66

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 63–68
Computer Science Department, Swarthmore College

concepts relating the keyphrases actually be relevant to
the summary.

On a more qualitative level, the no WordNet vs. Word-
Net summaries tended to be similar, and in the Saudi and
ADA cases the WordNet ones provided more thorough
detail, according to the human readers. Thus, despite the
disappointing figures, analysis with WordNet did seem to
yield some positive results.

7 Future Improvements

It would be interesting to test the human readers to see
which documents they believed would be easier or harder
to summarize, and compare those figures to our precision
and recall figures for summarization with and without
WordNet. Based on the articles and summaries that we
have seen, we would guess that the articles which were
found to be more easily summarizable by human readers
would be the ones that the WordNet-aided summarization
system would do best on.

DUTCHMAN lacked pronoun resolution, which
severely hindered its performance. Since most suffi-
ciently complicated ideas will span multiple sentences,
and subsequent references of salient noun phrases are
typically substituted for pronouns, pronoun resolution is
key to derivative summarization (creating a summary di-
rectly out of excerpts from the text). Thus, a system
with pronoun resolution could see a signifigant jump in
its effectiveness. Additionally, DUTCHMAN lacked ro-
bust sentence splitting utility, and was thus often forced
to deal with sentence fragments rather than whole sen-
tences. Incorporating a more viable sentence splitter
would no doubt increase DUTCHMAN’s performance as
well.

Another direction would be to use WordNet on all the
noun phrases instead of just the statistically signifigant
ones. It seems like concept-webs such as were used in
the CRI summarizer might be an interesting way to aug-
ment our statistical data (Mani, 1998). As was remarked
earlier, we did not find examples of summarizers that did
symbolic analysis on a statistically selected subset, and
this could explain FERNDANDO’s confusing inability to
help DUTCHMAN.

Future tests would probably have to define a narrower
type of text to summarize; as we discovered, ontological
assumptions about content which were valid for certain
articles were invalid for others– in particular, it doesn’t
seem like biographies or instructional texts tend to yeild
to the same techniques as explanatory articles, which are
written with a more specific goal in mind. A larger testing
set, with a narrower range of article types, and a broader
base of human readers, with statistics on how well the
humans believed they summarized the articles, and com-
parisons of the sets of human-identified keywords, would
all aid in evaluating a summarizer.

8 Conclusion

Code-name DUTCHMAN is a fairly reasonable text sum-
marization system, for which further fine-tuning would
no doubt produce better results. Our addition of key-
concept analysis using WordNet has proved helpful in
some subjective cases, and further refinement of this tech-
nique, combined with other uses of WordNet, could facil-
itate the production of better summaries.

It is not clear whether methods that generate sum-
maries out of excerpts can overcome all difficulties. Since
the technique is limited by the quality of summarization-
grade sentences in the document, it will never be perfect
for certain types of documents. This is a problem that
non-productive summarizers have regardless of whether
they are statistical or symbolic. Many summarizations,
such as the popular Cliff Notes series, are designed to do
more than just abbreviate the text, but to paraphrase and
explain; it would be desirable to have a summarizer that
could do this. However, we do not have any belief that a
system like ours could function in this way without radi-
cal modifications.

References
Radu Florian and Grace Ngai. 2001. fnTBL. Johns Hop-

kins University, Baltimore, MD

Eduard Hovy, Chin-Yew Lin, Daniel Marcu.
2000. SUMMARIST: Automated Text Sum-
marization. http://www.isi.edu/natural-
language/projects/SUMMARIST.html

Jade Goldstein, Mark Kantrowitz, Vibhu Mittal, and
Jaime Carbonell. 1999. Summarizing Text Docu-
ments: Sentence Selection and Evaluation Metrics.
Carnegie-Mellon University and Just Research, Pitts-
burgh, PA

Inderjeet Mani, David House, Gary Klein, Lynette
Hirschman, Leo Obrst, Therese Firmin, Michael
Chrzanowski, Beth Sundheim. 1998. The TIPSTER
SUMMAC Text Summarization Evaluation. The Mitre
Corporation, McLean, VA

George A. Miller, Christiane Fellbaum, Randee Tengi,
Susanne Wolff, Pamela Wakefield, and Helen Lan-
gone. 1998. WordNet: a lexical database for the En-
glish language. Princeton University, Princeton, NJ

Ken Barker, Ylias Chali, Terry Copeck, Stan Matwin, and
Stan Szpakowicz. 1998. The Design of a Configurable
Text Summarization System. University of Ottowa, Ot-
towa, CA

Stan Szpakowicz, Ken Barker, Terry Copeck, J. F. Delan-
noy, and Stan Matwin. 1996. Preliminary Validation
of a Text Summarization Algorithm. University of Ot-
towa, Ottowa, CA

67

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 63–68
Computer Science Department, Swarthmore College

Appendix A: Sample Summaries

Here we include four summaries, both with and without
using FERNANDO for two documents, SAUDI and EN-
GINE, chosen to be representative of “good” documents
(SAUDI) and “bad” documents (ENGINE) for summa-
rization by DUTCHMAN.

SAUDI - No FERNANDO:

A fierce battle for this deserted coastal town ended today
when forces from Saudi Arabia and the emirate of Qatar,
backed by American artillery and air strikes, evicted Iraqi
troops and tanks, and freed two trapped U.S. reconnais-
sance teams. Marine commanders explained that Saudi
forces had responsibility for the defense of the border
area around Khafji, a town of 45,000 people on the Per-
sian Gulf about six miles south of the Kuwait frontier.
Marines provided artillery support and air strikes from
Cobra gunships, but did not participate in the on-again,
off-again ground battle, an occasionally tense confronta-
tion involving close-quarters encounters between tanks
and troops in the middle of town.

SAUDI - With FERNANDO:

A fierce battle for this deserted coastal town ended today
when forces from Saudi Arabia and the emirate of Qatar,
backed by American artillery and air strikes, evicted Iraqi
troops and tanks, and freed two trapped U.S. reconnais-
sance teams. Marine commanders explained that Saudi
forces had responsibility for the defense of the border
area around Khafji, a town of 45,000 people on the Per-
sian Gulf about six miles south of the Kuwait frontier.
But Marine Lt. Col. Garrett, supervising Marine fire
teams, supporting the Saudi counter-strikes, met with the
U.S. officer serving as liaison with the Saudi and Qatari
forces, who checked with Admire and called a meeting to
see if the Marine reconnaissance teams could be extracted
using a Saudi tank attack as cover.

ENGINE - No FERNANDO:

With the exhaust valve closed and the intake valve open,
the piston moves down in the cylinder as the engine
crankshaft turns. The operation of the four stroke cycle
style of engine depends on the timing of its valves and
their condition, on the piston rings, and on the cylinder
walls. This is the standard number per cylinder in almost
all four stroke cycle engines, with the exception of some
aircraft engines and racing car engines which have four
valves per cylinder.

ENGINE - With FERNANDO:

The operation of the four stroke cycle style of engine de-
pends on the timing of its valves and their condition, on
the piston rings, and on the cylinder walls. This is the

standard number per cylinder in almost all four stroke cy-
cle engines, with the exception of some aircraft engines
and racing car engines which have four valves per cylin-
der. This causes a partial vacuum in the crankcase to pre-
vent oil from being forced out of the engine past the pis-
ton rings, oil seals and gaskets.

Appendix B: DUTCHMAN’s Abstract

Here we have used the DUTCHMAN system to generate
an alternate abstract of the DUTCHMAN paper; the orig-
inal abstract, references, and appendices were excluded
from the source document; FERNANDO was used. All
things considered, this summary is terrible.

DUTCHMAN - With FERNANDO:

First, since it requires a large knowledge base in order to
function, the results do not generalize across languages
well. Many text summarization systems choose to adopt
such a restricted domain, and thus are able to exploit the
self-summarizing nature of such documents. A larger
testing set, with a narrower range of article types, and
a broader base of human readers, with statistics on how
well the humans believed they summarized the articles,
and comparisons of the sets of human-identified key-
words, would all aid in evaluating a summarizer.

68

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 69–77
Computer Science Department, Swarthmore College

Wordnet Wordsense Disambigioution using an
Automatically Generated Ontology

Sven Olsen
Swarthmore College

solsen1@swarthmore.edu

Abstract

In this paper we present a word sense disam-
biguation method in which ambiguous words
are first disambiguated to senses from an au-
tomatically generated ontology, and from there
mapped to Wordnet senses. We use the ”clus-
tering by committee” algorithm to automati-
cally generate sense clusters given untagged
text. The content of each cluster is used to
map ambiguous words from those clusters to
Wordnet senses. The algorithm does not re-
quire any training data, but we suspect that per-
formance could be improved by supplementing
the text to be disambiguated with untagged text
from a similar source. We compare our algo-
rithm to a similar disambiguation scheme that
does not make use of automatically generated
senses, as well as too an intermediate algorithm
that makes use of the automatically generated
semantic categories, but does not limit itself to
the actual sense clusters. While what results we
were able to gather show that the direct disam-
biguator outperforms our other two algorithms,
there are a number of reasons not to give up
hope in the approach.

1 Introduction

Word sense disambiguation algorithms are valuable be-
cause there are a number of tasks, such as machine trans-
lation and information extraction, for which being able
to perform effective word sense disambiguation is help-
ful or even necessary. In order to fully define the task
of word sense disambiguation (WSD), we need to know
the set of senses associated with a given word. What set
of senses ought to be associated with any word almost
certainly depends on the context we are working in. In
the case of automatic translation from English to another

language, the best sense set for each word should be influ-
enced by the set of translations of that word into the tar-
get language. Translation between distant languages such
as English and Inuit might require much finer sense dis-
ambiguation than would be needed when going between
related languages such as English and German.

WSD becomes a much more tractable problem when
we have some understanding of the semantics of the
senses that we are disambiguating. For this reason word
sense disambiguation experiments are usually do assum-
ing the sense sets of large ontologies such as Wordnet.
Using Wordnet senses gives researchers access to infor-
mation regarding the semantic relationships of the senses
of deferent words, and many WSD algorithms rely on
knowledge of these relationships. Using Wordnet senses
may also make the act of sense disambiguation more use-
ful. For example, an information extraction algorithm
may take advantage of the semantic content implied by
Wordnet senses.

However, there are a number of reasons why Word-
net might not be the ideal ontology for any given task.
If we try to use Wordnet in an information retrieval task
we may find that important technical terms are missing
(O’Sullivan, 1995). If we try to use Wordnet for machine
translation tasks, we may find that the sense distinctions
are too fine. In a perfect world, we would have a sep-
arate ontology specifically tailored for each task. How-
ever, compiling ontologies tends to be very difficult, and
so Wordnet is still the de facto standard for most WSD
experiments.

Naturally there is a demand for algorithms that can
automatically infer ontologies from text, thus providing
researchers with an infinite set of viable alternatives to
Wordnet. While no current automatically generated on-
tology can compete with Wordnet’s fine sense distinc-
tions, Pantel and Lin (2002) present an algorithm capable
of generative sense groups of a quality similar to those in
Roget’s thesaurus (2002). Unlike Wordnet, this automati-

69

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 69–77
Computer Science Department, Swarthmore College

cally generated ontology has no hierarchical information,
instead it simply provides groups of related words senses.

In this paper we present and algorithm which auto-
matically generates an ontology given untagged text, and
then disambiguates that text into the senses of the gener-
ated ontology. Thus we hope to provide researchers with
a context sensitive alternative to Wordnet based disam-
biguation. We also outline a method for converting our
senses to Wordnet senses. This allows us to disambiguate
text to Wordnet senses by first disambiguating to the auto-
matically generated senses, and then mapping the results
to Wordnet. Because we expect the automatically gener-
ated sense clusters to be coarser than those of Wordnet,
and because the act of generating the senses leaves our
algorithm with access to extra information regarding the
ambiguous senses, we expect that disambiguating to the
automatically generated senses will be easy.

There are ways in which our method of disambiguating
to Wordnet senses might have advantages over more di-
rect approaches. Because the senses used by our system
are inferred from the text to be disambiguated, we can
expect to avoid confusion caused by senses that never ap-
pear in our text. Additionally, our system has the advan-
tage of requiring no tagged training data. Mapping the
automatically generated senses to Wordnet senses may
be complicated by the fact that the generated senses are
coarser than Wordnet’s, however, we expect that the type
mistakes realized because of this to be similar to those
mistakes that a human would make when tagging text
with the often frustratingly fine Wordnet senses.

2 Related Work

Lin (1994) introduced PRINCIPAR, a broad coverage
English parser that works using a message passing model.
Among other things, PRINCIPAR can be made to output
a set of ”dependency triples” given any sentence. Recent
work done using MiniPar, PRINCIPAR’s publicly avail-
able successor, has shown that these dependency triples
prove quite useful in the context of a number of different
tasks.

Lin (1997) introduces an algorithm for word sense dis-
ambiguation based on information from MiniPar’s depen-
dency triples.

Lin (1998) includes an excellent articulation of the
means through which the syntactic information repre-
sented by the dependency triples can be used to infer
semantic knowledge. Papers such as our own and Pan-
tel and Lin (2002) tend to rush their descriptions of the
methods first outlined in this paper, and readers trying
to implement our algorithms for themselves will be well
served by referring back to it.

Pantel and Lin (2002) presents an algorithm in which
the information from the dependency triples is used to

automatically generate sense categories. The same pa-
per also proposes a method for evaluating the similarity
between sense categories and Wordnet. Using their own
similarity measure, Pantel and Lin found that the cate-
gories they created automatically were more similar to
Wordnet than Roget’s thesaurus.

3 Methods

3.1 Automatic sense clustering

In order to generate our ontology we have implemented
the method described in Pantel (2002). The starting point
of Pantel’s algorithm is the publicity available parser
MiniPar. For each sentence in our corpus, we use MiniPar
to generate a parse tree, and then from that tree infer a set
of dependency triples. Each dependency triple specifies
two words and the syntactic relationship between them.
For example, one of the triples generated by the sentence
”Bob drinks the wine” is [drink, verb/direct object, wine].
We call the construct [drink, verb/direct object,*] a ”fea-
ture”. The frequency of a feature for a given word w is de-
fined as the number of times that we see that feature with
w filling in the wildcard slot. Thus, if we see ”Bob drinks
the wine” in our corpus, one of the frequencies that we
increment is F[drink,verb/directobject,∗](wine). The fre-
quency of all features that ever appear with a given word
define that word’s frequency vector 1.

In order to quickly compile frequency information for
a large set of sentences, we use a number of sorted as-
sociative containers (STL maps)2. We use a map from
word-feature pairs to integers to represent a sparse ma-
trix that holds the frequencies of any word/feature pair.
We also use maps from strings to integers to store the
frequencies of each feature and word. We use yet more
maps, these from strings to vectors of strings, to store
lists of the features associated with every word, and con-
versely the words associated with every feature. The
map based representation of our data allows us to quickly
update frequency information given new sets of depen-
dency triples; O(log(n)) string comparisons are required
to lookup a value given the string key, and the data struc-
tures are such that it is easy to insert information corre-
sponding to novel words and features. But once all the
triples have been processed, our map based data structure
becomes needlessly inefficient. Therefore we convert as
much of the data as possible to an indexed representation,
assigning each word and feature an integer label, and col-
lapsing many of our maps to vectors (dropping lookup
time from O(log(n)) to O(1), and doing away with the

1The concept of feature frequency is explained with more
detail in Lin (1998), and with less detail in Pantel (2002).

2In order to properly analyze the space/time efficiency of our
algorithm, it need to be noted that the version of STL that we
use implements maps using red-black binary search trees.

70

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 69–77
Computer Science Department, Swarthmore College

need for expensive string comparisons)3.
The basic assumption at the heart of Pantel’s algorithm

is that semantic similarity will be reflected in the syntac-
tic information inherent in the feature frequency vectors.
In other words, if we see [drink, verb/direct object, wine]
a lot, and [drink, verb/direct object, beer] a lot, then there
is a good chance that beer and wine fit into the same se-
mantic category. We now outline a semantic similarity
measure which reflects this assumption.

For each word we compute its mutual information with
every feature, and store that information in a sparse vec-
tor. The equation for mutual information given a word w

and a feature f is

miw,c =
Fc(w)

N∑
i
Fi(w)

N ×

∑
i
Fi(w)

N

As you can see from the equation, the values that
were stored when compiling frequency information were
picked to make calculating each word’s mutual informa-
tion vector as fast as possible.

Following the suggestion in Pantel (2002), we multiply
our mutual information score by the following discount-
ing factor:

Fc(w)

Fc(w) + 1
×

min(
∑

i Fi(w),
∑

i Fi(w))

min(
∑

i Fi(w),
∑

i Fi(w)) + 1

The theory motivating this discounting factor was not
well explained in Pantel (2002), but because we admire
his results we follow Pantel’s lead.

We define the similarity between two words as the co-
sine similarity of the associated mutual information vec-
tors.

In order to perform the main clustering algorithm, we
create a matrix that caches the similarity between any
two words. Taking advantage of the sparse nature of
the dataset, we only calculate the similarity of words
which share a common feature (preliminary tests show
that this strategy allows us to compute the similarity ma-
trix roughly an order of magnitude faster than we could
using the naive approach). Had our similarity matrix cal-
culations gone too slowly, we could have further speed
up the process by applying the ”salient feature” heuris-
tic described in Pantel (2002), however never applied the
algorithm to a situation in which the extra speed was nec-
essary. Pantel refers to the processes of setting up the
similarity matrix as ”phase 1” of the clustering algorithm.

In ”phase 2”, the words’ mutual information vectors
are clustered using the ”clustering by committee” (CBC)

3Our source code is available for the benefit of readers inter-
ested in finding out more about the details of the data structures
used.

algorithm. The goal of CBC is to create large tight clus-
ters with the additional goal that the centroids of each
cluster not be too similar to each other.

The CBC algorithm is recursive. Given a set of ele-
ments E, each e ∈ E contributes a potential cluster com-
posed of between 3 and 12 of the elements most simi-
lar to e. Potential clusters are assigned a score equal to
the product of their size and their average pairwise sim-
ilarly. Ideally, we would like to find the highest scoring
subset of the set of e’s twelve most similar elements and
use it as e’s potential cluster. Unfortunately, performing
an exhaustive search of all possible subsets is computa-
tionally expensive. Performing hierarchical average-link
clustering seems like one reasonable way to attack the
problem, but we suspected that a straightforward greedy
search might perform better in practice. Thus our own
implementation of CBC uses the greedy search4.

Potential clusters are sorted according to their score.
The sorted list is then traversed, and each potential cluster
is added to the set of committees C (initially empty) on
the condition that its centroid not have a cosine similarity
of more than σ = .35 with any element of C. If C is
empty (which happens in the case that we were unable to
create any valid potential clusters in the previous step),
we return C.

We then define the set of residual elements R as all
e such that e does not have a similarity of at least θ =
.075 with any of the committee centroids. Finally the
algorithm is recursively called replacing E with R, and
we return the union of C and the result.

The algorithms now proceeds to phase 3. Once com-
mittees have been created, we generate our ontology by
assigning each word to some number of committees; each
committee is taken to represent a semantic category. The
assignment algorithm works as follows: for each word
w, we first select the top 200 committees with centroids
most similar to w’s mutual information vector. Of those,
we consider the committee with centroid most similar to
w to be w’s first sense. Then we remove the common
features of w and the centroid from w’s mutual informa-
tion vector. Now we look for another committee to add
w to that has a centroid similar to the new w vector. If
at any time the similarity between w and the most simi-
lar remaining cluster falls bellow some threshold (in our
case .05), we stop assigning senses to w. This method
allows us to assign words to clusters that represent very
rare senses of that word. Unfortunately, the algorithm is
very slow, as the similarity of each cluster to the word
vector must be recalculated after every step through the
loop.

4It is unclear what method Pantel (2002) uses to create the
potential clusters, our initial interpretation of the paper lead us
to believe that Pantel had used the hierarchical approach, but we
are no longer certain of this.

71

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 69–77
Computer Science Department, Swarthmore College

There are a couple of things worth noting about the
sense generating algorithm. The committees that a word
is assigned to in phase 3 have no immediate connection
to the committees that the word helped define, and every
word will likely be assigned to some committees that it
had played no part is creating. Note also that there is no
guarantee a word will be assigned even a single sense.

Given the committees representing its senses, disam-
biguating a given instance of a word is simple. We calcu-
late the implied feature vector of the instance of the word
as if the word instance were a novel word appearing only
once in the text. We then find the committee with a cen-
troid most similar to that vector, and say that the sense of
the word is the one associated with that committee.

3.2 Disambiguation to Wordnet Senses

Wordnet defines a number of relationships between word
senses. Our algorithms only make use of the hypernym
and hyponym relations. The hypernyms R of word w

are those r for which it is the case that ”w is a kind of
r”. Conversely, the hyponyms of w are the words P such
that ”p is a kind of w” is true. Thus, ’drink’ and ’ine-
briant’ are both hypernyms of a sense of ’wine’, whereas
’sake’ and ’vermouth’ are hyponyms of ’wine’. (Accord-
ing to Wordnet wine is polysemous, ’wine’ can also mean
a shade of dark red).

In order to link sense clusters created by CBC to Word-
net senses we need to decide what Wordnet sense is as-
sociated with every sense of every word in the automati-
cally generated ontology. To do this we search Wordnet
for semantic relatives of each ambiguous word’s senses
in order to find semantically similar words that have a
good chance of exhibiting the syntactic features that CBC
would have picked up on in the course of its sense cluster-
ing. We then find the centroid of that group of words, and
decide what Wordnet sense to associate each word’s CBC
sense with by comparing the centroid of the CBC sense’s
committee with the centroid of the group of similar words
gathered from Wordnet.

As an example, lets say that we some generate the fol-
lowing similarity group for the first sense of wine: {sake,
vermouth, champagne, burgundy}. The CBC cluster that
we will associate with the first sense of wine will be one
based on features that tend to arise around nouns that
specify alcoholic beverages. The similarity group for the
second sense of wine might look something like {yellow,
rose, pink, red}, and thus its centroid vector would be
filled with features that are associated with colors. Note
that if the text that we are using to generate our senses
does not have any instances in which ’wine’ is used to
describe a color, then we could expect that CBC never
added wine to a committee associated with color. In this
case we wouldn’t map any CBC sense to the second sense
of wine (and this is a good thing, as it will force all of our

disambiguations of the noun wine to be correct).
Clearly, our mapping method depends on having a

good way of creating similarity groups for a given sense.
In the case of wine’s first sense (vino), the set of hy-
ponyms is very large, and contains nothing but kinds of
wine. We would expect kinds of wine to turn up in the
same syntactic positions as the word ’wine’ itself, so in
this case using hyponyms as a similarity set is a good
idea. However, the second sense of wine (color), has no
hyponyms. What we want in this case for a similarity set
are the sisters and uncles of the sense, the hyponyms of
the hypernyms of wine (in this case, other kinds of red,
and other kinds of colors).

Using the case of wine as our only example, we might
conclude that the best way to develop a similarity group
for a word sense is to start by collecting its hyponyms,
and if they prove too small a set, expand to sister, uncle,
and cousin words. We want to avoid using words from too
high up in the tree, as ’intoxicant’ (one of the hypernyms
of wine-vino) is not likely to be used in the same sorts of
syntactic contexts as ’wine’.

But now consider the problem of creating a similarity
group for the word ’intoxicant’. Its hyponyms include
things like ’vodka’, which will likely have a very differ-
ent feature vector than ’intoxicant’. The words that we
want to see in a similarity group of ’intoxicant’ are things
like ’barbiturate’, ’inebriant’, and ’sedative’. These are
all sisters of ’intoxicant’.

Because the hyponym favoring approach runs into
problems in the case of high level words such as intox-
icant, we adopt a method for gathering similar words in
which we favor sister words above all else5, and expand
the similarity group to include both daughters and cousin
words if we can’t find enough sisters to make an informa-
tive centroid. Here a similarity group is considered to be
”informative” if it contains 15 words for which we have
gathered frequency information.

One interesting question is whether or not to limit the
allowed members of a similarity group to monosense
words. In the case of wine-color, two of its sister words
are ’burgundy’ and ’claret’, both of which also hyponyms
of wine-vino. This example demonstrates a potential
problem for our algorithm, if we happen to create a sim-
ilarity group containing many polysemous words with a
shared second sense, the similarity group might create a
centroid closer to that second sense than to the one that

5It should be mentioned that the first words added to a sim-
ilarity group are the synonyms. This is a byproduct of the fact
that a word’s first sister is itself. The Wordnet C library returns
its search results in the form of word sets; each set contains
a word sense and all of that sense’s synonyms. Thus the first
search result returned when we look for a word’s sisters con-
tains all of that word’s synonyms. While we do not consider a
word to be part of its own similarity group, we do add all of its
immediate synonyms.

72

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 69–77
Computer Science Department, Swarthmore College

we were trying to represent. We have experimented with
limiting similarity groups to monosense words, but found
that because most of the words in Wordnet seem to be
polysemous, the monosense restriction cripples our algo-
rithm’s ability to come up with similarity groups of any
significant size.

3.3 Direct and Semi-Direct Wordnet
Disambiguation

We have created a direct disambiguation algorithm to
compare with our algorithm for disambiguation via CBC
senses. Our CBC dependent disambiguation algorithm
works by creating a feature vector for the instance of the
word to be disambiguated, then finding the CBC sense
group closest to that vector, and finally finding the Word-
net similarity group closest to the sense group. The di-
rect algorithm just matches the word instance vector with
the closest Wordnet similarity group. Thus, comparing it
with our CBC algorithm provides a measure of whether
or not mapping to the automatically generated sense is
helping or hurting us.

Similarly, we can modify the CBC dependent algo-
rithm by substituting the entire set of committees gen-
erated in phase 2 for the set of CBC senses associated
with the word. This algorithm allows us to avoid the ex-
pensive computation costs inherent in phase 3. Because
the ”semi-direct” approach has the potential to take ad-
vantage of some of the advantages of using an automati-
cally generated ontology (because we are moving first to
a coarse sense we can hope that our mistakes will be be-
tween senses with similar meanings). However, because
of the large number of potential committees, it is likely
that the vector that we end up matching with the Wordnet
simgroups will be reasonably similar to the vector that we
started with, and for this reason our results should tend to
be more like those from the direct approach than those
achieved using the CBC senses.

3.4 Evaluation Method

We have tested our algorithms using the SEMCOR cor-
pus, our version of which was created by transforming the
tags of the Wordnet 1.6 version of SEMCOR to Wordnet
1.7 senses. We comparing our algorithm’s disambigua-
tion of polysemous nouns and verbs with the SEMCOR’s
stated correct senses. All of our word/feature frequency
statistics are generated from SEMCOR sentences. To
evaluate our performance on a given sentence, we need to
align MiniPar’s parsing of the sentence with the answers
from SEMCOR. This alignment process is necessarily
imperfect. Sometimes MiniPar incorrectly identifies the
part of speech of a word, and when that happens none of
our algorithms have a chance of correctly disambiguating
it. In the case that MiniPar incorrectly claims that a word
which is not a verb or a noun is one, the extra word makes

sentence alignment difficult. We have implemented some
fairly simple algorithms that attempt to identify and throw
out all such cases. MiniPar will also group words that it
feels denote a single concept. For example, ”Fulton Su-
perior Court Judge” is stored as two words in SEMCOR,
but MiniPar treats it is as a single word. In order to make
sentence alignment as easy as possible, and avoid many
of these kinds of cases, we ignore all proper nouns. Once
sentence alignment is complete, we are left with a set of
nouns and verbs, their correct Wordnet senses as provided
by SEMCOR, and their MiniPar parse tree indices. Those
indices are used to gather the related dependency triples,
which in turn are feed to our various disambiguation al-
gorithms.

4 Results

4.1 Wordnet Similarity Groups

All of our disambiguation algorithms rely on the Word-
net simgroups. However, a brief investigation of the sim-
ilarity groups returned by our program demonstrate some
worrisome trends. For example, we sometimes fail to find
large similarity groups for common senses of words. The
simgroup for the first sense of the verb ”know” (to be
cognizant of information) is:
realize,recognise, recognize.
On the other hand, obscure senses of words can turn
up much larger similarity groups. The biblical sense of
”know”, has the similarity group:
bang, bed, breed, do it, fuck, jazz, love, make out, mount,
nick, ride, screw, serve, service, tread.
Notice that as feared, many of the words in the similar-
ity group are polysemous, representing relatively obscure
senses of other words.

Another nasty case comes up when an obscure sense
of a word has a meaning very close to that of a more
common sense. For example, the 11th sense of ”know”
(to perceive as familiar), has a similarity group very close
to that of the first sense:
recognise recognize refresh review.

4.2 Disambiguation Performance

For each of the disambiguation methods that we tested:
direct, CBC sense based, and semi-direct, we gathered
a number of statistics. We store the number of polyse-
mous words which were of sense 1. This allows us to
compare our results to the baseline method of assigning
each word to its most common sense. We also record the
performance of a disambiguator that simply selects a ran-
dom valid Wordnet sense to assign to each word. Finally
we store performance for a third baseline disambiguator,
one that uses a ”qualified random” approach. The idea
here is that we select randomly between the valid dis-
ambiguators for which we can find non-empty similarity

73

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 69–77
Computer Science Department, Swarthmore College

groups. Such a disambiguator is useful for figuring out
how much our success is being influenced by the fact that
some word senses are ruled out in the similarity group
generation phase.

Because the algorithms used were extremely memory
greedy, unix tended to kill the processes after they had
run for about an hour. However, one hour was enough
time for our experiments to collect a reasonable amount
of data, though the trials varied slightly in length depend-
ing on what other processes were competing for memory
space.

Properly summarizing our results is made more
complicated by the problems inherent in word align-
ment. For example, during our evaluation of the direct
disambiguator we successfully aligned 54941 nouns and
verbs. 2715 words were discarded because SEMCOR
and MiniPar disagreed about whether the word was a
noun or a verb, and 8486 more of them were discarded
because they were monosense. This information, along
with performance statistics for the direct disambiguator
and the 3 baseline disambiguators is given in tabular
form below (percentages for monosense words and POS
error are calculated relative to the total number of aligned
words, while percentages for disambiguator performance
are calculated relative to the number of attempted words):

Number of Words Percent
Monosense 8486 15.5
POS error 2715 4.9
Attempted 43740 79.6

Direct Disambiguator 14591 33.3
Random Choice 10082 23.0

Qualified Random 10244 23.4
First Sense 28392 64.9

Here are results for the semi-direct disambiguator.

Number of Words Percent
Monosense 9210 15.3
POS error 3039 5.0
Attempted 47758 76.6

Semi-Direct Dis. 13434 28.1
Random Choice 10941 22.9

Qualified Random 11118 23.3
First Sense 31029 64.9

The CBC based disambiguator often found itself
trying to disambiguate words that had no associated CBC
senses. Thus we recorded compiled two scores for this
disambiguator, one in which we only recorded success
when a CBC senses existed and we used it to successfully
disambiguate the word, and ”augmented” score in which
we had the disambiguator return sense 1 in all cases
where no sense cluster was associated with the word.
We also have data for the precision and recall values of
the CBC disambiguator data, though they don’t fit nicely

into our chart. Recall was 27.2%, and precision was 35%.

Number of Words Percent
Monosense 3570 15.4
POS error 1015 4.4
Attempted 18639 80.3

CBC Dis. (augmented) 10149 54.5
CBC Dis. (pure) 1778 9.5
Random Choice 4447 23.9

Qualified Random 4515 24.2
First Sense 11973 64.2

5 Conclusions

5.1 Wordnet Similarity Groups

All of our algorithms depend heavily on the similarity
groups for the sense of each word. Given the problems
we saw in simgroup generation, it is surprising that any
of our algorithms performed better than chance. In our
future work section we speculate on some ways that the
similarity groups could be improved, and we imagine
that all our algorithms would perform significantly bet-
ter given better similarity groups.

5.2 CBC

The constant terms that we used in our implementation
of CBC were taken from one of Pantel’s later implemen-
tations of the algorithm. There is always a chance that
the algorithm might have performed better given differ-
ent parameters, but in this case it seems more likely that
the problem lies in the size of our corpora. Pantel (2002)
uses a 144 million word corpora to generate the frequency
information provided to CBC, the SEMCOR data that we
used contains slightly under a million words. It is also
worth noticing that the corpora used in Pantel (2002) was
a composition newspaper texts, while the Brown corpus
data that makes up SEMCOR comes from a wide range of
sources, including press releases and a number of differ-
ent fictional genres. The heterogenous character of SEM-
COR probably increased the number of different word
senses used in the text, therefore making the sense clus-
tering task more difficult.

5.3 Comparison of the Algorithms

The most comforting number in the performance statis-
tics is the very low percent of part of speech errors. This
indicates that MiniPar is doing its job reasonably well,
providing a solid foundation for our algorithms to work
off of. The best performance that we ever see comes from
the ”always pick the most common sense” baseline. This
is disheartening, but given the poor quality of the sim-
ilarity groups and the problems we encountered apply-
ing CBC to a dataset as small as SEMCOR, it is impres-
sive that any of our algorithms we do better than random

74

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 69–77
Computer Science Department, Swarthmore College

chance. The fact that the qualified random disambigua-
tor performs about as well as the random disambiguator
is also heartening, as it implies that the gaps in our sim-
ilarity sets are not making the disambiguation problem
significantly harder or easier. Thus, what success the al-
gorithms do achieve beyond the random baseline is solely
the function of their ability to use the syntactic informa-
tion inherent in the dependency triples to infer semantic
relationships between words.

The direct and semi-direct algorithms both solidly out-
perform random choice, and this gives us cause to hope
that if the issues with similarity group creation could be
worked out, we would be left with a complete system ca-
pable of outperforming the ”most common sense” base-
line.

The results for the CBC based disambiguator look
rather miserable at first glance, as the pure version per-
forms worse than random chance. However, it is worse
noticing that most of the errors are due to the failure
of our application of CBC to create sense cluster, and
that problem is a result of the small dataset size. So
we can hold out hope that given a large corpus to sup-
ply supplementary frequency information, the CBC al-
gorithm might achieve much higher performance. It is
worth noticing that in those cases where it has sense
clusters available to it, the CBC based algorithm has a
precision higher than either of the previous two algo-
rithms. We had hoped that the low precision CBC al-
gorithm could be combined with the highly successful
”most common” baseline. While this project didn’t pan
out (the ”augmented” version of CBC is less effective
than the ”most common” baseline), we can always hope
that given larger corpora and better similarity groups, we
could have achieved better results.

The fact that the direct disambiguator outperforms that
semi-direct disambiguator does not necessarily mean that
the semi-direct disambiguator is in all ways worse than
the direct disambiguator. Remember that one of the ad-
vantages that we hoped to see in the semi-direct disam-
biguator was errors which had a higher tendency to be
mistakes confusing semantically similar senses of a word.
However, we had no way of adjusting our results to take
into account semantic similarity. While unencouraging,
the performance scores alone are insufficient to disprove
our hypotheses.

6 Future Work

There are a couple of ways in which the generation of
simgroups for Wordnet senses could be improved. At
the moment, we have only experimented with methods
for generating senses which have a fixed ”profile”. That
is to say, all word senses prefer to have their similarity
groups filled with some predefined set of relatives. As
we have implemented our algorithm, sisters are preferred

over everything else, first order children over cousins, and
the most distant allowed relatives are third order cousins.
One could imagine changing the set of preferred relations
in hopes of getting better results. However, it seems to
us that the right thing to do would be to build an adap-
tive algorithm that first inferred a word’s position in the
synsnet, and then used that information to define the ap-
propriate profile. Designing such an algorithm would be
a reasonably large project, we would attack the issue by
coming up with a loose parametrization for a family of
such adaptive algorithms, and searching that parameter
space for the values that maximized the performance of
our direct disambiguator.

One of the problems that we observed in our similarity
groups was the tendency for rare senses of a word to have
simgroups very similar to those of much more common
senses. Wordnet contains sense frequency information
for each of a word’s senses, and we would imagine that
our disambiguation methods could be improved by taking
advantage of that information when mapping a word in-
stance vector to a Wordnet simgroup; the algorithm could
be designed to only return a rare sense in the case that the
match was very good, other wise a more common sense
of the word would be preferred.

In the course of implementing the CBC algorithm, we
saw a couple of ways in which it might be interesting
to modify the algorithm. For example, in phase 3, CBC
completely removes feature elements included in the cen-
troid of a matched committee. However, it might be more
reasonable to subtract the centroid from the word vec-
tor, then set all the negative terms to 0 (we thought this
seemed like a better way of defining the ”residue” of a
vector). We also suspected that it might be interesting to
enforce the ”distance from all other committees” restric-
tion in phase 2 of the algorithm relative to all previously
generated committees, instead of just those committees
generated in that iteratation of the algorithm. Both of
these modifications to CBC would be easy to implement,
and we would like to see how these changes to the algo-
rithm would effect both the generated senses clusters and
the performance of our disambiguation algorithms.

If the problems hampering our system could be over-
come, it would be interesting to compare our results to
those achieved by the disambiguator presented in Lin
(1997). It represents another ”direct approach” that
works on principles rather different that those that we
used, though like our own algorithms functions based
only the dependency triple information.

It is interesting to note that unlike Wordnet, the on-
tology generated in Pantel (2002) had high coverage of
proper nouns, which could make it more suitable for MT
tasks. Al-Onaizan (2000) describes a case in which being
able to guess whether an unknown proper noun is more
likely naming a town or a militia group can improve MT

75

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 69–77
Computer Science Department, Swarthmore College

performance. We did not test the performance of our dis-
ambiguators on proper nouns, though the only thing that
prevented us from doing so was a set of relatively minor
technical concerns involving word alignment. If those
concerns were overcome, it would be very interesting to
see how our algorithms performed in the limited case of
proper noun disambiguation.

If we could prove that the CBC based disambiguation
system was making different sorts of mistakes than the di-
rect disambiguation system, it would almost certainly be
worth trying to create a hybrid model in hopes of com-
bining the advantages of both approaches. Such a system
could be implemented by a voting algorithm as in Flo-
rian and Wicentowski (2002). It also worth considering
ways in which CBC could be modified to produce clus-
ters that are more appropriate for mapping to Wordnet
senses. One obvious modification on the current system
would be to repeatedly run CBC on SEMCOR in order
to find the similarity thresholds for sense clusters that im-
ply sense distinctions most like Wordnet’s. If we found
that the CBC algorithm was lumping two common Word-
net senses together, we would try increasing the degree to
which CBC demanded tight clusters.

Another idea would be to generate our ontology using a
clustering algorithm in which sense clusters are initially
seeded in a way that reflects Wordnet senses. The sim-
plest way to do this would be to run a k-means clustering
algorithm with initial clusters created from Wordnet sim-
groups. One might try to incorporate some of the ideas of
CBC into such an algorithm by forcing clusters to have a
certain degree of difference from each other.

What we have done in our experiments is to measure
the extent to which disambiguations using CBC senses
clusters can be effectively mapped to disambiguations for
Wordnet senses. However, it might be interesting to de-
sign an experiment that tries to go the other way: we
could run an off the shelf Wordnet disambiguation al-
gorithm and then map the results to sense tags in the
automatically generated ontology. If Wordnet-to-CBC
worked well, but CBC-to-Wordnet worked less well, then
we would be able to speculate that CBC was creating
senses using a notion of semantics similar to Wordnet’s,
but with uniformly coarser sense distinctions. How-
ever, if Wordnet-to-CBC worked less well than CBC-to-
Wordnet we might start to wonder if Wordnet was miss-
ing some interesting relationships between words that
CBC was somehow picking up on (given the results in
Pantel (2002) it seems likely that this wold be the case
for proper nouns).

One of our hypotheses was that the sorts of mistakes
that might be made by our system would be the result
of confusion between two similar senses of a word. We
further hypothesized that a human attempting to disam-
biguate words to Wordnet senses would be likely to make

mistakes on the same cases that give our system the most
trouble. It would be very interesting if these hypothe-
ses were true, however we lack the funding to properly
test them. If we had a couple of graduate students at our
disposal, we could set them on the task of hand tagging
chunks of SEMCOR. Then we could directly compare the
humans’ errors with our system’s, as well as with other
more direct WSD systems. Instead of merely paying at-
tention to overall correctness, we would attempt to de-
termine, as in Pedersen (2002), which cases were found
most difficult by which systems, and whether or not our
system made mistakes that were more ”human-like” than
those of the other statistical systems. If gradstudents
proved to be unavailable, a large amount of word aligned
text from different languages could be used as in Chugur
and Gonzalo (2002) to develop a notion of sense similar-
ity. Our hypothesis would be supported if most of our
system’s errors came from labelings with high similarity
to the proper label, while a more conventional system ex-
hibited errors with varied similarity.

References
Al-Onaizan, Y., Germann, U., Hermjakob, U., Knight,

K., Koehn, P., Marcu, D. and Yamada, K. 2000. Trans-
lating with Scarce Resources. The 17th National Con-
ference of the American Association for Artificial In-
telligence (AAAI-2000), Austin, Texas.

Irina Chugur and Julio Gonzalo. 2002. A Study of Poly-
semy and Sense Proximity in the Senseval-2 Test Suite.
In Word Sense Disambiguation: Recent Successess and
Future Directions, Proceedings of the 40th Meeting of
the Association for Computational Linguistics, pp. 32-
39.

R. Florian and R. Wicentowski. 2002. Unsupervised Ital-
ian Word Sense Disambiguation using Wordnets and
Unlabeled Corpora. In Word Sense Disambiguation:
Recent Successess and Future Directions, Proceedings
of the 40th Meeting of the Association for Computa-
tional Linguistics, pp. 67-73.

Denkang Lin. 1998. Automatic Retrieval and Clus-
tering of Similar Words. COLING-ACL98, Montreal,
Canada. August, 1998.

Denkang Lin. 1997. Using Syntactic Dependency as Lo-
cal Context to Resolve Word Sense Ambiguity. In Pro-
ceedings of ACL-97. Madrid, Spain. July, 1997.

Denkang Lin. 1994. PRINCIPAR—An Efficient, broad-
coverage, principle-based parser. In Proceedings of
COLING-94. pp. 42-488. Kyoto, Japan.

D. O’Sullivan, A. McElligott, R. Sutcliffe. 1995 Aug-
menting the Princeton WordNet with a Domain Spe-
cific Ontology. In Proc. Workshop on Basic Ontolog-
ical Issues in Knowledge Sharing, International Joint

76

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 69–77
Computer Science Department, Swarthmore College

Conference on Artificial Intelligence (IJCAI-95), Mon-
treal, Canada.

Patrick Pantel and Dekang Lin. 2002. Discovering Word
Senses from Text. In Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining
2002. pp. 613-619. Edmonton, Canada.

Ted Pedersen. 2002. Assessing System Agreement
and Instance Difficulty in the Lexical Sample Tasks of
Senseval-2 Appears in the Proceedings of the Work-
shop on Word Sense Disambiguation: Recent Suc-
cesses and Future Directions. In Word Sense Disam-
biguation: Recent Successess and Future Directions,
Proceedings of the 40th Meeting of the Association for
Computational Linguistics, pp. 40-46.

77

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 78–83
Computer Science Department, Swarthmore College

A Connectionist Approach to Word Sense Disambiguation

Andy Zuppann
Swarthmore College

CS97: Senior Conference on Natural Language Processing
zuppann@cs.swarthmore.edu

Abstract

Effective word sense disambiguation can play
a crucial role in several important computa-
tional linguistic tasks. Problems such as infor-
mation retrieval and machine translation rely
upon accurate tagging of word senses. This pa-
per will present an English word sense classi-
fier based upon connectionist models of learn-
ing and behavior. Results perform compara-
bly with state of the art statistical approaches
in finely grained word sense disambiguation.

1 The Problem of Word Senses

One interesting feature of language, at least from a com-
putational linguistic standpoint, is its inherent ambiguity.
Native speakers of a language have very little problem
adjusting to potentially ambiguous statements, but both
non-native speakers and computers face the difficulty of
extracting a specific semantic meaning from statements
that could have several.

An archetypical example of this lexical ambiguity is
found in the word ’plant.’ Given a sentence:The plant
lived in the chemical plant, a computer attempting, say
machine translation, should be aware that each usage of
plant in the sentence represents a different sense of the
word - in this case, the difference between a living plant
and an industrial plant. It is important to correctly iden-
tify these difference because the ambiguity is unlikely to
be exactly duplicated in the target language. For instance,
the French word for the living plant isplante, while the
word for the factory plant isusine. Clearly, a correct
translator needs to be able to resolve any sense ambigu-
ity. This paper will describe one such approach for un-
tangling this problem based around neural networks and
connectionist models.

2 Previous Work

Standard approachs to this problem have been developed
using statistical methods. Various approaches include
utilizing assumptions about one sense per discourse and
one sense per collocation (Yarowsky, 1993), (Yarowsky,
1995). More recent work challenges and develops these
assumptions into complicated statistical models based on
topicality and locality of context surrounding a target
word to be disambiguated. These models all rely on ex-
plicit calculations of the relevance of given context.

One major exercise in disambiguating word senses has
been the SENSEVAL project. By preparing corpora in
English and several other languages, the program’s de-
signers hope to create a forum for comparing the per-
formance of several approaches to the same problem.
By specifying exactly the training and testing data for
the classifier systems to use, discrepancies between data
and results across experiments should be ameliorated and
there should be a fair comparison of all the system’s dis-
ambiguating capabilities. The results of this approach
have been promising, and it appears that the state of the
art for word sense disambiguation is 75-80% success both
in precision and in recall (Kilgarriff, 1998). Furthermore,
by making the training and testing corpora used in the ex-
ercise widely available, SENSEVAL allows researchers
to test and compare new methods against a solid baseline
of other systems’ performances.

The hypothesis of my work is that, instead of relying
on human generated statistical models, a connectionist,
developmental approach can yield as good, if not bet-
ter, results. The foundations of this approach are strongly
motivated by a desire to base learning and development
in machines on our understanding of our own develop-
mental process and root the learning in biological plau-
sibility. Additionally, studies suggest that this approach
can be as successful as other, more traditional approaches
to problem solving such as Markov chains and decision
trees (Quinlan, 1994).

78

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 78–83
Computer Science Department, Swarthmore College

Although most of the previous work has been focused
on resolving sense ambiguity using statistical methods,
there still exists substantial evidence that a connectionist
approach can lead to comparable results within this par-
ticular domain. For instance, Mooney (1996) compares
several available word sense classifiers, and out of 7 pos-
sible classifiers, a neural net approach tied for best. In
this paper, Mooney used a simple perceptron network to
disambiguate instances of the word ’line.’ The network
performs comparably with a Naive Bayesian approach
to disambiguation and signficantly better than five other
methods, achieving a 70% precision rate. In addition, the
neural network approach both trained and tested faster
than the Naive Bayesian system.

A separate study also reported a neural net having a
high success rate in identifying the meanings of the words
’line,’ ’serve,’ and ’hard’ (Towell and Voorhees, 1998).
The study created topical and locational information net-
works and combined their output to create effective sense
classifiers. The topical approach used general context
information surrounding a target word. Each word sur-
rounding the ambiguous word in the testing set is given
an input into the node, but there is no encoding of any
words relation to the target, just that it appears in a simi-
lar context.

The locational encoding used by Towellet al is a more
intricate approach which, when encoding words, affixes
locational information. Using their example, the sen-
tence ”John serves loyally” becomes the set [-3zzz -2zzz
-1John 0serves 1loyally 2. 3zzz]. This affixation mas-
sively expands the vocabulary of context words around
a target word to contain locational information for each
word. Every word within this expanded vocabulary is
given its own input node to the network. The locational
approach permits a network to uncover for itself not only
what context is important, but whether relative location
matters as well for disambiguating words. This approach
worked extremely well for its three target words, averag-
ing an 86% success rate. This is not altogether surprising,
given the rather coarse senses used in their experiment.

My research reported here, to a large degree, is an at-
tempt to reproduce Towellet al’s topical neural network
model and apply it to a different set of training data.
In doing so, I plan to provide two important contribu-
tions. One, I will put a neural network model for word
sense disambiguation in the context of a previously im-
plemented general word sense exercise comparing differ-
ent attempts at disambiguation. This will permit accu-
rate comparisons of a neural network to other approachs
within a broad framework. Secondly, I hope to test the
general connectionist framework for sense tagging in a
relatively fine-grained sense environment.

SENSES

TOPICAL INFORMATION

Figure 1: Network Model

3 The Classifier

This section will describe the specifics of my approach.
First, the architecture of the network model will be de-
scribed. Second, the data for training and testing my clas-
sifier will be covered. Finally, I will describe the learning
method for the network.

3.1 Model

The classifier presented is a very simple neural network
comprised of only perceptrons linking topical input to
sense output. This idea is based on Towell and Voorhees,
who describe a similar system performing - somewhat
surprisingly - best without any hidden nodes in the net-
work (Towell and Voorhees, 1998). Indeed, other re-
search into this subject reveals that the poor performance
of networks with hidden layers is pervasive (Mooney,
1996)

Given that I will be testing neural networks on their
performance on several different potentially ambiguous
words, a separate network is required for each. The rea-
son for this is clear when one considers the nature of
a single network’s inputs for this task. Each network
must be able to disambiguate a word’s meaning based
around that word’s particular context and choose out of
the word’s available senses. This requires the network to
have unique inputs and outputs for any target word. To
disambiguate a new word, a new network with its own
unique parameters must be created and trained.

The general architecture of this model is graphically
depicted in Figure 1. A given network will consist of
a fixed number of input nodes. The number of input
nodes will correspond to the size of the context vocab-
ulary found in the corpus. Any word that appears in a
sentence along with the target ambiguous word will have
an associated node.

When confronted with an ambiguous word, the net-

79

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 78–83
Computer Science Department, Swarthmore College

work will collect all the words in the surrounding sen-
tence and create an associated vector. This vector will
have the length of the vocabulary, and the topical words
will have their associated nodes set to 1.0. Other nodes,
i.e., words that do not occur in topical context of the cur-
rent target, will have their activation set to 0.0.

The output of the network will simply be one node per
available sense of the word. The node with the highest
activation after the network has analyzed the topical input
should correspond to a given sense. This sense, then, is
the network’s classification of the presented instance of
the target word.

One important feature of the network is that its struc-
ture almost necessitates that recall on tests will be 100%.
Although a perfect word sense disambiguator would cer-
tainly have recall that high, current efforts have a much
lower recall(Kilgarriff and Rosenzweig, 2000). In my
network, the precision-recall trade-off can be approxi-
mated by setting a threshold of certainty on the output
nodes. In other words, during testing, the network only
reports results if the highest activated node is greater than
all other nodes by a certain margin. Clearly, if two output
nodes have similar activation then the system is having a
difficult time choosing between the two senses and preci-
sion could be improved by not having to tag that instance.

3.2 Data

The data used for training and testing my model comes
directly from the SENSEVAL exercise - now referred
to as SENSEVAL-1 (Kilgarriff, 1998), (Kilgarriff and
Rosenzweig, 2000). The exercise was intended to com-
pare the effectiveness of several different word sense
disambiguators on similar data. For the first SENSE-
VAL, words were seperated lexically before being disam-
biguated, an approach that fits nicely with my necessity
of having one network model per word. The dictionary
and corpus for the exercise come from a project called
HECTOR, which involved the creation of a comprehen-
sive hand-tagged sense corpus concurrently with the de-
velopment of a robust dictionary of word senses.

Although SENSEVAL included several different
words to disambiguate, I focus on only five of them.
Their selection was based primarily on the relative abun-
dance of both training and testing data. My model at-
tempts to disambiguateaccident, band, brilliant, sanc-
tion, andslight. Although the HECTOR sense tags are
too fine to recreate here in great detail, Table 1 presents a
few examples of ambiguities in the target words. A more
complete analysis would undoubtedly test on the entire
set of SENSEVAL words. It is unfortunate that, given the
large training time for a network, I was unable to test my
system on the entirety of the SENSEVAL data.

For each word, the SENSEVAL exercise provided
training data, a dictionary, testing data, and a gold stan-

word example meanings

accident by chance
collision

band musical group
ring

brilliant showy
vivid

sanction allow
economic penalty

slight tiny
least (superlative)

Table 1: Ambiguities in Target Words

word Vocabulary Size # of senses

accident 6129 11
band 8111 22
brilliant 3783 11
sanction 1125 5
slight 3344 8

Table 2: Data Attributes

dard for answers. My system uses all of these directly
from the experiment. The resulting network inputs for the
training data corresponds to a varied vocabulary range,
from a little over 1000 forsanction to over 8000 forband.

One final and important note about the SENSEVAL
taggings is that they are extremely fine. In particular,
band had over 20 different possible senses defined, and
the other words, although not as extreme, also had nu-
merous possible senses. This clearly makes the tagging
a more substantial challenge than in other connectionist
approachs (Towell and Voorhees, 1998) that use a very
limited number of possible sense tags. Table 2 reports
the number of senses and vocabulary sizes for the words
tested.

3.3 Learning Method

The learning method for a given network is the standard
error backpropagation method used in teaching neural
networks. After feeding the network a training input, the
resulting output is compared to the expected output, error
is computed, and weights and biases are adjusted accord-
ingly.

One useful indicator for ending learning is the conver-
gence of error of the network to a steady state. Using this
as a basis, my network would train until error reached
an asymptotic level. In general, this means the networks
would learn for 15 to 20 epochs, seemingly quite fast.
Given the size of the training set and the speed in training
perceptrons, this is not altogether surprising.

80

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 78–83
Computer Science Department, Swarthmore College

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Figure 2: Precision-Recall Performance forsanction

word precision F-Measure

accident 70.4% 82.6%
band 64.4% 78.4%

brilliant 32.9% 49.5%
sanction 55.6% 71.5%
slight 69.7% 82.1%

average 58.6% 72.8%

Table 3: Performance with 100% Recall

4 Results

After training five different networks to disambiguate the
target words, I was able to test the network’s performance
on the SENSEVAL test sets. The test sets were generally
substantially smaller than the training sets. Initial testing
results are reported in Table 3.

Again, it should be noted that the architecture of the
neural net is set up to give 100% recall. For any given
test sentence, a particular output node will be activated to
a greater extent than any other output node. This 100%
recall can be a problem, as most effective word sense dis-
ambiguators have a much lower recall. Nonetheless, per-
formance is still quite good on all words except for bril-
liant. Also, the system’s perfect recall leads to rather high
F-Measures.

Given the potential problem that 100% recall is caus-
ing, a next step in testing was to try to lower the recall
rate and raise precision. To do this, it was necessary to

give the system the capability to tag a particular word as
’unknown.’ I implemented this functionality by creating
a threshold value to determine the certainty of the net-
work’s output. If the difference between the two highest
activated output nodes was not greater than the threshold,
then the system has an unacceptable degree of uncertainty
about its output and chooses not to tag the word.

Adding this threshold technique for determining sense
outputs, precision should be increased. To test the ef-
fectiveness of the threshold, I sampled a range of thresh-
olds to plot the relation between recall and precision. We
would expect to see an inverse relation. As the network
stops tagging words that it is relatively unsure of, its re-
call falls but, since certainty of its taggings is higher, pre-
cision has likely increased. The test of this hypothesis
is reported in Figure 2. Using the network trained to
disambiguate the wordsanction, increasing the certainty
threshold causes a fall in recall and a rise in precision, the
expected result.

Although this threshold permits the network to evalu-
ate the certainty of various output taggings, the approach
still has a few weaknesses. For one, the threshold must
be assigned by an outside observer, and there appears to
be no general rule for assigning the threshold. Instead, I
sampled a variety of possible thresholds for the words
and thereby selected thresholds that yielded seemingly
reasonable results. It would be much more desirable to
have the network generate its own thresholds and learn
from them.

81

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 78–83
Computer Science Department, Swarthmore College

word precision recall F-Measure

accident 74.0% 90.6% 81.5%
band 64.5% 99.0% 78.1%

sanction 63.8% 74.1% 68.6%
slight 78.3% 69.7% 73.7%

average 70.2% 83.4% 75.5%

Table 4: Performance with Lowered Recall

This well-documented relation between precision and
recall suggests that better results can be achieved by low-
ering the sensitivity of the network’s output. Using arbi-
trary thresholds, the networks’ precision improved sub-
stantially, as shown in Table 4. It should be noted that
brilliant has not been thoroughly tested with a thresh-
old, due mostly to time constraints involved with finding
thresholds for any particular net.

Unfortunately, the rise in precision in this approach
was met with a more than proportional fall in recall. This
fact can be seen by observing the change in F-Measures
between the two tests. The average is slightly higher due
to the absence of brilliant’s results, but every individual
F-Measure is worse than the tests with 100% recall. This
drop in total system performance is certainly unexpected,
and actually supports keeping the initial system intact and
not using any threshold for determining certainty. One
potential reason for this anomaly is the aforementioned
arbitrary nature of the thresholds. A network that had in-
corporated certainty measures throughout learning would
perhaps perform in a more expected fashion.

5 Discussion

Using the results from the SENSEVAL study, the con-
nectionist approach described here stands up quite well.
The state of the art for the statistical approaches used
in the exercise is around 75-80% for both precision and
recall(Kilgarriff and Rosenzweig, 2000). Although my
system performs slightly worse on the five words I at-
tempted, results are nonetheless quite comparable. A
more apt comparison would clearly come from looking
at the differing F-Measures for all the systems. Unfor-
tunately, SENSEVAL results do not report this statistic
for the evaluated systems. A rough calculation can be
made, using the reported results of the best performers.
If the best systems were between 75-80% in both pre-
cision and recall, then the system’s F-Measures must be
bounded between 75-80% as well. Using that as a com-
parison, my system performs admirably, with all tested
words except brilliant having comparable results in the
100% recall test.

Although the network performed comparably on four
of the five tested words, the results presented here are
not a complete comparison to the SENSEVAL exercise.

The full exercise had 35 words with 41 associated disam-
biguation tasks. These tasks included much more chal-
lenging tasks such as words with differing parts of speech
and words with limited or no training data. The use of
data with an ample training set might have unfairly influ-
enced my system’s performance. Nonetheless, my results
are promising enough in general to prove that the connec-
tionist approach can potentially compete with excellent
statistical classifiers. Further work is certainly warranted
to more generally test this approach’s viability.

With regard to the specifics of the network perfor-
mance, one important fact is the tendency for the net-
works to only focus on the most frequent senses. Even
when presented with several senses, the network would
usually ignore senses with very low frequency. In gen-
eral, the network would only select the two or three most
common senses as its chosen tags. One possible explana-
tion for this behavior is the lack of hidden nodes. Hidden
nodes would allow the network to develop a more nu-
anced approach to the context relevant for categorizing
senses, and, as such, would be more likely to uncover the
occurrences of less frequent words.

6 Future Work

The lack of hidden nodes provides an interesting arena
for future research. The slow speed of network training
prohibited an in-depth look at this current time, but I feel
that future work could look into several interesting areas.
As has been previously noted, fine taggings are likely to
be better handled with hidden layers. Additionaly, hid-
den layers should be able to extract more intricate levels
of meaning such as distinct phrases. Towellet al discuss
this possibility, describing how diagnostic phrases such
as ’stand in line’ cannot be fully represented in a simple
perceptron net based on topicality(Towell and Voorhees,
1998). A hidden layer would allow this sort of phrase
to be characterized directly in one hidden node, albeit
with that node probably handling several possible phrases
from different contexts.

Another problem with the approach presented here is
its reliance on having a unique network for every target
word. A more robust possibility would be to create an
enormous neural network that would incorporate the en-
tire vocabulary from all the training sets as input nodes
and additional input nodes specifying what word is cur-
rently ambiguous. The outputs for this network would
be all the senses of all the words. A network architec-
ture of this type is clearly enormous and is probably pro-
hibitively costly to train or test, but nonetheless could
potentially provide a much more general solution to the
problem of word sense disambiguation.

82

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 78–83
Computer Science Department, Swarthmore College

7 Conclusion

This paper has presented a connectionist method of im-
plementing word sense disambiguation. As this method
is currently underexplored within the domain of natural
language processing, this paper represents an important
step in showing the feasibility of using neural networks
for computational linguistic tasks. Further, the tests pre-
sented lend themselves to easy comparison to other sys-
tems’ attempts at solving the same problem, as it utilizes
the same testing and training corpora that were used in
the SENSEVAL exercise.

My network has clearly demonstrated its ability to rea-
sonably disambiguate a word given a sentence of context.
Although the full range of SENSEVAL words was not
fully tested, the results perform comparably with the sys-
tems that participated in the exercise, with the F-Measure
of precision and recall averaging around 75%. Clearly, a
fuller testing of all the words should provide a more com-
plete analysis of the viability of a connectionist model.

Steps forward clearly include a deeper look into the
potential advantages of using hidden nodes to allow in-
creased generalization and more subtle analysis of con-
text. Also, the automatic generation of certainty thresh-
olds during training should permit the network to effi-
ciently trade off between precision and recall. Nonethe-
less, this paper has successfully demonstrated that neu-
ral networks provide a reasonable framework for disam-
biguating word senses.

References

Kilgarriff Adam. 1998. SENSEVAL: An Exercise
in Evaluating Word Sense Disambiguation Programs.
Information Technology Research Institute Technical
Report Series University of Brighton, U.K.

Kilgarriff Adam and Joseph Rosenzweig. English SEN-
SEVAL: Report and Results. In Proceedings of the 2nd
International Conference on Language Resources and
Evaluation. 2000.

Mihalcea Rada and Dan I. Moldovan. 1999. An Auto-
matic Method for Generating Sense Tagged Corpora.
AAAI IAAI. 461-466.

Mooney Raymond J. 1996. Comparative Experiments
on Disambiguating Word Senses: An Illustration of
the Role of Bias in Machine Learning.Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing. Ed. Eric Brill and Kenneth Church.
Association for Computational Linguistics. 82-91.

Ng Hwee Tou 1997. Getting Serious About Word Sense
Disambiguation.Tagging Text with Lexical Semantics:
Why, What, and How? ANLP-97 Workshop. Washing-
ton D.C.

Quinlan J. R. 1994. Comparing Connectionist and
Symbolic Learning Methods.Computational Learn-
ing Theory and Natural Learning Systems: Volume 1:
Constraints and Prospects. MIT Press. 445-456.

Towell Geoffrey and Ellen M. Voorhees 1998. Disam-
biguating Highly Ambiguous Words.Computational
Linguistics. V. 24, N. 1 125-145.

Yarowksy David. 1993. One Sense Per Collocation.
In Proceedings, ARPA Human Language Technology
Workshop. Princeton, NJ. 266-71.

Yarowsky David. 1995. Unsupervised Word Sense Dis-
ambiguation Rivaling Supervised Methods.Proceed-
ings of the 33rd Annual Meeting of the Assocation for
Computational Linguistics. 189-96.

83

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

Automatic Rule Generation and Generalization
for an Information Extraction System Using MAXIM

J. McConnell
Swarthmore College

500 College Ave.
Swarthmore, PA 19081

mmcconn1@swarthmore.edu

Anteneh Tesfaye
Swarthmore College

500 College Age.
Swarthmore, PA 19081

atesfay1@swarthmore.edu

Abstract

Many recent information extraction (IE) sys-
tems have ignored the tedious and time-
consuming nature of the preparation involved
in using them. The abundance of graduate stu-
dents has eased the pain of providing annotated
corpora, pre-filled answer templates, and man-
ual examination of automatically-generated
rules and final answers. In this paper, we
present a new system comprised of previously
published solutions to different aspects of IE in
an effort to automate as much of the task as pos-
sible while achieving competitive results.

1 Introduction

1.1 Background Information

The recent availability of large quantities of text in elec-
tronic format on the World Wide Web, has greatly in-
creased the importance of intelligently extracting de-
sired information from such text. The task of informa-
tion extraction is most easily described as that of filling
a database with information found in structured, semi-
structured, or free text. Structured text can be thought of
as text in a pre-defined format, like in a printed spread-
sheet. Semi-structured text follows general guidelines,
but is not as predictable as structured text. It is often un-
grammatical with a lot of fragmented sentences. An ex-
ample of such text might be telegraphic, military commu-
nications, or birthday invitations. Free text is just normal
prose, as found in a news article or a work of fiction, for
example.

DARPA recognized the significance of this growing
field in the late 1980’s when they funded the first Mes-
sage Understanding Conference (MUC-1). The MUC has
been held semi-annually since, and has highlighted de-
velopments in IE research. Since the early knowledge-
engineered (KE) systems developed for MUC-1, the field

has seen a trend towards automation to circumvent the
bottleneck associated with KE.

This trend is fueled by the difficulties inherent in all
KE tasks. Extensive, yet required, human involvement
makes them costly to develop, test, and apply to different
problem domains both in time and money. These sys-
tems often require annotated corpora, pre-filled answer
templates, human designed rules, or, if the systems auto-
mate the rule-making process, the manual examination of
such rules to weed out the poor ones. These requirements
are simply unacceptable for many potential applications,
and we believe they are unnecessary.

1.2 Relevant Work

Since MUC-1, researchers have been searching for an ef-
fective, autonomous IE system. Showcased at MUC-4,
Riloff’s AutoSlog (1993) program automatically gener-
ated a dictionary of concepts which were later used to
extract information from text similar in category to those
with which it was trained. This system proved capable
of achieving 98% of the performance of a hand-crafted
dictionary developed by graduate students. The students’
dictionary took 1500 person-hours to build, while the Au-
toSlog dictionary only required 5 person-hours in order to
hand-filter automatically-generated rules.

Despite the obvious benefits of AutoSlog, it was still
not practical for real-world use. As input, AutoSlog
required either a set of answer keys or a semantically-
annotated corpus. This was used to provide AutoSlog
with examples of information to be extracted. Conse-
quently, AutoSlog does not port well to different domains
since it takes many person-hours to either fill in a set of
answer keys or annotate a corpus.

To address these concerns, Riloff developed AutoSlog-
TS (1996). This improvement on AutoSlog automatically
generated extraction rules given completely unannotated
text. As input, it requires two texts, one relevant to the
problem domain, and one completely irrelevant. It works
by generating an extraction pattern for every noun phrase

84

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

in a given text. It then compares the extraction patterns
found in the relevant text to those found in the irrelevant
text. Those patterns that show up frequently in the former
but not at all in the latter are presumed to be pertinent to
the problem domain. This system is hindered however by
the need for manual examination of the resulting rules,
normally about 2,000, in order to discard poor choices.

Another system developed to automate the rule genera-
tion process is Rapier (Califf and Mooney, 1997). Rapier
takes as input sets of training text paired with a corre-
sponding answer key. It then uses this information, com-
bined with the output of a POS tagger and semantic class
tagger, each given the training text, to create specific ex-
traction rules that extract the correct answers. Up to this
point, Rapier is quite similar in execution to AutoSlog;
however, the system then goes on to generalize these spe-
cific rules in order to make the resulting dictionary more
robust. That robustness is the strength and the point of
the Rapier system.

2 The MAXIM System

2.1 Basis for MAXIM

The Maximally Automated eXtractor of InforMation
(MAXIM) system was developed out of the need for
an IE method that required next to no human interven-
tion or preparation but still received satisfactory results.
AutoSlog-TS’s necessity for manual examination of rules
as well as its lack of robustness given the specificity of its
resultant rules leaves something to be desired. Rapier’s
need for answer keys means many person-hours are re-
quired before training on any particular problem domain.
The respective strengths and weaknesses of these systems
complement each other well. As a result, we propose a
joint system built with the better halves of both. This sys-
tem consists of an implementation of the rule generation
phase of AutoSlog-TS and a rule generalization process
inspired by Rapier’s rule representation and learning al-
gorithm.

MAXIM takes as input pre-classified text from both
inside and outside the problem domain.1 It will feed this
text to the rule-generation phase of AutoSlog-TS which
has been modified to represent rules in a format similar
to that of Rapier’s (see Subsection 2.2). To minimize the
time spent on the manual examination of the many re-
sultant rules, we used a clustering algorithm in order to
group similar rules. We were then required to examine
only a fraction of the rules outputted by AutoSlog-TS.

1By ”classified text”, we mean a text that is marked rele-
vant or irrelevant. We assume that finding qualified texts should
not be difficult or time-consuming given that relevant text is
required for training any system and irrelevant text is readily
available online.

Pre-filler: Filler: Post-filler:
1
�

tag: �nn,nnp� 1
�

word: undisclosed 1
�

sem: price
2
�

list: length 2 tag: jj

Figure 1: Sample Rule Learned by Rapier

2.2 Rule Representation

2.2.1 Rapier

Rapier’s rules consist of three parts, a pre-filler pat-
tern, filler pattern, and post-filler pattern. Each pattern
consists of any number of constraints. Constraints can
be defined to match an exact word, any word with a
given POS tag, or any word that matches a given se-
mantic class as defined by WordNet (Miller et al., 1993).
Within constraints, expressions can be disjunctive if writ-
ten as �constraint�, constraint�, . . .� where the con-
straints musts all be either exact words, POS tags, or se-
mantic class tags. For example, to specify that a pattern
should match with either an adjective or an adverb, the
constraint would be�JJ, ADV�.

The appeal of Rapier’s rule representation is its ability
to express a general idea as opposed to relying on specific
word choice. For example, a rule generated by Rapier
for extracting the transaction amount from a newswire re-
garding a corporate acquisition is shown in Figure 1. The
value being extracted is in the filler slot and its pre-filler
pattern is a list of at most two words whose POS tag is ei-
ther noun or proper noun. The post-filler pattern requires
a WordNet semantic category ”price”.

2.2.2 MAXIM

Rapier’s slot constraints form the underlying idea of
the rule representation that we have adopted for MAXIM.
Due to the inconsistencies between the methods used by
AutoSlog-TS and Rapier to generate extraction patterns,
we had to use the pre- and post-filler slots as containers
for extracted values, which contrasts with Rapier’s use
of the filler slot for this purpose. This simple but cru-
cial alteration in slot design meant that we could not use
Rapier’s rule generalization algorithm without modifica-
tion. Also, the fact that this algorithm was highly depen-
dent on the answer key provided to Rapier reinforced our
decision to abandon this specific generalization algorithm
entirely.

Our implementation of AutoSlog-TS returns the ex-
traction patterns in the form of�noun phrase��verb
phrase��noun phrase� which aligns nicely with the
pre-filler, filler, and post-filler slot arrangement of the
rule generalization phase. We set up three constraints
for the pre-filler and post-filler slots and one constraint
for the filler slot. The pre and post filler constraints
consist of the maximum number of words in the noun

85

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

phrase,max-len, a 39-dimensional vector that serves as
a histogram bin2 for the POS tags of the words in the
noun phrase,POS-classification-vector, and a required
POS tag,required-POS, that is determined from the noun
phrase’sPOS-classification-vector. The 39-dimensional
vector was composed of 36 Penn Treebank part of speech
tags and three tags that were added later to cover punc-
tuation marks. The constraint associated with the filler
slot is just a set of words in the verb phrase,filler-set.
Like Rapier, MAXIM avoids this problem by generaliz-
ing rules using the slot constraints.

2.3 Problem Domain

Our problem domain is articles reporting the results of
soccer games. It was chosen based on a mutual interest
and the wide availability of such stories. In order to diver-
sify our training corpus as much as possible while stay-
ing in the domain, we have collected stories from differ-
ent countries and authors, resulting in texts with different
writing styles. All articles are in English. Our sources in-
clude, the FIFA coverage of the World Cup 2002, the En-
glish Premiere League’s archives of the past seven years,
as well as the Major League Soccer’s archives over the
past six years. All sources were downloaded from the
World Wide Web and have been stripped of all HTML
tags.

Having considered various choices for the irrelevant
text to be input into AutoSlog-TS, we decided that it
would be beneficial to try different sources in order to
compare and contrast how the choice of irrelevant text
affects results. We have picked the Wall Street Journal
corpus for its journalistic style and its specific and con-
sistent subject matter. Conversely, we have chosen the
Brown corpus for its broad range of writing style and di-
verse subject matter.

2.4 Building the Relevant Corpus

Once all the HTML tags had been stripped from our com-
pilation of soccer stories, we performed two tasks in order
to convert our relevant data to a corpus that was compat-
ible with both the AutoSlog-TS and Rapier systems. The
first task was to remove text that was not in a sentence
format such as headers and game statistics. The second
task was to put the soccer stories in one-sentence-per-line
format. As a result, we implemented a highly customized
sentence boundary disambiguator which included some
common proper nouns from the problem domain. The
fnTBL (Ngai and Florian, 2001) POS tagger and text
chunker was then run on the formatted text, which in-
cluded about 800,000 tokens.

2It is not technically a histogram, because the POS counts
for the phrase are weighted. More common tags, like NN, for
example, are weighted less than tags like CD, which carry more
information.

PATTERN EXAMPLE
�subj� passive-verb �team� was defeated
�subj� active-verb �player� scored
�subj� verb infin. �team� attempted totie
�subj� aux noun �player� was team

passive-verb�dobj� kicked�player�
active-verb�dobj� beat�team�
infin. �dobj� to card�player�
verb infin. �dobj� tried to foul�player�
gerund�dobj� coaching�team�
noun aux�dobj� coachNameis �coach�

noun prep�np� goalagainst�team�
active-verb prep�np� beatby �goals�
passive-verb prep�np� was injuredat �time�

Figure 2: AutoSlog Heuristics

2.5 Implementing AutoSlog-TS

Though Riloff generously offered her AutoSlog-TS im-
plementation for our research, we obtained the code too
late to make use of it. Also, since modifications were nec-
essary to the rule representation, time to become famil-
iar with the code would be called for. For these reasons,
we decided to implement what we needed of AutoSlog-
TS ourselves. Due to the extensive need for using regu-
lar expressions and the limited time allotted for develop-
ment, we decided to implement AutoSlog-TS with Perl.
AutoSlog-TS generates extraction patterns for a given
text in two stages.

2.5.1 Stage 1

In the first stage, AutoSlog-TS identifies the noun
phrases using a sentence analyzer.3 For each noun phrase,
it uses 15 heuristic rules to generate extraction patterns
that will be used in the second stage. These heuristic are
shown in Figure 2.

When the first stage is run on the corpus, a huge dictio-
nary of extraction patterns is created. This list of extrac-
tion patterns is capable of extracting every noun phrase
in the corpus. AutoSlog-TS allows multiple rules to be
activated if there is more than one match. This results in
the generation of multiple extraction patterns for a single
noun phrase. For example, running our implementation
of AutoSlog-TS on a test set of the WSJ, the sentence
”. . . have to secure additional information and reports . . . ”
produced two patterns:have to secure �dobj� and to
secure �dobj� in response to the two of the rules in

3We used the pre-trained englishTextChunker that comes as
part of fnTBL.

86

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

Relevant T.

Irrelevant T. �
Sentence Analyzer

�

S: D.C. United
V: was defeated
PP: by A.C. Milan

�AutoSlog
Heuristics

�

Concept Nodes:
�x� was defeated
defeated by�y�

Figure 3: AutoSlog-TS Stage 1 flowchart

Figure 2, verb infin.�dobj� and infin.�dobj�, respec-
tively. The relevance statistics performed in the second
stage will decide which one of the two extraction patterns
is more representative of the domain.

The process of Stage 1 is summarized in Figure 3.

2.5.2 Stage 2

In this stage, we examine both relevant and irrelevant
texts to compute the relevance statistics for each pattern.
For each pattern in our dictionary, we go through each
sentence in both our relevant and irrelevant corpora and
keep track of the number of cases that were activated by
this pattern. We use this to estimate the conditional prob-
ably that a text is relevant given that it activates a given
extraction pattern according to the formula:

�� ����
-	�
	 � 	�
	 ��	��� � � �		��� �� �

���
-� ����

		� �
-� ���� (1)

where ���-� ���� is the number of times� � ��! �
appeared in the relevant corpus while " ��-� ���� is
���-� ���� # $� !%& '�� "� (& �) � � ��! � appeared in
the irrelevant text. The idea behind computing the condi-
tional probability for each pattern is that domain-specific
expressions will show up more in relevant texts than ir-
relevant ones. Since AutoSlog-TS generates thousands of
extraction patterns, we need to rank each pattern in order
of relevance to the domain and discard the less important
ones. This will allow for a person to review the most rele-
vant patterns. The ranking function used by AutoSlog-TS
is a simple one:

��!*� + ����,�!-� �� �� . �"/ � 0 " ��-� ��� � (2)

where����, �!-� �� �� is as calculated by�� 01� and
 " ��-� ��� is also the same as in�� 01�. Rank is set to2

if ����, �!-� �� �� is 3 2 45
. 6 � 07� gives a higher

Relevant T.

Irrelevant T. 8 8 8 889
Concept Nodes:
�x� was defeated
defeated by�y�

:::; Sentence Analyzer

�
Concept Node ———— REL%
�x� was defeated —– 87%
defeated by�y� ——- 84%

Figure 4: AutoSlog-TS Stage 2 flowchart

rank for patterns with a high frequency. This was done
to save patterns that are common in both relevant and ir-
relevant texts from poor ranking. Both equations 1 and 2
were originally used in AutoSlog-TS. Riloff admits that
they are simple and may be improved upon but they were
suitable for her purposes. Even though we feel similarly,
strictly improving AutoSlog-TS was not the focus of our
work, so we decided to use the equations as presented.

The process of Stage 2 is summarized in Figure 4.

2.6 Rule Clustering & Generalization

When AutoSlog-TS outputs its rule extraction patterns
and sorts them according to the ranking function, there
is a danger that some important extraction patterns might
be discarded. For example, in our problem domain of
choice, the phrase ”�Rookie Ali Curtis � netted�his
second goal�” might have been ranked a lot higher than
” �Forward Chris Brown� notched�a goal�”. If our
rule representation relied solely on the words it found in
the training text and their ranks, these would be treated
as separate rules throughout the program and the second
phrase may be discarded as irrelevant if the top< rules
are blindly selected.

However, MAXIM keeps all the rules from AutoSlog-
TS, computes thePOS-classification-vectorsfor both
noun phrases (i.e. the pre- and post- fillers) and the
filler-set for each rule and runs a two-level clustering
program. This program first clusters the rules with
the samefiller-set together. It then calculates the aver-
agePOS-classification-vectorsof these simple clusters
()(&� ��--�%) �� � to)(&� ��--�%) ��=) and computes the
cosine similarity between all vectors using two! x ! ma-
trices (one for the pre-filler slot and the other for the post-
filler). Next it chooses the pair of simple clusters that are
most related by finding the pair whose pre-filler and post-
filler cosine similarities’ sum is highest as long as the pre-
filler similarity’s value is above a set threshold and the
post-filler similarity’s value is above a separate threshold.

87

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

Pre-filler: Filler: Post-filler:
1
�

max-len 1
�

filler-set 1
�

max-len
2
�

POS-classification-vector 2
�

POS-classification-vector
3
�

required-POS 3
�

required-POS

Figure 5: MAXIM Rule Generalization

Then it continues this process, not considering the previ-
ously paired simple clusters, finding the next most related
pair of simple clusters until either all clusters are paired
or there are no two clusters with both pre- and post-filler
similarities higher than their respective thresholds. The
second stage of the clustering program can be repeated,
cutting down the number of clusters by half each time.

Once all the rules from AutoSlog-TS are clustered in
their respective group, a human will go through each
cluster and link the pre- and post-fillers to the appropri-
ate slot(s) in the template to be filled. Irrelevant clusters
are eliminated at this point and the good clusters are as-
signed template slots and fed in to our rule generalization
program. This is the only phase that requires human in-
volvement. We timed ourselves doing this task together
on 628 simple clusters and it took us just under one hour.
Compared with the 5 hours it took the AutoSlog-TS team
to manually assign slots to approximately 2,000 rules and
you find that we are already saving time, and this was
before the second stage of the clustering, where we cut
those 628 simple clusters into less than 314 clusters.

The generalization program is very similar to our clus-
tering algorithm since it relies heavily on POS infor-
mation. As discussed in section 2.2, the three con-
straints for the pre and post filler slots aremax-len, POS-
classification-vector, and required-POS, and the only
constraint for the filler slot is thefiller-set. The POS-
classification-vectorfor each cluster is computed by just
taking the average of the individualPOS-classification-
vectors. From this vector, we obtain therequired-POSby
finding the maximum element. When the rules are ap-
plied to a test set, a sentence has to satisfy a total of four
constraints before the content of its pre- and post-filler
slots are sent to the template slot as important informa-
tion. The structure of our rule representation is summa-
rized in Figure 5.

2.7 Discussion of Results

We set out to fill a template with five slots: the name of
the teams that played, the winner of the game, the score,
the scorer(s), and the names of people who were ejected
from the game. MAXIM allows for multiple values per
slot using a comma as the delimiter. Ideally, the slots are
filled with only the relevant information. However, the
slots are generally filled with entire noun phrases, which

Figure 6: A Filled Template

soccer�game template

teams: The Colorado Rapids, the Los Angeles Galaxy 1 - 0
score: the Los Angeles Galaxy 1 - 0
winner: The Colorado Rapids
scorer: Agogo
ejected: Galaxy defender Ezra Hendrickson

WSJ Brown
Recall Precision Recall Precision��� ���

of corpus 19.85% 68.97% 19.54% 65.31%��� ���
of corpus 10.53% 61.33% 11.91% 64.2%

Table 1: Effect of Writing Style and Irrelevant Text
Choice on Performance

contain the desired information (as the example output in
Figure 6 shows). Note that this is still better than some
research-level systems, which return the entire sentence
that contains the desired information.

Although our training corpus comprises 1,300 soccer
articles (800,000 tokens), it was not possible to train our
implementation of AutoSlog-TS within the given time
frame. As a result, we trained on only1	
 of our corpus
size. This made it possible to analyze the effect of dif-
ferent writing styles within our problem domain on the
performance of our system, as we could pick different
parts of our corpus that correspond to the different soc-
cer leagues. We tested MAXIM on 200 articles and cal-
culated recall and precision by comparing the templates
filled out by MAXIM to a human-filled answer key. As
can be seen in Table 1, both recall and precision were
better when we trained on the first 25% section (section
A) of the training corpus than the second 25% section
(section B). This is believed to be due to the fact that
this second section contained mostly articles about Pre-
mier League games while the test corpus contained only
articles from the 2000 MLS season. The writing styles
from the British writers and the American writers varied
greatly. For example, where one British writer writes,
” �player� dinked a delightful cross”, the average Amer-
ican writer writes, ”�player� blasted a cross”.

In addition, the result of different choices of irrelevant
text was analyzed by training our system on both the Wall
Street Journal (WSJ) and the Brown corpora4. We were
hoping to show that training on the WSJ corpus would
lead to better results than training on the Brown due to
the commonality of the journalistic writing style between

4Of course, the size of these corpora is proportional to that
of the relevant text.

88

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

WSJ Brown
Recall Prec. Recall Prec.

team 24.74% 72.39% 23.47% 74.80%���
score 11.86% 95.83% 11.86% 92.00%���
winner 15.34% 83.33% 7.98% 86.67%
scorer 21.26% 60.00% 23.56% 55.91%
ejected 10.26% 100.0% 12.82% 55.56%

team 9.44% 52.11% 12.50% 61.25%���
score 4.64% 81.82% 5.15% 83.33%���
winner 7.36% 75.00% 7.98% 68.42%
scorer 15.13% 62.70% 15.90% 63.36%
ejected 2.56% 100.0% 2.56% 100.0%

Table 2: Breakdown of Results According to Slots

team scorer winner score ejected

Rules 73 39 12 7 4
Recall 24.74% 21.26% 15.34% 11.86% 10.26%
Prec. 72.39% 60.00% 83.33% 95.83% 100.0%

Table 3: Number of rules assigned to each slot in the Sec-
tion A/WSJ rule-set compared to both the recall and pre-
cision for the slot.

this corpus and our relevant training corpus. We thought
that a group of common journalistic phrases may appear
a lot in the relevant training corpus but hardly at all in the
Brown and thus be deemed as relevant. The results are
inconclusive. We have not been able to link any effects to
the choice of irrelevant text.

The breakdown of our results according to the five slots
in our template is shown in Table 2. Our recall was gener-
ally best for theteamandscorerslots. This is true in our
results from section A as seen in the first half of Table 2.
These recall values are followed, in descending order, by
winner, score, ejected. These numbers correspond ex-
actly with the number of rules that were assigned to these
slots as clearly shown in Table 3. It is not surprising that
the more rules assigned to a slot, the higher the recall for
that slot, as there are a greater number of ways to fill the
slot.

The precision values are ordered in exactly the oppo-
site way (with the exception of thescorerslot) as is also
seen in Figure 7. This is inversely related because the
greater the number of rules, the greater the possibility of
a mistake. Also, precision is dependent on how specific
a rule is to the desired information and how commonly
it is used in the problem domain. For instance, the most
common rule to fill thescorerslot often appears some-
thing like, ”Diallo scored in the 17th minute”. However,
it is also very common to read, ”D.C. United scored in the
17th minute”. Despite the presence of this second form,
we must assign this rule to thescorerslot since this is the
most likely way that we will find this information. Here

Figure 7: Recall/Precision as Functions of the Number of
Rules

WSJ Brown
Recall Prec. Recall Prec.

Stage 2
��� ���

19.85% 68.97% 19.54% 65.31%
done once

��� ���
10.53% 61.33% 11.91% 64.20%

Stage 2
��� ���

10.84% 79.44% 4.78% 74.12%
done twice

��� ���
2.65% 64.81% 4.62% 74.39%

Table 4: Clustering vs. Recall and Precision

we are sacrificing precision in order to increase recall.5

We found that these kinds of decisions were required fre-
quently. Unfortunately, we were not able to experiment
enough to become adept at choosing the best choice. We
believe that this, poor choice of rules to keep/delete and
slots to assign them to, played a role in our less-than-ideal
results.

The effect of the number of times the clustering algo-
rithm was run on the performance of our system was also
examined. The second stage of our clustering program re-
duces the number of clusters by half every time it is run,
cutting the human involvement time by the same amount.
However, this is done at the cost of recall, as shown in
Table 4. The most likely reason for this is that more good
rules are discarded because they were grouped with three
other irrelevant rules. This decreases the number of rules
assigned to each slot, which, as was seen in Figure 7,
directly influences recall. The over-all increase in preci-
sion when clustering again can be explained by the same
logic, though it is somewhat counterintuitive. One may
very well expect that precision would decrease with in-
creased clustering. This was not our experience, though
we still expect that this behavior may be seen if one were
to cluster more than the two times that we did.

5Examples like these are suspected to be the reason for the
low precision of thescorerslot because they are very common,
thus the anomaly in Figure 7.

89

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

What was reassuring were the results of the clustering.
After clustering twice, with nothing but part-of-speech
information andfiller-set information, we were left with
less than1	
 of the ”rules” that we started with.6 Of
these ”rules”, or rather, clusters of rules, some very dif-
ferent filler-sets were quite correctly grouped together.
Some of these include�blanked, defeated, rocked, rat-
tled�, �knotted, narrowed, had scored, pressed�, �netted,
notched, missed, scored in�, and�was issued, was shown,
assumed, was ejected for�. Obviously, ”missed” and ”as-
sumed” do not belong in their respective clusters, and
”pressed” is certainly arguable at best, but the rest of
these results are fairly remarkable for the simplicity of
the system in its current state.

Besides the potential improvements discussed in Sec-
tion 2.8 that could be added to improve MAXIM, there
were some issues that could be held accountable for the
low recall and unexceptional precision. First, in the prob-
lem domain we were dealing with, figurative/descriptive
language was used heavily in order to bring the excite-
ment of the game to the article. This results in the same
idea being expressed in a multitude of ways and with a
variety of action words. We could not adequately train
for this since it just took too long. Resorting to train-
ing on 1	
 of our corpus hurt us here. This is not as big
a problem for the domains many other IE systems have
chosen to test on.

Secondly, we found it quite common for authors of an
article to refer to the previous week’s games, or other
games from earlier in the season. So if MAXIM finds
” �player� scored 3 goals” it has no way of determining
whether or not this happened during the current game or
a previous one and must assume the former. We auto-
matically get this wrong if the phrase in question is not
describing the current game.

Another problem we are sure that we ran into to some
degree is human error in both generating the answer keys
and comparing our results to the answer keys. For one
thing, any of the problems that MAXIM runs into when
extracting information from an article, a human runs into
as well. Also, there is always question about what to do
about things like own goals in soccer. Who to mark as
the scorer is likely up to debate and this results in incon-
sistencies.

The last major problem that we had was errors from
pre-processing. Some abbreviations escaped detection by
our sentence boundary disambiguator. Words like ”give-
and-go” and ”game-winner” were split into multiple parts
and the hyphens were chunked as being outside of the
surrounding noun-phrase by fnTBL. This broke up some
noun-phrases that would have otherwise held extractable

6We had less than
���

of the rules because the clustering al-
gorithm discards any rules that are not similar enough to another
rule.

information. Finally, and mistakes made by the POS tag-
ger directly effected our performance.

2.8 Conclusions

As it is clearly seen in the Results section, MAXIM suf-
fered from low recall. There are several factors that might
be responsible for this. Working towards the elimination
or minimization of these factors, we believe, will improve
both recall and precision.

The ability to train on the whole corpus may improve
recall as more rules will be detected. This will also avoid
the writing style dependency discussed in the Results sec-
tion. If MAXIM trains on MLS, Premier League, and
World Cup stories (the whole corpus), it will have a more
generic and style-insensitive rule dictionary.

In addition, we might have been too restrictive and in-
flexible with our AutoSlog-TS’s heuristic rules. The ad-
dition of rules to Figure 2 that are targeted to our prob-
lem domain and the elimination of those which are un-
likely to be useful will result in a more refined AutoSlog-
TS output. We also required our rules to be in¡subj¿
verb ¡dobj¿format in order to make the two phases of
MAXIM compatible (see Section 2.2). However, if we
allow ¡subj¿ verbandverb ¡dobj¿to exist by themselves
(which means that we have to allow for empty pre- or
post- fillers), we could improve our recall.

Furthermore, we would like to minimize the exact-
word-matching dependency of the filler slot. The imple-
mentation of this phase was considered using WordNet
but preliminary trials indicated this to be a futile effort.
For example, WordNet will not consider�blanked, de-
feated, rattled, rocked� to be in the same semantic class.
Even though these words were grouped together by our
clustering algorithm to form thefiller-set for thewinner
and teamslots, MAXIM will depend on finding one of
these words in the test set during the application of the
generalized rules. The sentence¡Team A¿ crushed ¡Team
B¿, for example, will not help us extractteamandwinner
information. The use of a thesaurus or ontology would
have been ideal if, but they just do not currently have a
rich enough synonym base to be of any practical, real-
world use in any specific problem domain. At least not
one where figurative language is used as often as in the
domain we trained and tested on. It is worth noting that
when Rapier incorporated WordNet senses in its rules, its
performance was not significantly better than without this
information.

Incorporating position information in ourPOS-
classification-vectorsmight improve our clustering. Cur-
rently, we only keep track of the frequency of each POS
tag within a noun phrase. If this can be extended to in-
clude some kind of contextual information, e.g. the po-
sition of POS tags or POS tag!-grams, we may be able
to more accurately group different clusters expressing the

90

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 84–91
Computer Science Department, Swarthmore College

same idea together. This would both decrease the human
involvement required, by decreasing the amount of at-
tention necessary when examining clusters, and increase
precision, by minimizing the number of irrelevant rules
in any cluster.

Faults aside, we believe we have presented a novel ap-
proach to information extraction that requires less human
preparation and supervision than any system available at
this time. With further research into how to most effec-
tively translate AutoSlog’s rules to MAXIM’s/Rapier’s
format recall can be greatly increased. Similarly,
more work looking into a comprehensive list of extrac-
tion patterns for AutoSlog-TS would be of great bene-
fit. Improved relevancy-rate and ranking functions for
AutoSlog-TS would help to get good rules to the top
of the list.7 As mentioned above, an adequate the-
saurus/ontology would be of the greatest benefit when
it comes to generalization. Also, an improvement on
the representation of thePOS-classification-vectorwould
be helpful. With improvements made in these areas,
MAXIM may prove to be as effective as other systems
available while requiring at most half as much human in-
volvement. This is a big step towards the development of
IE systems practical for real-world, multi-domain use.

References

Mary E. Califf and Raymond J. Mooney. 1997. Rela-
tional Learning of Pattern-Match Rules for Informa-
tion Extraction. InProceedings of the ACL Workshop
on Natural Language Learning, pages 9-15. AAAI-
Press, Menlo Park, CA.

G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller. 1993. Introduction to WordNet: An
on-line lexical database. Available by ftp to clar-
ity.princeton.edu.

G. Ngai and R. Florian. 2001. Transformation-based
learning in the fast lane. InProceedings of NAACL’01,
pages 40-47.

E. Riloff. 1993. Automatically Constructing a Dictio-
nary for Information Extraction Tasks. InProceedings
of the Eleventh National Conference on Artificial Intel-
ligence, pages 811-816. AAAI Press/MIT Press.

E. Riloff. 1996. Automatically Generating Extraction
Patterns from Untagged Text. InProceedings of the
Thirteenth National Conference on Artificial Intelli-
gence, pages 1044-1049. The AAAI Press/MIT Press.

7Although we were able to abandon looking at the ranking
of rules altogether. The clustering was so effective and time-
saving that we sent all of the rules AutoSlog-TS outputted into
the clustering stage and just deleted bad clusters, taking care of
multiple rules at once.

91

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 92–96
Computer Science Department, Swarthmore College

Latent Semantic Analysis for Computer Vocabulary

Andrew Stout & Todd Gillette
Dept. of Computer Science

Swarthmore College
{stout,gillette }@cs.swarthmore.edu

Abstract

In the work described in this paper we under-
took a fundamental, proof-of-concept explo-
ration of an unsupervised technique for extract-
ing and representing word meanings, called La-
tent Semantic Analysis. In this paper we de-
tail an implementation of LSA for the purpose
of vocabulary acquisition and report prelimi-
nary results from testing it on English vocab-
ulary tests akin to the Test of English as a For-
eign Language (TOEFL). We encountered sev-
eral difficulties, which are also described.

1 Motivation

Most natural language processing research, and partic-
ularly most statistical natural language processing re-
search, focuses on formal aspects of natural language:
parsing and part-of-speech tagging are concerned with
the rules of syntax, morphology is concerned with cap-
turing and employing the formal rules of morphology
in languages. While the machine translation task is
certainly concerned with semantics, current approaches
work mostly by considering formal structures and formal
methods for word-alignment. In general, rather little at-
tention is given to developing computational systems for
understanding themeaningof natural language. We feel
that in order to achieve the near-human level of natural
language competence which must be the ultimate goal of
Natural Language Processing, NLP research must con-
front the problem of meaning.

At its core, the problem is a familiar one, at least in
concept, to researchers in Artificial Intelligence: it is the
problem of symbol grounding. How can a computer un-
derstand what, say, an apple is, that is what the word “ap-
ple” means, if it is unable to experience fruit in any of
the ways humans do, and by which humans ground their
understanding of the symbol in natural language meaning

apple? A computer has no experience of taste, or hunger,
or touch, or even sight in most NLP settings. Clearly,
a conventional computer’s understanding of “apple” is
going to be fairly limited, but it need not be limited to
merely “noun, for plural add -s, Apfel in German”, etc.
What computers do have access to is a large volume of
text, from which subtle statistical features and constraints
can be gleaned.

Significant and fruitful (no pun intended) work has
been carried out in the construction of semantic ontolo-
gies such as WordNet (Fellbaum, 1998), which cap-
ture important information about the semantics of words.
However, such efforts are dependent on a great deal of
human labor, subject to annotator bias, language-specific,
and above all still lack a lot of information about the
relationships between various words, categories, con-
cepts, etc. What we seek is an unsupervised algorithm
which constructs a representation allowing the computer
to ground its understanding of the word “apple” in its ‘ex-
perience’ of ‘reading’ about apples in a vast amount of
unannotated text.

2 Latent Semantic Analysis

Latent Semantic Analysis (LSA) (Landauer and Dumais,
1997) is a statistical method for quantifying meaning in
natural language, predicated on the notion that the en-
tirety of the contexts in which a word does or does not
appear provide a set of constraints capturing the meaning
of that word. The basic approach is to represent words
as high-dimensional vectors, where similarity in meaning
can be calculated as a function of the difference between
two vectors.

Our goal in the work described in this paper was to
engage in a fundamental exploration of LSA, for the pur-
pose of solidifying our own understanding of it, and to at-
tempt to replicate the encouraging results of others’ early
work on LSA.

The remainder of this paper is organized as follows.

92

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 92–96
Computer Science Department, Swarthmore College

The next section describes related previous work and at-
tempted or potential applications of LSA. Section 4 con-
tains a detailed description of the LSA algorithm, and an
explanation of our implementation. Section 5 explains
our testing of our system, and section 6 analyzes our re-
sults. Finally, we conclude with a more general discus-
sion in section 7.

3 Related Work

3.1 Method

The Latent Semantic Analysis method was pioneered by
Landauer and Dumais (Landauer and Dumais, 1997),
and is closely related to Latent Semantic Indexing (Deer-
wester et al., 1990). The computational basis for LSA is
described in (Berry et al., 1993). The method is described
in section 4 below.

3.2 Applications

Many potential and already realized applications of LSA
exist. Perhaps the most fundamental is simply to apply
LSA in order to obtain a computational representation
of meanings of words. More advanced work on under-
standing has also been undertaken, such as understanding
metaphors (Kintsch and Bowles, 2002) (Kintsch, 2000).
LSA has been trained on aligned corpora in different lan-
guages to be applied to machine translation (Landauer et
al., 1998b), although LSA by itself has no production ca-
pability. By averaging the vectors of a paper and compar-
ing to multiple other source documents one can determine
which sources were most useful to the writer of the paper.
By modeling the meaning of a large document, sentences
which most closely match the meaning of the whole doc-
ument can be identified for the purposes of summariza-
tion (Kintsch et al., 2000). By comparing the vector rep-
resentations of one sentence to the next, LSA can pro-
vide a measure of cohesion within a text (Landauer et
al., 1998b). LSA systems can also be trained to estimate
the evaluation of an essay, and to choose an appropriate
next text to maximize student learning (Landauer et al.,
1998b). LSA has also been integrated into computer tu-
toring systems (Wiemer-Hastings, 2002).

The most exciting applications of LSA, however, are
those yet to come: LSA offers the potential to develop
NLP systems that understand the meaning of language
and can process or do useful things–from better automatic
translation to passing the Turing test–based on that under-
standing.

4 Implementation

4.1 Corpus

Latent Semantic Analysis learns word meanings through
processing a large volume of unannotated training text;
this corpus corresponds to what the system ‘knows’ after

training. We started LSA runs on a subset of the Ency-
clopedia Britannica (EB) containing 4,148 unique words,
factoring out all one letter words, two letter words, and
words that appeared in only one document. There were
588 documents corresponding to encyclopedia entries,
each of which was approximately a paragraph long. After
running through the system with the Encyclopedia Bri-
tannica corpus, we chose the 1989 Associate Press corpus
for our full-size corpus, using the natural division of an
article as a document. The corpus contains over 98,000
documents and over 470,000 unique words.

4.2 Preprocessing

Once the training corpus has been divided into docu-
ments, our system builds a large matrixX of word oc-
currences. Each entryxi,j corresponds to the number of
times wordi appears in documentj. Each entry is then
transformed to “a measure of the first order association of
a word and its context” by the equation

log (xi,j + 1)

−
∑

j

((
xi,j∑
j

xi,j

)
· log

(
xi,j∑
j

xi,j

))
(Landauer et al., 1998b).

4.3 Singular Value Decomposition

The mathematical underpinning of LSA is a linear al-
gebraic technique called Singular Value Decomposition
(SVD), which is a form of eigenvector-eigenvalue analy-
sis which states that any rectangular matrixX can be de-
composed into three matricesW , S, andC which, when
multiplied back together, perfectly recreateX:

X = WSCT

where

• X is anyw by c rectangular matrix

• W is a w by m matrix with linearly independent
columns (also calledprinciple componentsor sin-
gular vectors)

• C is a m by c matrix with linearly independent
columns

• S is am by m diagonal matrix containing thesingu-
lar valuesof X

WSCT is guaranteed to perfectly recreateX provided
m is as large as the smaller ofw andc. Integral to LSA
is the fact that if one of the singular values inS is omit-
ted, along with the corresponding singular vectors ofW
andC, the resulting reconstructionW ′S′C ′T = X ′ is the
best least-squares approximation ofX given the remain-
ing dimensions. By deleting all but then largest singular

93

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 92–96
Computer Science Department, Swarthmore College

values fromS, SVD can be used to compress the dimen-
sionality of W . WhenX is a words by documents ma-
trix, the compressedW ′ is called thesemantic spaceof
the training corpus from which it was generated.

Before compression, the matrices used for Latent Se-
mantic Analysis are very large:100, 000 × 98, 000 =
8.9× 109 elements. However, as any document will only
contain a few hundred distinct words, the matrices are
very sparse. As we discovered the hard way, cookbook
algorithms for Singular Value Decomposition are com-
pletely impractical for matrices of this size. Fortunately,
libraries for large sparse matrix Singular Value Decom-
position do exist (Berry et al., 1993).1

It has been found empirically (Landauer et al., 1998a)
that ann (dimension) of between 300 and 400 is gen-
erally the optimal level of compression to synthesize
knowledge for LSA. The exact optimal number of dimen-
sions depends on the particular corpus.

A diagram of our system’s architecture is shown in Fig-
ure 1.

5 Testing

Since we were engaging in a fundamental, proof-of-
concept exploration of LSA’s potential as a means of cap-
turing semantic information, we chose to test our system
on simple vocabulary tests inspired by the Test of English
as a Foreign Language (TOEFL) and manually generated
using WordNet synonyms from the lexicon of the AP cor-
pus. An example question is shown in Figure 2.

A question is evaluated in the following manner. The
LSA vectors of each word in the target phrase (“levied”
in the example in Figure 2) are averaged to give an aver-
age meaning for the phrase. The possible options are then
averaged in the same way. Each possible answer is then
compared to the target using cosine similarity: the co-
sine (or, equivalently, normalized dot product) between
the target vector and each option vector is computed, and
the largest cosine indicates the option with meaning most
similar to the target.

6 Results

We tested the Encyclopedia Britannica corpus semantic
space on questions developed for the AP corpus. As we
expected, the results were poor due to the small size of
the EB corpus and the mis-match between training and
testing. Many of the words were not even in the EB cor-
pus, and the few questions that had both question and an-
swers produced poor results. We have so far been unable

1Unfortunately, the best of them was originally written in
FORTRAN, uses counterintuitive data file formats, has com-
pletely incomprehensible source code, and is poorly docu-
mented (length and mathematical rigor of the accompanying
“manual” notwithstanding).

Training Corpus
(Encyclopedia Britannica)

Corpus Formatter

Training Corpus (divided into documents)

Document Document … Document

Word Count

Words x Documents
Matrix

Word-Context
First-Order
Association

Singular Value
Decomposition

Dimension
Reduction

Words x N Semantic
Space

Test ParserTest
Question Answer

Figure 1: System Architecture

94

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 92–96
Computer Science Department, Swarthmore College

For the following question, choose the answer phrase
whose meaning most closely matches the meaning of
the target phrase.
Target:levied
Possible answers:
a. imposed
b. believed
c. requested
d. correlated

Figure 2: A sample test question.

to complete the preprocessing on the AP corpus so we do
not have results for that data set.

6.1 Complications

Our initial tests on a small (5000 word) subset of the
Brown corpus made it clear that the computational com-
plexity of the SVD algorithm would be a serious obsta-
cle. Standard cookbook SVD recipes (Press et al., 1997)
(which is what we were using) were simply not viable
for matrices of the size required for LSA, and both the
memory requirements and running time proved to be pro-
hibitive.

The sparse matrix SVD package (Berry et al., 1993)
provided an solution for the SVD problem, however
a new problem arose when considering a corpus large
enough to produce good results. The time necessary to
count, process, and compress over 100,000 unique words
and nearly 100,000 documents was too great to fit into
the time available. We suspect that the first steps will
take something on the order of a day or two, but it is still
unknown how long the SVD will take. Given more time
it might be feasible to carry out the test to completion, but
we must at this time be satisfied with tests on a smaller
corpus.

7 Conclusion

Latent Semantic Analysis has many useful applications
and has been implemented successfully, however there
are many difficulties in producing an effective implemen-
tation. Once a corpus has been processed and a semantic
space has been generated, using it is very efficient and,
based upon the work of others, effective.

There is still the question of size. How big must a
corpus be to have a certain accuracy? Answering such
a question would be more time consuming than testing
other aspects and uses of LSA. We do know that the size
of the EB corpus was too small, though it was processed
very quickly (less than an hour). A corpus of a size in
between our EB and AP corpora could be appropriate for
testing LSA given the resources of our work space.

8 Future Work

With extra time, within reason, it will be possible to test
the AP corpus on the questions. This will allow for a
true test of the success of our implementation of LSA. In
addition, a subset of the AP corpus might provide positive
results in a shorter time frame. In a practical sense, much
of our short-term future work would need to be devoted
to efficient processing of the extremely large amount of
data required for effective Latent Semantic Analysis.

8.1 Domain Specific LSA

Another solution would be to use a corpus of reduced
size, though one larger than the EB corpus. Domain spe-
cific corpora might provide a means to test the system
effectively in a more timely manner. If the lexicon itself
were effectively reduced by reducing the scope of the do-
main, a smaller corpus might turn out to be useful. Some
domains would be relatively small, such as news articles
about a specific topic, such as baseball. There is a rela-
tively small, consistent lexicon centered around baseball
involving bases, hits, home runs, etc. It may be that a rel-
atively small selection of articles from newspapers and/or
magazines would produce a working semantic space for
the domain of baseball.

(Landauer et al., 1998a) used a psychology textbook in
order to make a semantic space of psychology. An intro-
ductory textbook would in no way cover all of the terms
and ideas contained within the study of psychology, but
for the student first being introduced to the field it would
suffice. The small semantic space could be used for grad-
ing homeworks, evaluating summaries, or comparing test
scores with that of a student. It would be interesting to
find out what size of a corpus would be necessary for var-
ious domains. It would also be interesting to see if a dif-
ferent number of dimensions are found to be optimal for
different domains, as well as how dependent that number
is on the specific corpus.

8.2 Analysis of Dimensions

Another area of interest that could be explored in the fu-
ture is that of what the dimensions of the semantic space
represent. By taking words that are thought to be strongly
related and seeing if there is a particular dimension of
which each has a large component, we might be able to
find out how semantic space is representing our language.
By extension this might offer some insight into our orga-
nization of thoughts with respect to language.

References
Michael Berry, Theresa Do, Gavin O’Brien, Vijay Kr-

ishna, and Sowmini Varadhan. 1993. SVDPACKC
user’s guide. University of Tennessee Computer Sci-
ence Department Technical Report.

95

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 92–96
Computer Science Department, Swarthmore College

S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Fur-
nas, and R. A. Harshman. 1990. Indexing by latent
semantic analysis.Journal of the Society for Informa-
tion Science, 41(6):391–407.

Christiane D. Fellbaum, editor. 1998.WordNet: An Elec-
tronic Lexical Database. MIT Press.

Walter Kintsch and Anita Bowles. 2002. Metaphor com-
prehension: What makes a metaphor difficult to under-
stand?Metaphor and Symbol, 17:249–262.

Kintsch, Steinhart, Stahl, and LSA research group. 2000.
Developing summarization skills through the use of
lsa-based feedback. Interactive learning environ-
ments, 8(2):7–109.

Walter Kintsch. 2000. Metaphor comprehension: A
computational theory. Psychonomic Bulletin & Re-
view, 7(2):257–299.

Thomas K. Landauer and Susan T. Dumais. 1997. A so-
lution to plato’s problem: The latent semantic analysis
theory of acquisition, induction and representation of
knowledge.Psychological Review, 104(2):211–240.

Thomas Landauer, Peter Foltz, and Darrel Laham.
1998a. An introduction to latent semantic analysis.
Discourse Processes, 25:259–284.

Thomas K. Landauer, Darrell Laham, and Peter Foltz.
1998b. Learning human-like knowledge by singular
value decomposition: A progress report. In Michael I.
Jordan, Michael J. Kearns, and Sara A. Solla, editors,
Advances in Neural Information Processing Systems,
volume 10. The MIT Press.

William H. Press, Saul A. Teukolsky, William T. Vetter-
ling, and Brian P. Flannery. 1997.Numerical Recipies
in C. Cambridge University Press.

Peter Wiemer-Hastings. 2002. Adding syntactic infor-
mation to LSA.

96

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

1

An In Depth Look at Two Approaches to Sentiment
Classification

Shannon McGrael
Swarthmore College

CS97 — Senior Conference
smcgrae1@swarthmore.edu

Stephen Michael Smith
Swarthmore College

CS 97 — Senior Conference
ssmith1@swarthmore.edu

Abstract
There have been a variety of
approaches to the problem of
categorizing text based on
sentiment. Many of these
approaches require a large
amount of user input and effort.
In this paper we compare two
very different manners of
categorizing text, both which
requires minimal user input.
Both techniques parse through
reviews in various domains
(video games, movies, etc) and
attempt to correctly categorize
the review as positive or
negative. Through this process
we will be able to better
understand the problem, as well
as the strengths and weaknesses
of the solutions. From this we
hope to create a basis for
developing a more robust
system.

1. Introduction
As the world enters into the

information age, technologies are
emerging that allow faster and more
complete access to vast bodies of
knowledge and text. The growth in
quantity and diversity means that it has
become increasingly more difficult to

locate text that is particularly relevant to a
certain topic. In many cases the shear size
of the available data can be a hindrance
causing one to find less data rather than
more. This obstacle has created demand
for a classification system capable of
sorting through text, and going beyond a
regular search engine by taking a user s
personal preferences and the sentiment of
the text into account as well. There are
undoubtedly millions of applications for
this type of technology. What has held it
back is the low accuracy of previous
results and the need for user input that is
difficult to amass. What is needed is a
robust system that can accurately perform
sentient classification with little input
from the user.

2. Applications
Peter Turney (Turney, 2002) and

Ken Lang (Lang, 1995) speak of different
applications and algorithms for addressing
the problem of automated review ranking
and text categorization. This technology
is useful in search engines, news services,
information boards, sales and many other
applications.

There are various applications for
review ranking in search engines. Turney
suggests that a user could type in a query
such as Akumal travel review and the
search engine could then return the result
that There are 5,000 hits, of which 80%

97

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

2

are thumbs up and 20% are thumbs down
(Turney, 2002). There are millions of
objects that are reviewed on the web; the
problem is compiling it all together. Users
could also ask to see only reviews of a
certain ranking. This way they could sort
through the reviews to get only the data
they needed. This could be useful in
immeasurable ways. An artist or any user
could easily sift through reviews to
understand the criticism of a certain work
of art. Web designers could quickly find
out what features were liked/disliked by
their users. Or it could be as simple as
consumers quickly being able to benefit
from the opinions of others in an effort to
get the most of their money.

Ken Lang (Lang, 1995) uses this
technology in a netnews-filtering system
called NewsWeeder. This system learns a
user’s preferences through the reviews
they give to certain news articles, and
through the reviews that other users like
them give to news articles. With this
information NewsWeeder is able to
present users with more of the news
articles that are important and relevant to
them and less of those that are not.

These systems could also be used
in order to determine when a particular
piece of text was unusually positive or
negative. Many times it is very important
that text be impartial and fair, such as
judge s comments, text books, and news
articles. Systems such as the ones
described below could be used to flag text
that is unusually emotional, when that
type of response is not appropriate.
Likewise these systems may even be able
to be adapted to learn to detect ideological
differences in articles. For instance a
system may be able to detect if a
newspaper was particularly liberal or
conservative or feminist or anti-feminist.

3. Approaches

3.1 Semantic Orientation
Peter Turney utilized the concept

of Semantic Orientation (SO) in his
approach to this task (Turney, 2002). A
phrase has a positive semantic orientation
if it is most often seen in conjunction with
known positive words such as excellent .
A phrase has a negative semantic
orientation if it is most often used in
conjunction with known negative words
such as poor . His approach to this
problem centers on the idea that adjectives
and adverbs are often present in evaluative
(as opposed to factual) sentences
(Hatzivassiloglou & Wiebe, 2000; Wiebe,
2000; Wiebe et al., 2001). This means
that they often convey the feelings of the
writer more so than any other part of
speech. The algorithm attempts to
estimate semantic orientation of an entire
document (a single review) using
information about the adjective phrases
within that document.

The first step in this approach is to
part-of-speech tag the document and
extract all bigram phrases that contain
adjectives or adverbs. We used the
fnTBL1.0 englishPOS tagger for the POS
tagging. The bigrams are extracted
because the adjectives or adverbs by
themselves don t necessarily give all of
the information. This is true because
adjectives and adverbs are, by definition,
modifiers, so it is easy to see that their
semantic orientation is influenced by the
words that they are modifying. An
example that Turney gives is:

the adjective unpredictable
may have a negative orientation in
an automotive review, in a phrase
such as unpredictable steering ,
but it could have a positive
orientation in a movie review, in a

98

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

3

phrase such as unpredictable plot
(Turney, 2002)."

So, the modified word acts as
context words to accent the sentiment of
the adjective. See Turney 2002 for the
rules used to extract usable two-word
phrases from reviews.

Turney then estimates the semantic
orientation of each adjective phrase by
making queries to the AltaVista Search
Engine (www.altavista.com), ours looked
like this:
(<Word1>+AND+<Word2>)+NEAR+poor.
(<Word1>+AND+<Word2>)+NEAR+excellent.

We then recorded the number of
hits for each phrase (we ll call them
hitsneg and hitspos, respectively). We
also recorded the total number of hits if
we just search for poor and excellent
individually (we ll call them hitspoor and
hitsex, respectively). Using this
information, we can estimate the SO for a
given adjective phrase by:
SO(phrase) = log2((hitspos * hitspoor) / (hitsneg
* hitsex)).
The nature of this calculation is such that
if hitsex > hitspoor, then SOphrase > 0.
Alternatively, if hitspoor > hitsex, then
SOphrase < 0.

To compute the SO for a given
review, we simply take the average of the
SO s for all of the adjectives that we
extracted from this document. In order to
avoid counting phrases that have very
little correlation to either poor or
excellent , we remove any phrase which

gets less than 4 hits for both of the
AltaVista queries from this calculation.
Also, to avoid a possible division by zero,
we added .01 to the number of hits for
every individual phrase. Any document
with an SO greater than zero is considered
to be recommended, and any document
with a negative SO is considered to be
not-recommended.

3.2 Bag of Words
Lang s method, commonly

referred to as the bag of words method,
requires separate training and testing data.
The idea behind this method is that similar
texts will contain similar words. Lang’s
method does not take word order or syntax
into account. The method assumes that
most of the information needed to
differentiate between texts is in the words
themselves. For the purposes of this
research we have implemented a system
similar to that described by Ken Lang in
his paper: NewsWeeder: Learning to
Filter Netnews.

In order to implement the bag of
words method, the text must first be
parsed separated into tokens, each token
being a word or punctuation mark. These
tokens are then converted into vectors the
length of the vocabulary. One main vector
is created for the whole corpus that is a list
of every unique token in the corpus. Then
each separate document or review has its
own corresponding vector that contains
numerical values indicating the number of
times a particular word appeared in that
document. A zero for at the location of a
certain word would indicate that it did not
appear in the document, whereas a 20
would indicate that it frequently appeared
in the text.

In order to complete the learning
process a representative vector must be
created for each separate category. First
the document vectors must be changed
into normalized vectors, then by using
least-squares regression, a numeric value
is assigned to each of them. All the
vectors in the training corpus pre-
determined to be of the same classification
are then averaged to get a representative
vector for each category.

At this point the training process is
completed. To test the system a review
must be parsed and turned into a word

99

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

4

vector and then given a least-squares
regression value in the same manner as the
vectors in the training corpus. This value
is then compared to each of the
representative category vectors. The
system guesses that the new document is
of the same category of the representative
vector closest to it.

4. Corpus Creation
Our corpus consists of 100 reviews taken
from the Epinions web si te
(www.epinions.com). The original idea of
this project was to solve the problem of
sentiment classification on video game
reviews. However, any game that was
popular enough to have more than a
handful of reviews were generally given a
recommended rating. So, we took 50

reviews of the game Tekken Tag
Tournament (10 not recommended Table 2.
Results for 10 Tekken Tag Tournament reviews

, 40 recommended), and we took
50 reviews of the movie Gladiator (25 not
recommended and 25 recommended) for
our corpus data. Since Lang s algorithm
requires training data, we split the two
halves of the corpus into 40 reviews for
training and 10 reviews for testing. The
results given in this paper are for those 20
reviews we used for testing, with
additional results for Turney s system
having been run on the entire corpus.

5. Results Table 3. Results for 10 Gladiator
reviews

For the purposes of comparison, we ran
both algorithms on the smaller corpus of
20 reviews that we separated from our
corpus for testing. The bag of words
method uses the other 80 reviews for
training purposes. Because Turney s
algorithm does not require training data
we were able to run it on the entire corpus
of 100 reviews.

5.1.1 Turney s Results (Comparable
to Lang s Approach)

When run on the test corpus,
Turney s approach receives a 40% on the
video game reviews, and a 60% on the
movie reviews. Tables 2 and 3 show the
results we achieved for the test corpus.

Apparently, the reviewers used
some pretty negative word-choice to
describe their pleasure with the game.
This is understandable since it is a
fighting game and we may be getting

negative feedback from words that the
authors mean to use as positive aspects
(i.e. prolific gore , massive hits , etc.).

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 2 2
SYSTEM NOT RECOMMENDED 6 0

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 2 3
SYSTEM NOT RECOMMENDED 3 2

100

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

5

Again, the reviewers seem to have
used phrases which in everyday random
text would be viewed as negative, but in
the context of the entire document, it
should be seen as positive. One example
bigram from our corpus is disastrous
effects . This bigram appears in a section
of the review in which the author is
describing something that happens in the
movie, not how he/she feels about the
movie itself. However, our algorithm
would incorporate this bigram into a lower
Semantic Orientation score than the
review most likely deserves.

Table 3a shows a comparison of
actual adjective bigrams tested in reviews
that Turney s system correctly classified
as recommended or not-recommended.

Table 3a. Comparison of adjectives in correctly
classified positive and negative reviews.

SAMPLE
BIGRAMS from a
correctly classified

POSITIVE
REVIEW (TEKKEN

TAG)

SAMPLE BIGRAMS
from a correctly

classified NEGATIVE
REVIEW

(GLADIATOR)

Nice night Many clues
Extra cash Upper hand
Good amount Bad guy
Good characters Pretentious corniness
Main arcade Embarrassingly easy
Different stages Inefficient republic
Pretty cool Natural enemy
Other modes Not interested
Basic fighters Moral development
Different buttons Not entertained
Fairly new Loving violence
Special combos Violent scenes
Good fighting Elaborate distraction
Awesome graphics Less distasteful
Widely successful Misogynistic hatred
Joyous sound Questionable moments

5.1.2 Turney s Extended Results
Since Turney s algorithm does not

require training, we decided it might be
interesting to see how it runs on the entire
corpus of 100 reviews. The final results
for this run are as follows:
1. We correctly classified 21 of the 50

Tekken Tag Tournament reviews,
giving a precision score of 42%, which
is slightly better than the score we
received by only running it on a small
number of reviews.

2. We correctly classified 26 of the 50
Gladiator reviews,
giving a precision score of 52%, which
is only slightly better than the baseline
score of 50% if one were to choose
recommended every time.

Table 4a is a compilation of the results
from the 50 Tekken Tag Tournament
reviews, and Table 4b is a compilation of
the results from the 50 Gladiator reviews.

5.2 Lang s Results
For the following tests the data

from Tekken Tag Tournament and
Gladiator were always tested separately.
The corpus was divided into two
categories of reviews, recommended and
non-recommended. In order to train the
system and create the representative
vectors for each category in each domain,
40 of the 50 available reviews were read
in and put into token vectors, as
previously described. The vectors created
from the test documents were then
compared to these two representative
vectors.

The first round of results were very
poor. The results were near 50% for both
domains. The data was difficult to
manipulate because of it very high

101

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

6

dimensionality. Also commonly used
words such as and , I , is , etc occur
so frequently that they were outweighing

Table 4a. Results from the complete corpus of
50 Tekken Tag Tournament Reviews

Table 4b. Results from the complete corpus of
50 Gladiator Reviews

other words that would have had much
more descriptive power. Because of this
the representative vectors for the two
separate categories were so similar that it
was very difficult to differentiate them.
To improve upon our results we
implemented a pruning method that would
limit the number of words that the system
took into account. After all the training
and testing data was read into the system.
Each token that appeared more than X
number of times in the whole corpus was
eliminated from the

Table 5a.

word vectors. Then these pruned vectors
were normalized and there cosine
similarity was found. This has the effect
of disregarding words that are used
frequently throughout the corpus and that
have no relevance in determining the
category of a particular document. It also
reduced the dimensionality of the vectors
making them more precise and easier to
manipulate.

The bag of word s approach is
correct 40% on the movie reviews, and a

90% on the video game reviews. Tables 5
and 6 show the results we achieved for the
test corpus in two different formats.

Results for 10 Gladiator reviews
Table 5b.

Actual Rating Our Rating
N Y
N N
N Y
N N
N N
Y N
Y N
Y Y
Y N
Y N

6. Difficulties
As we attempted to create these

systems we came upon many obstacles.
Some of these obstacles were unique to
our chosen method and others were related
to the problem and the way people express
themselves.

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 18 7
SYSTEM NOT RECOMMENDED 22 3

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 9 8
SYSTEM NOT RECOMMENDED 16 17

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 8 1
SYSTEM NOT RECOMMENDED 0 1

102

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

7

Results for 10 Tekken Tag Tournament Reviews
Table 6a.

Table 6b.

Actual Rating Our Rating
N Y
N N
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y

The test results can be found in greater detail in
appendix A.

One of the largest problems that
we both should have expected but that
became very apparent as we sorted
through our text and results was that
people use very different ways of
expressing themselves. This problem took
a few different forms. What one person
may consider to be a negative attribute
others would consider a positive. One line
of text could be indicative of contrasting
emotions depending upon the person, their
manner of speech and their likes and
dislikes. For example: I had never seen
a movie so focused on war, destruction
and lifelike, gory violence as Gladiator.
While one reviewer may hate the movie
for its extensive action scenes and gory
details, others may find that to be one of
its most exciting aspects.
The other case where the diversity of
people is a big obstacle is in the
inconsistency of their rankings. Each

review was written by a different
person with a different concept of what

recommended and non-recommended
means, where to draw that line, and for

what reasons. For example, about half the
people that ranked Gladiator as three stars
recommended it and the other half did not.
But, even more difficult to deal with were
the cases where a reviewer would rank the
movie as one or two stars, however would
still recommend the movie.

6. Pros and Cons

6. 1 Turney Pro s and Con s
In general, this is a very simple

algorithm. The system is standalone, and
requires no training time or training data.
This must be why he called his system
“unsupervised,” even though by hard-
coding the words “poor” and “excellent”
into the estimation algorithm, he
automatically gave his system prior
knowledge that was helpful in solving the
problem.

This system is easily portable to
other domains while remaining
generalizable within the domain of
reviews. Turney showed that he could get
much better results with reviews from
other sub-domains such as automobile
reviews and bank reviews (Turney, 2002).
Also, one could replace the words “poor”
and “excellent” with “conservative” and
“liberal” to create a system which could
read a newspaper article and report which

of those two categories that article was
most heavily associated.

ACTUAL
RECOMMENDED NOT RECOMMENDED

OUR RECOMMENDED 2 3
SYSTEM NOT RECOMMENDED 3 2

103

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

8

One positive element of this
system that was not immediately obvious
is how it handles negation. As the bigrams
are extracted, given the rules developed by
Turney (Turney, 2002), negation words

such as “not” are extracted and used in the
computation of that document’s SO. For
example, the bigram “not interested”
receives a much more negative SO than
the bigram “more interested” which
appears in a different review.

Turney’s algorithm is easy to
implement (low coding overhead),
however, this fact also makes it easy to
find specific cases that it does not cover.
In this way, the generalizability of the

system negatively affects its accuracy. The
rest of this section will focus on specific
problems that we encountered.

While this algorithm takes
relatively little time to implement and no
time to train, it takes an incredibly long
time to issue all of the queries to the
Search Engine. In fact, Turney’s
experiment on 420 reviews took over 30
hours to run (Turney, 2002)! This has an
adverse effect on the scalability of the

system.
In a review, it is common for the

author to compare the subject that they are
reviewing with something else that is
well-known in that domain. Adjective
phrases that are associated with anything
other than the reviewed subject should not
have the same impact on the semantic
orientation of that review. However, with
the current approach, we give equal
weight to all adjective bigrams, regardless

of the subject of that particular sentence.

It seems intuitively obvious that
any system attempting to use the entire
World Wide Web as a source of
information on a language would have
many unforeseeable shortcomings which

could be very difficult evaluate. For
example, any words remotely related to
pornography in a review may have huge
weight in the semantic orientation of a
review, while very specific technical
observations may even be ignored by their
relative non-presence on the Web.

Lastly, one reviewer may use
language that, in the overall scheme of
things, is seen as negative in everyday
language. However, if the reviewer is

using that language as if it is describing
positive events, this algorithm will
wrongly classify those phrases as actually
being negative. Some examples from our
corpus include bigrams such as
“incredibly gruesome”, “mighty blows”,
and “very painful.” Each of these
examples remains ambiguous since it is
possible that one person would find these
things positive in certain contexts.

6. 2 Bag of Words Pro s and Con s
In the bag of words method there

were many problems that were unique to
the method because it does not take syntax
or word order into account, thus making
sense disambiguation impossible. For
example if a review were to use the word
bad, the system is unable to determine if

this word means awful, or refer to an evil
person, or poor conditions, or even the
slang use of the word that has positive
connotations. The system lumps all of
these uses of the word bad together.

104

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

9

Another problem can be seen in
the following example taken from the
corpus: Why is this analogy in the
movie? Because it sounds really
cool This is an example of one of the
many speeches used in Gladiator to make
it characters sound neat. This is a
negative review that was wrongly
classified as positive. The system picks
up on the positive words such as really ,
cool , and neat. It is unable to see that

this reviewer is being sarcastic and does
not at all like the analogy used or the other
long speeches in Gladiator. The system is
unable to pick up on this. Another way a
very similar problem occurs is with the
word not or other negatives. Because
words are not taken in context the system
could easily misinterpret phrases such as
not good or not bad.

However there are also many Pro s
to Lang s approach. It is much faster that
Turney s approach and therefore much
more likely to be useful to applications
such as search engines and navigating the
web. It is also very easy to implement and
to modify. As long as the training data is
correctly set up and the number of
categories is set correctly the system can
deal with any domain.

7. Improvements

7.1 Ways to improve on Turney s
algorithm
1. Do some pre-processing on the corpus

to tag Subject-Object pairs. This would
allow adjective phrases in certain
sentences to be weighted more than
others. In this case, adjectives in
sentences in which the actual product is
the subject would have more weight
than adjective phrases in sentences about
the author s girlfriend.

2. As Turney himself pointed out, the SO
estimator is extremely simple. A much

deeper mathematical and statistical
analysis of the problem could give us a
better estimator, and therefore a better
system.

3. Over the next few years, technology is
becoming faster, cheaper, and more
reliable. It seems possible that in a very
short amount of time, we will have the
processing power to actually process
entire documents for meaning,
sentiment, etc., instead of doing a token-
by-token discrete analysis.

4. This algorithm doesn t necessarily get
to the heart of the problem. It seems as
though the semantic orientation of a
phrase can be modified for the better by
one or more informative subroutines
(example, see #1).

7.2 Ways to Improve Results from
Lang s Method:

1. Pruning the data
The first step in pruning the data
provided much better results.
However further experimentation in
better methods could further improve
the results.

a. TF-IDF Weighting
TF-IDF weighting refers to term
frequency/inverse-document
frequency weighting. This is an
accepted and tested technique. It is
based on the idea that the more times a
token t appears in a document d, or the
term frequency, the more likely it is
that t is relevant to the topic of d.
However, the more times that t occurs
throughout all documents, or
document frequency, the more poorly t
discriminates between documents.
The TF-IDF weight of a token is
computed by multiplying the term
frequency by the inverse of the
document frequency.

105

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

10

b. Minimal Description Length (MDL)
According to Lang the MDL
principal provides an information-
theoretic framework for balancing the
tradeoff between model complexity
and training error (Lang). This would
involve how to determine the weights
of different tokens as well as how to
decide which tokens should be left out.
MDL seeks to find the optimal

balance between simpler models and
models that produce smaller error
when explaining the observed data
(Lang).

2. Better Grouping of data
a. Root Words

Words with the same root are
classified as unique tokens. By
combining these tokens it might
decrease dimensionality and give a
more accurate view of sentiment.

b. Punctuation
Uninterrupted punctuation is seen as
one word. For example !!!!! is in
one token instead of being 5 instances
of !. Also !!! is a separate token.

8. Conclusion

During our analysis of each of
these approaches, we realized that the two
systems differ in the type of review that

they will correctly classify. Turney’s
approach works better on reviews with full
sentences written as a concise narrative.
These reviews should include little
extraneous material. Also, this system will
lose any benefit of long strings of
adjectives, and all punctuation, since these
strings will be parsed into bigrams, and

will not be viewed as a single adjective
phrase. Lang’s approach, conversely,
works better on reviews written by the
colloquial, informal writer. Sentence
structure can be ignored and strings of

adjectives do not have a negative impact
on the ability of this system to classify a
review correctly. However this system
loses information from negation words
such as “not” and “but”.

After analyzing their alternative
approaches, it seems as though Ken Lang
(Lang, 1995) and Peter Turney (Turney,
2002) developed systems that could be
easily combined in parallel to create a
more robust system. The output of

Turney's system is a ranking, from –1.0 to
1.0, with positive rankings indicating a
positive review, and negative rankings
indicating a negative review. Lang’s
approach gives a similarity ranking, in
degrees, to pre-trained “positive review”
and “negative review” vectors. If both
systems give the same rank (positive or
negative) to the same review, we can be
surer about the correctness of our
classification. If they disagree, we can

normalize Lang’s output by dividing by
360, and compare the magnitude of the
rankings (by taking the absolute value)
given by each approach, choosing the
ranking that is closer to 1.0. This would
basically choose the ranking from the
system that was “most sure” of its ranking.

106

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

11

Appendix A

Gladiator Results:

Test 1-5 should have been negative and 6-10 should have been positive
__
PosAvg = 16.0186606915661
NegAvg = 11.8380473345302

--
TestReview 1 = Positive
Cosine = 23.2709696439365 Positive Average = 16.0186606915661
--
TestReview 2 = Negative
Cosine = 13.7287385024832 Negative Average = 11.8380473345302
--
TestReview 3 = Positive
Cosine = 21.0261787760811 Positive Average = 16.0186606915661
--
TestReview 4 = Negative
Cosine = 11.5234315064659 Negative Average = 11.8380473345302
--
TestReview 5 = Negative
Cosine = 12.7149150507662 Negative Average = 11.8380473345302
--
TestReview 6 = Negative
Cosine = 11.4870277804537 Negative Average = 11.8380473345302
--
TestReview 7 = Negative
Cosine = 13.3473100260505 Negative Average = 11.8380473345302
--
TestReview 8 = Positive
Cosine = 14.2941176470588 Positive Average = 16.0186606915661
--
TestReview 9 = Negative
Cosine = 13.1102578104888 Negative Average = 11.8380473345302
--
TestReview 10 = Negative
Cosine = 11.2413709596575 Negative Average = 11.8380473345302

Tekken Tag Tournament Results:

Test 1 and 2 should have been negative and the 3-10 should have been positive

NegAvg = 11.8229121304717
PosAvg = 13.1909226170445

--
TestReview 1 = Positive
Cosine = 14.2503313100448 Positive Average = 13.1909226170445
--
TestReview 2 = Negative
Cosine = 12.5051490549628 Negative Average = 11.8229121304717

107

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 97–108
Computer Science Department, Swarthmore College

12

--
TestReview 3 = Positive
Cosine = 17.0557835789563 Positive Average = 13.1909226170445
--
TestReview 4 = Positive
Cosine = 15.4480815863922 Positive Average = 13.1909226170445
--
TestReview 5 = Positive
Cosine = 15.2916255149102 Positive Average = 13.1909226170445
--
TestReview 6 = Positive
Cosine = 17.4736133305576 Positive Average = 13.1909226170445
--
TestReview 7 = Positive
Cosine = 18.4138705812283 Positive Average = 13.1909226170445
--
TestReview 8 = Positive
Cosine = 16.9111365668947 Positive Average = 13.1909226170445
--
TestReview 9 = Positive
Cosine = 16.9747545634721 Positive Average = 13.1909226170445
--
TestReview 10 = Positive
Cosine = 13.3273304529849 Positive Average = 13.1909226170445

108

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

Language segmentation for Optical Character Recognition using Self
Organizing Maps

Kuzman Ganchev

Abstract

Modern optical character recognition (OCR)
systems perform optimally on single-font
monolingual texts, and have lower performance
on bilingual and multilingual texts. For many
OCR tasks it is necessary to accurately rec-
ognize characters from bilingual texts such as
dictionaries or grammar books. We present a
novel approach to segmenting bilingual text,
easily extensible to more than two languages.
Our approach uses self organizing maps to dis-
tinguish between characters of different lan-
guages allowing OCR to be performed on each
part separately.

1 Introduction

Modern optical character recognition (OCR) systems per-
form optimally on single-font monolingual texts, espe-
cially when they have been trained on a font very sim-
ilar to the one they need to recognize. Performance on
bilingual texts, however is not nearly as good, especially
when the two languages that occur in the text have simi-
lar characters. The reason for this is that dictionaries and
language models are usually trained on a per-language
basis. Sometimes the OCR program will assume that
there are multiple fonts for the same language and make
poor guesses about which characters are in which lan-
guage. Despite these difficulties, there are real lines of
motivation for performing bilingual OCR. For example
is the rapid development of translation systems requires
large amounts of training data. There are many languages
around the world for which collections of texts as well as
dictionaries and grammar books are readily available in
printed form, but not in electronic form. For the task of
rapidly developing a translation system, optical character
recognition may be the only viable solution for obtaining
training text.

This paper focuses on a sub-topic of bilingual OCR –
namely deciding which characters are in which language.

Once this has been done, monolingual OCR can be per-
formed on each of the sections of text and the original
document can be subsequently reconstructed. In order
to perform this division, we use self organizing maps
(SOMs) to distinguish between characters of one lan-
guage and characters of the other. SOMs are a mecha-
nism for sorting high dimensional vectors into a two di-
mensional grid, in such a way that similar vectors are
sorted into grid locations near each other. A more de-
tailed description of SOMs and how we use them is pro-
vided in Section 3.

Our results show that using the approach outlined in
this paper, we can correctly determine the language of
98.9% of the characters in Uzbek-English dictionary text.
Our experiments as well as these results are described in
Section 4.

2 Related Work

2.1 Self Organizing Maps

Kohonen (1990) provides a concise introduction to self
organizing maps in general, considering their appli-
cations since their conception. He describes how a
SOM might work, and notes that it may be necessary
to preprocess the information somehow: “it would of-
ten be absurd to use primary signal elements, such as
. . . pixels of an image, for the components of [a SOM]
directly”(Kohonen, 1990). Kohonen presents his SOMs
in the context of “Vector Quantization” – the assigning of
quantum values to vectors; similar to what we want to do,
if the image is the vector, then the quantum representation
would be the character that produced it or in the case of
language segmentation, the language that that character
is in. In this context he also talks about a “codebook” of
vectors that are essentially the definition of the quantum
to vector relationships. He presents three algorithms for
“Learning Vector Quantization” called LVQ1, LVQ2 and
LVQ3.

He and Ganchev (2003) use SOMs and neural net-
works for simple object recognition on a mobile robot,
with limited success. The images taken from a camera

109

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

mounted on a Khepera robot moving in an enclosed space
are sorted into a large SOM, after which a neural network
is used to associate labels to images.

2.2 Optical Character Recognition

Berman and Fateman (Berman and Fateman, 1994) de-
scribe an OCR system for mathematical texts. The main
application of their work is to recognize printed tables
of integrals, or mathematical proofs. The algorithm they
describe requires that images for every variation of ev-
ery font be learned separately by the program. They
use the Hausdorff asymmetric distance function which is
defined as the largest Euclidean distance from any “on”
pixel in the source image to the nearest “on” pixel in the
destination image. One interesting feature of this metric
is that in one direction it treats characters with missing
“on” pixels as a perfect match, while in the other direc-
tion it treats characters with extra “on” pixels as a per-
fect match. This allows it to deal with broken glyphs and
over-connected characters. Unfortunately the authors do
not give any numerical results, and the system has to be
retrained from scratch for even a slightly different font
or font size. Since a maximum of distances is taken for
the measure; this approach might also be very sensitive
to dust. For example, a spec of dust in the middle of an
“O” would make it as far from the model “O” as if it was
completely filled in.

3 Abstract Implementation

In order to investigate methods for using SOMs to divide
an image into languages, we developed different versions
of a system for classifying characters into two sets based
on the language which generated them. The first subsec-
tion gives an overview of the architecture of this system.
Subsequent subsections describe each of the system com-
ponents in more detail. Subsection 3.2 describes the Gnu
Optical Character Recognition program, Subsection 3.3
gives an overview of self organizing maps, and Subsec-
tion 3.4 describes the system components that we imple-
mented.

3.1 Architectural Overview

Figure 1 shows a graphical representation of the system
architecture. In the figure, the dotted lines represent flow
of information, while the solid lines represent the flow
of control. Given a source image, we use the Gnu Op-
tical Character Recognition program (GOCR) to find the
boxes that contain characters of text. We then wrote a
program to extract data vectors corresponding to char-
acters of text from the image using the box descriptions
provided by GOCR. Once this training data has been ex-
tracted, it is used to train a self organizing map (SOM).
We used the SOMPAK (Kohonen et al., 1995) toolkit for

all the SOM tasks. Finally, we use the trained SOM to
distinguish between characters of different character sets.

This is a page of text

it is wonderful to be a

page of text because

of all the recognition

example this page will

eventually be recog−

nized

that you get. For

1

Image

SOM

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

GOCR Find boxes

extract data

Train SOM

Categorize characters

Figure 1: Architecture: The dotted lines represent flow
of information, while the solid lines represent the flow
of control. GOCR is used to find the boxes that con-
tain characters, the data vectors corresponding to those
boxes is extracted and used to train the SOM. Finally the
trained SOM is used to categorize the characters into two
languages.

3.2 GOCR

GOCR, developed by Joerg Schulenburg and Bruno Bar-
beri Gnecco, is a free optical character recognition sys-
tem under continuing development. GOCR reads in an
image file, and scans it for boxes containing a single char-
acter of text. Each box ideally contains a single character
and is the smallest rectangular area with sides parallel to
the � and � axes. In practice boxes may contain more
than one character (See figure 3) but in our experience
they rarely contain less than a character. After a list of
boxes has been generated, GOCR removes dust and pic-
tures that do not need to be recognized, attempts to detect
a rotation angle and lines of text within the scanned im-
age, and attempts to correct glued boxes and broken char-
acters. Finally GOCR runs an OCR engine on the sorted
boxes. As an example of its performance GOCR program
gives the following output for the image shown in Figure
2; GOCR also added two extraneous new lines between
each pair of lines of text, probably because of the high
resolution of the source image. The “” characters rep-
resent characters that GOCR was not able to recognize.
Figure 3 shows the boxes and lines of text that GOCR
has found within the image.

itcan go. Butthe"3O’s
pas_. The eleven mus
ch_sen as the great o
periodbe_een l94O

110

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

Figure 2: A sample of scanned text used for optical char-
acter recognition. Note that the image is very hight reso-
lution, but imperfect and skewed.

Figure 3: The same scanned piece of text, after process-
ing by GOCR. The blue lines represent the lines of the
text as well as the box boundaries. Characters for which
GOCR does not have a high confidence are shaded in red.
Note that the “tw” shaded in red on the bottom line is in
fact a single box. GOCR is not able to recover from this
error.

3.3 Self Organizing Maps

Conceptually, a self organizing map (SOM) is a structure
for sorting vectors into a grid in such a way that vectors
close together on the grid are similar, and vectors farther
away are more dissimilar. After training, each grid lo-
cation contains a vector that represents the ideal vector
at that location called a “model vector”. Typically, SOM
grids are hexagonal, as shown in Figure 4. This allows
each cell to be adjacent to six other cells, rather than four
with a rectangular grid.

Before the SOM can be trained, it is initialized by set-
ting all its model vectors to random values. Training is
done as follows: for each data vector, find the model vec-
tor closest to it, and modify that vector and vectors nearby
(in the grid) to make make them closer to the data vec-

<0,0> <0,1>

<1,0> <1,1>

<2,0>

<3,0>

<2,1>

<3,1>

Figure 4: A hexagonal SOM topology. This is a� � �
SOM – it has four rows and two columns.

tor. We used Euclidean distance to determine how close
a data vector was to the model vector. We opted for this
approach since it is the default for SOMPAK; an other
option would have been to use cosine similarity as the
distance metric. One way to make one vector closer to
another is to use a weighted average of the two. The rel-
ative weights of the vectors are determined by a learning
rate parameter.

There are two stages of training. During the first short
stage the learning rate is set high and the neighborhood of
the vectors is large, so that the SOM roughly but quickly
organizes the vectors into groups. During the longer sec-
ond stage of training a lower learning rate and smaller
neighborhood are set so that local arrangements can be
made and the model vectors approach ideal characters.

After the training phase is complete the same vectors
used for training can be sorted into locations on the grid.
The location and difference from the nearest model for
each vector is recorded for use as described in Subsection
3.4. We used SOMPAK (Kohonen et al., 1995) as the
SOM implementation for our experiments.

3.4 Custom Components

Our system relies on a number of small components other
than SOMPAK and GOCR. Section 3.4.1 describes how
we convert the images described by the character boxes
generated by GOCR, into data vectors used to train the
SOM. Section 3.4.2 describes how we use the trained
SOM to segment bilingual text.

3.4.1 Converting Images to Vectors
In using a SOM to sort images, we need to first convert

the images into some vector representation, since SOMs
are designed to work with vectors. We do this by using
“1” to designate a white pixel and “0” to designate a black
pixel, and then creating a vector that has one dimension
per pixel. For example a� � � image with black top
and bottom rows and a white middle row would be rep-

111

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

resented as “(0,0,0,1,1,1,0,0,0)”. This provides a mecha-
nism to convert an image to a vector and vice-versa, but
the sizes of the vectors depend on the size of the image,
so a “.” character, might be a� � � image (correspond-
ing to a nine dimensional vector) while a “M”character
might be much larger. This complicates matters because
a SOM only works with vectors of the same size. We de-
scribe two techniques we used to deal with this in Section
4.

3.4.2 After Training

Once we have a SOM trained in one language, we map
characters from an unknown language into that SOM.
Based on the distance from the character vector to the
nearest model vector in the SOM, we decide whether
the character belongs to the same language on which the
SOM has been trained or to some other language.

4 Experimental Results

This section describes the empirical evaluation we per-
formed on our system. Subsection 4.1 describes our ini-
tial approach for converting character boxes to vectors –
placing the box at the top left-hand corner of the image
– and describes the problems that produces. Subsection
4.2 describes a refinement to this approach – scaling the
characters – and provides comparative results to those ob-
tained in Subsection 4.1. Subsection 4.3 describes how
the algorithm performs on hand-selected training data for
the task of segmenting dictionary text. Finally, Subsec-
tion 4.4 describes its performance when trained using un-
edited “dirty” training data.

4.1 Top Left Corner

The first approach we use to convert character boxes into
vectors is to place the character box in the top left-hand
corner of a white image that is the same size for all the
characters. We create a white image, then copy the pixels
of the character into the top left hand corner of this image.
Figure 5 illustrates this. We can then convert the image
into a vector as described in Section 3.4.1. Since the im-
age into which we are copying the characters is the same
for each character, all the vectors will be of the same size
and we can use them to train the SOM and to categorize
the characters.

This initial approach has a few limitations. Firstly, for
even a slightly different font or different font-size, the
SOM might have to be retrained from scratch. This is be-
cause a character in a different size or font would show
a significant mismatch of the model vectors pixels, even
when the fonts are identical. Secondly, when we started
to test the system to find unlikely characters we found that
this approach gave a considerable advantage to smaller
characters over larger ones. Figure 6 shows some re-
sults that demonstrate this. The grey areas are parts of

eThe

Imagenary ImageOriginal Text

Figure 5: Initial “top left corner” method of converting
character boxes to vectors. On the left is a segment of
text with a box (dotted line) drawn around a character
boundary, on the right is the image that will be used to
generate the vector for the character.

the image that were not part of a box. The color of each
character is determined by how close the vector repre-
sentation of the character is to the nearest model vector
in the trained SOM, and hence how confident we are that
they are in the language the SOM was trained on. Blue
characters are close to the SOM model vector, while red
characters are distant.

Figure 6: Distance from the nearest matching model vec-
tor for the characters in the text presented in Figure 2.
Blue characters are close to the language the SOM was
trained on, while red characters are classified outside that
language. The ideal result would be to color all char-
acters characters, except for the box that contains “tw”,
since this is not an English character (it is two).

We note that the small characters are closer to the mod-
els than the larger ones. This is because of the way we
convert the images to vectors; any two small characters
share a lot of “white space” and can differ only in the top
left hand corner of the image we use to generate the vec-
tors, since we pad the rest of the space with white pixels
for both small characters. So for example, comparing a
“.” to a “;” the difference ”,” might occupy five pixels,

112

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

while two capital “M”s might have a larger difference.
While both “.” and “;” occur in English, small charac-
ters in another character set are more likely to be closer
to small Latin characters than two scans of identical char-
acters.

4.2 Scaling Characters

To overcome the problems the “top left corner” technique
incurs with different sizes of the same font and of giv-
ing an advantage to small characters, we tried scaling the
characters when converting them to a vector representa-
tion. Again, we create intermediate images of the same
size for all the characters, but this time we scale the char-
acter to this image. The intermediate image is then con-
verted to a vector as above. Figure 7 illustrates the con-
version.

The e
Imagenary ImageOriginal Text

Figure 7: The “scaling” method of converting character
boxes to vectors. On the left is a segment of text with
a box (dotted line) drawn around a character boundary,
on the right is the intermediate image with the character
scaled and placed in the top left hand corner.

This method produced much better results. Figure 8
shows a sample of text color-coded in the same way as
Figure 6. With the exception of the “m”s the boxes con-
taining a single character in the main font are colored
blue, as we would like. The italicized characters and the
box containing the “th” bigram are correctly classified as
different than the rest of the text. Section 5 describes pos-
sible improvements to this approach to deal with misclas-
sified character like the “m”. The following experiment
applies this approach to bilingual text.

4.3 Hand-Selected Regions

To test our system on the task of bilingual text segmenta-
tion, we attempted to segment text from the Hippocrene
Uzbek-English English-Uzbek dictionary (Khakimov,
1994) into Cyrillic and Latin characters. We train the
SOM using regions of a dictionary selected by hand to
contain English text, and then use the trained SOM to
estimate the language of unknown characters. Figure 9
shows a sample of Latin and Cyrillic as they occur in the
dictionary, as well as the part selected as Latin text. The

Figure 8: Distance from the nearest matching model vec-
tor using the scaling approach on English text. Blue char-
acters are close to the nearest SOM model vector, red
characters are far from all SOM model vectors. Note that
the italicized characters are more pink than the rest of the
text, as expected.

box in the figure is a part selected as English. Note that
the word “goalkeeper” was not selected in this process to
save time. The word will be classified as English by the
trained system. As a rough estimate of how much human
time this initial selection entailed, selecting English po-
tions from 40 pages of dictionary text took roughly fifteen
minutes.

Figure 9: Part of a page from the Uzbek-English dictio-
nary used for the experiment described in Section 4.3.
The part of the image enclosed by the box has been se-
lected as Latin text, and so can be used to train the SOM.

It is important to note that the Cyrillic characters are
in a bold font while the Latin characters are not, which
may help performance. It is probably not unjustified to
assume that this will often be the case, since changing
the font also makes it easier for a human to distinguish
between languages at a glance and a typesetter might do
this to aid the human reader.

Figure 10 shows part of a dictionary page color-coded
by the system. Letters closer to blue are more likely to
be Latin, while those closer to red are more likely to be
Cyrillic. We see that most of the English text is correctly

113

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

classified – the word “goalkeeper” is most interesting,
since it was not used during training, and was correctly
classified except for the “pe” bigram for which GOCR
did not find the bounding box correctly. We also see that
on a word by word basis, the system works pretty well –
the Cyrillic words are more red than the Latin words, but
there are a number of places where we make mistakes;
several Latin characters are very pink, and several Cyril-
lic characters are very blue.

Figure 10: Distance from the nearest matching model
vector for dictionary text. Blue characters are classified
as Latin, red characters are classified as Cyrillic.

To obtain quantitative results for this experiment, we
hand-selected all the English text in a dictionary page,
and saved only this in an image. Similarly we placed all
the Uzbek text from three dictionary pages into one im-
age. This gave us 576 characters of English and 312 char-
acters of Uzbek. We then used our system to classify all
the characters in each image. The results are summarized
in Table 1. The system made a correct guess of 98.9% of
the time.

Language Correct Percentage
English 566 / 576 98.3%
Uzbek 312 / 312 100%
both 878 / 888 98.9%

Table 1: The performance of our system with hand-
selected training data on the task of segmenting dictio-
nary text.

4.4 Pages of a Dictionary

The results from the previous experiment are encourag-
ing, but we wanted to investigate whether the human ef-
fort of segmenting some pages of text was really neces-
sary. To investigate this we repeated the above experi-
ment, but instead of training the system on hand-selected
parts dictionary pages, we trained on entire pages of the
dictionary. The idea behind this is to assume that since
most of the characters on the page are of one language
(English for the portion of the dictionary we used), it
may be acceptable to pretend the rest of the characters
are noise. Unfortunately, the results this provides are not

nearly as good as those obtained in the previous experi-
ments. Figure 11 illustrates the results for the same part
of the page shown in Figure 10.

Figure 11: Distance from the nearest matching model
vector for dictionary text, when using unedited pages of
the dictionary. Blue characters are classified as Latin, red
characters are classified as Cyrillic.

Quantitative results were obtained as above, after the
system was trained on unsegmented pages of the dictio-
nary. Overall the system makes the correct estimation
72.2% of the time. As a comparison, always choosing
English would have given a performance of 64.7%, so
this is not an impressive result at all. The details for each
language are shown in Table 2.

Language Correct Percentage
English 339 / 576 58.9%
Uzbek 302 / 312 96.8%
both 641 / 888 72.2%

Table 2: The performance of our system trained on
unedited pages of the dictionary.

5 Conclusions and Future directions

We presented a novel approach for using self organizing
maps to segment bilingual text into its component lan-
guages, with applications to OCR. We tried this approach
on pages from an Uzbek-English dictionary, and found
that we were able to identify the correct language for
100% of the Uzbek characters and 98.3% of the English
characters. With this success in mind, there are a number
of limitations to the approach presented here, and we dis-
cuss these in Section 5.1. Section 5.2 concludes the paper
with a discussion of possible future work.

5.1 Problems with this Approach

There are a number of limitations to the method presented
in this paper. In order to get the results we obtained, we
needed to manually select English text on which the SOM
could be trained. While this did not take a lot of time, it
is a cost that needs to be incurred for each new book on
which OCR is to be performed. The method we describe

114

Appeared in:Proceedings of the Class of 2003 Senior Conference, pages 109–115
Computer Science Department, Swarthmore College

is also very computationally intensive and requires a lot
of space; training the system took several hours on the
available hardware and the training data occupied about
115 MB of disk space (compared to less than 2.5 MB
for the images). We also do not use character position
information in any way, so we may guess that a character
that is part of a long word is of a different language than
the rest of the word. Making the assumption that there
is one language per word would probably considerably
improve our results.

5.2 Future Work

Investigating the limitations mentioned above would be
the first line of future work. One part of this would be
to investigate how much training data is really necessary.
Perhaps it is enough for a human to segment one page of
training data instead of forty. If a few pages of training
data are sufficient this would also alleviate a lot of the
space requirements we currently have. We also do not in-
vestigate the possibility of training the SOM for a smaller
number of iterations. It would be interesting to find out
how this affects performance.

Extending the method to use position information
would also be a line of future work. The one language
per word assumption would not be difficult to implement
and may improve result – especially when we only have
scarce training data. Further position information could
also be learned on the fly. For example, in our dictionary
all the characters in the left two-thirds of the page were
English. Another easy extension of this work would be
to adapt it to deal with more than two languages.

A more difficult future work (suggested by one of the
anonymous reviewers) would be to combine our approach
with a language model approach. For example, if we
perform OCR on each word in the image assuming it is
in one language, the resulting text would match the lan-
guage model best if we guessed the correct language. We
could repeat this for each possible language before mak-
ing a final decision. Combining this approach with ours
would be helpful, since it could be used to provide train-
ing data with no human involvement, while our approach
would deal with words that do not match the language
model, such as the Latinization of the Cyrillic words in
our dictionary.

References

Benjamin P. Berman and Richard J. Fateman. 1994.
Optical character recognition for typeset mathemat-
ics. InProceedings of the international symposium on
Symbolic and algebraic computation, pages 348–353.
ACM Press.

Kamran Khakimov. 1994. Hippocrene Books.

Kohonen, Hynninen, Kangras, and Laaksonen. 1995.
The self organizing map program package.

Teuvo Kohonen. 1990. The self-organizing map.Pro-
ceedings of the IEEE, 78(9).

115

	Introduction
	Program
	Table of Contents
	Hebrew Vowel Restoration With Neural Networks
	One Sense per Collocation for Prepositions
	The Structure, Computational Segmentation, and Translation to English of German Nominal Compounds
	Using Semantic Information from Neural Networks to Detect Context-Sensitive Spelling Errors
	Part Of Speech Tagging Using A Hybrid System
	Disambiguating Between 'wa' and 'ga' in Japanese
	Machine Translation Evaluation by Document Classification and Clustering
	Constructing a Lossless and Extensible Part-Of-Speech Tagger
	A Hybrid WSD System using Word Space and Semantic Space
	A Minimally-Supervised Malay Affix Learner
	code-name DUTCHMAN: A Text Summarization System
	Wordnet Wordsense Disambiguation using an Automatically Generated Ontology
	A Connectionist Approach to Word Sense Disambiguation
	Automatic Rule Generation and Generalization for an Information Extraction System Using MAXIM
	Latent Semantic Analysis for Computer Vocabulary
	An In Depth Look at Two Approaches to Sentiment Classification
	Language Segmentation for Optical Character Recognition using Self Organizing Maps

