Unsupervised Models for Morpheme
Segmentation and Morphology Learning

MATHIAS CREUTZ and KRISTA LAGUS
Helsinki University of Technology

We present a model family called Morfessor for the unsupervised induction of a simple morphology
from raw text data. The model is formulated in a probabilistic maximum a posteriori framework.
Morfessor can handle highly inflecting and compounding languages where words can consist of
lengthy sequences of morphemes. A lexicon of word segments, called morphs, is induced from the
data. The lexicon stores information about both the usage and form of the morphs. Several instances
of the model are evaluated quantitatively in a morpheme segmentation task on different sized sets
of Finnish as well as English data. Morfessor is shown to perform very well compared to a widely
known benchmark algorithm, in particular on Finnish data.

Categories and Subject Descriptors: 1.2.7 [Artificial Intelligence]: Natural Language Process-
ing; 1.2.6 [Artificial Intelligence]: Learning—Language acquisition; 1.5.1 [Pattern Recogni-
tion]: Models—Statistical; H.1.1 [Models and Principles]: Systems and Information Theory—
Information theory

General Terms: Algorithms, Experimentation, Languages, Performance

Additional Key Words and Phrases: Efficient storage, highly inflecting and compounding languages,
language independent methods, maximum a posteriori (MAP) estimation, morpheme lexicon and
segmentation, unsupervised learning

ACM Reference Format:

Creutz, M. and Lagus, K. 2007. Unsupervised models for morpheme segmentation and morphol-
ogy learning. ACM Trans. Speech Lang. Process. 4, 1, Article 3 (January 2007), 34 pages. DOI =
10.1145/1187415.1187418 http://doi.acm.org/10.1145/1187415.1187418.

1. INTRODUCTION

When constructing a system that is capable of understanding and producing
language, a fundamental task is the determination of the basic language units
and their relationships. Many practical natural language processing (NLP)
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problems are best solved using lexical resources, in their simplest form an
application-specific vocabulary. For example, in information retrieval, the anal-
ysis entails collecting a list of words and detecting their association with topics
of discussion. Moreover, a vocabulary is essential for obtaining good results in
speech recognition.

Words are often thought of as basic units of representation. However, es-
pecially in inflecting and compounding languages this view is hardly optimal.
For instance, if one treats the English words hand, hands, and left-handed as
separate entities, one neglects the close relationships between these words as
well as the relationship of the plural s to other plural word forms e.g., heads,
arms, fingers. Overlooking these regularities accentuates data sparsity which
is a serious problem in statistical language modeling.

According to linguistic theory, morphemes are the smallest meaning-bearing
units of language as well as the smallest units of syntax [Matthews 1991]. Every
word consists of one or several morphemes; consider, for instance, the English
words hand, hand+s, left+hand+ed, finger+s, un+avail+able. There exist lin-
guistic methods and automatic tools for retrieving morphological analyses for
words, for example, based on the two-level morphology formalism [Koskenniemi
1983]. However, these systems must be tailored separately for each language,
which demands a large amount of manual work by experts. Moreover, specific
tasks often require specialized vocabularies which must keep pace with the
rapidly evolving terminologies.

If it is possible to discover a morphology automatically from unannotated
text, language and task independence are easier to achieve. As we will demon-
strate in this work, by observing the language data alone, it is possible to come
up with a model that captures regularities within the set of observed word
forms. If a human were to learn a language in an analogous way, this would
correspond to being exposed to a stream of large amounts of language without
observing or interacting with the world where this language is produced. This
is clearly not a realistic assumption about language learning in humans. How-
ever, Saffran et al. [1996] show that adults are capable of discovering word units
rapidly in a stream of a nonsense language without any connection to mean-
ing. This suggests that humans do use distributional cues, such as transition
probabilities between sounds, in language learning. And these kinds of statis-
tical patterns in language data can be successfully exploited by appropriately
designed algorithms.

Based on a comprehensive review of contemporary studies of how children
start to acquire language, Kit [2003] concludes that children certainly make use
of statistical cues. Kit further proposes the least-effort principle as a probable
underlying approach that is supported by both empirical evidence and theo-
retical considerations. The least-effort principle corresponds to Occam’s razor,
which says that among equally performing models one should prefer the small-
est one. This can be formulated mathematically using the Minimum Description
Length (MDL) principle [Rissanen 1989] or in a probabilistic framework as a
maximum a posteriori (MAP) model.

Generally, a system using language benefits from representing as large a vo-
cabulary as possible. However, both humans and artificial systems need to be
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able to store language economically using limited memory capacity. This is par-
ticularly true for small portable devices. For example, if one has 500,000 word
forms in a statistical n-gram language model, or essentially the same infor-
mation using only 20,000 morphemes, considerable improvements in efficiency
can be obtained.

In language understanding and generation, one must not only represent
possible word forms but also their rules of generation in the context of other
words. An important consideration is the ability to generate and to recognize
unseen word forms and expressions. For example, we would expect a system to
be able to handle the word shoewiping when some other related word forms have
been observed (e.g., shoe, wiped). If a word-based system has not observed a
word, it cannot recognize or generate it. In contrast, a morpheme-based system
can generate and recognize a much larger number of different word forms than
it has observed.

In this work, we describe a general probabilistic model family for morphol-
ogy induction. The model family that we call Morfessor consists of indepen-
dent components that can be combined in different configurations. We utilize
the maximum a posteriori framework for expressing the model optimization
criteria.

Morfessor segments the input words into units called morphs. A lexicon of
morphs is constructed where information about both the distributional nature
(usage) and form of each morph is stored. Usage relates to the distributional na-
ture of the occurrence of morphs in words. Form corresponds to the string of let-
ters that comprise the morph. We experimentally evaluate different instances
of the Morfessor model and compare them against a benchmark morphology-
learning algorithm [Goldsmith 2001, 2005].

1.1 Structure of the Article

Related work on both morphology learning and word segmentation is discussed
in Section 2. Moreover, the point of view of applying different mathematical
modeling frameworks is also considered.

The Morfessor model family is outlined in Section 3. The components of
the model as well as their interpretations in terms of usage and form are dis-
cussed in detail. A summary of our previous morphology discovery methods as
instances of this general framework is presented in Section 4.

Section 5 presents thorough experimental results, comparing the different
instances of the model with datasets of different sizes, ranging from thousands
to millions of words. The results are intended to provide an understanding on
how particular components of the general model affect morphology learning. We
use an evaluation task that measures segmentation accuracy and coverage of
the proposed segmentations against gold standard segmentations for Finnish
and English.

Section 6 discusses issues beyond the discovery of morpheme boundaries as
well as considering aspects that are not handled by the current model frame-
work. Conclusions are presented in Section 7.
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2. RELATED WORK

Unsupervised morphology induction is closely connected with the field of au-
tomatic word segmentation, that is, the segmentation of text without blanks
into words (or sometimes morphemes). For example, consider the Chinese and
Japanese languages where text is written without delimiters between words.
A first necessary task in the processing of these languages is to determine the
probable locations of boundaries between words.

In the following, we will discuss a few aspects related to morphology learning
and word segmentation. The existing algorithms in these fields include exam-
ples from both the supervised and unsupervised machine learning paradigms.
We will focus on unsupervised and minimally supervised methods. For a broader
overview, which includes work on supervised algorithms, the reader is referred
to, for example, Goldsmith [2001] and Kit et al. [2002].

2.1 Challenges for Highly Inflecting and Compounding Languages

Itis common that algorithms designed for morphology learning not only produce
a segmentation of words into morphemes, but additionally attempt to discover
relationships between words, such as knowledge of which word forms belong to
the same inflectional paradigm. These higher-reaching goals are achieved by
severely constraining the model space: prior assumptions regarding the inner
structure of words (morphotactics) are expressed as strict constraints. Typically,
words are restricted to consist of one stem followed by one, possibly empty, suf-
fix as in, for example, Déjean [1998] and Snover and Brent [2001]. Goldsmith
[2001] induces paradigms that he calls signatures. In doing this, he also pro-
poses a recursive structure in which stems can consist of a substem and a suffix.
Prefixes are also possible in Goldsmith’s model.

In word segmentation such constraints are inapplicable because the num-
ber of words per sentence can vary greatly and is rarely known in advance.
Commonly, algorithms designed for word segmentation utilize very little prior
knowledge or assumptions about the syntax of the language. Instead, prior
knowledge about typical word length may be applied, and small seed lexicons
are sometimes used for bootstrapping. The segmentation algorithms try to iden-
tify character sequences that are likely words without consideration of the con-
text in which the words occur (e.g., Ando and Lee [2000]; Yu [2000]; and Peng
and Schuurmans [2001]).

For highly-inflecting and compounding languages, such as Finnish, both the
outlined approaches are problematic. Typically word segmentation algorithms
perform on an insufficient level, apparently due to the lack of any notion of mor-
photactics. On the other hand, typical morphology learning algorithms have
problems because the ingrained assumptions they make about word structure
are generally wrong (i.e., too strict) for Finnish or for other highly inflecting or
compounding languages. In short, they cannot handle the possibly high num-
ber of morphemes per word. A Finnish word can consist of lengthy sequences
of alternating stems and suffixes as in the example in Figure 1. Our attempts
at finding a solution to this problem are described in the current article. Sub-
sets of these results have previously been presented in the articles Creutz and
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elimd | n | tapa | muutoks | i | lla
life | of | style | change | -s | with

Fig. 1. Morpheme segmentation of the Finnish word elaméntapamuutoksilla (with [the] changes
of life style.)

Lagus [2002]; Creutz [2003]; and Creutz and Lagus [2004, 2005a]. However,
the generalized structure and discussion on its components are presented here
for the first time.

2.2 General Modeling Methodologies

There exist some central mathematical frameworks, or modeling methodolo-
gies, that can be used for formulating models for morphology learning and
word segmentation.

In maximum likelihood (ML) modeling, only the accuracy of the representa-
tion of the data is considered when choosing a model, that is, model complexity
(size of the model) is not taken into account. ML is known to lead to overlearning
unless some restrictive model search heuristics or model smoothing is applied.
There exist word segmentation and morphology learning algorithms where the
complexity of the model is controlled heuristically, for instance, Ge et al. [1999],
Peng and Schuurmans [2001], Kneissler and Klakow [2001], Creutz and Lagus
[2004].

Probabilistic maximum a posteriori (MAP) models and equivalency, models
based on the Minimum Description Length (MDL) principle, choose the best
model by simultaneously considering model accuracy and model complexity;
simpler models are favored over complex ones. This generally improves gener-
alization capacity by inhibiting overlearning. A number of word segmentation
and morphology learning algorithms have been formulated either using MDL
or MAP, for example, de Marcken [1996], Deligne and Bimbot [1997], Kazakov
[1997], Brent [1999], Kit and Wilks [1999], Yu [2000], Goldsmith [2001], Snover
and Brent [2001], Creutz and Lagus [2002], and Creutz [2003]. In these works,
the goal is to find the most likely lexicon (model) as well as a likely segmenta-
tion of the data. A more elaborate, and a much more computationally intensive,
way of performing the task would be to use Bayesian model averaging. Instead
of choosing one particular model, every possible model among some parame-
terized set is chosen with a weight that is proportional to the probability of the
particular model. However, we are unaware of attempts to use such an approach
in this task.

Finite state automata (FSA) can be used to describe the possible word
forms of a language, for example, in the two-level morphology framework
[Koskenniemi 1983]. There exist algorithms that try to learn FSA:s that com-
pactly model the word forms observed in the training data [Johnson and Martin
2003; Goldsmith and Hu 2004]. Also Altun and Johnson [2001] induce a stochas-
tic finite state automaton describing Turkish morphology, but their method
works only in a supervised learning task, that is, they require a segmented,
labeled corpus to begin with.

Parallels from the automaton approach can be drawn to methods, inspired by
the works of Zellig S. Harris [1955, 1967] where a word or morpheme boundary
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is suggested at locations where the predictability of the next letter in a letter
sequence is low, for instance, Déjean [1998], Ando and Lee [2000], Adda-Decker
[2003], and Feng et al. [2004]. If the letter sequences (words or sentences) are
sorted into a suffix tree, these low-predictability locations correspond to nodes
with a high branching factor. The suffix tree could be compressed by merging
nodes that have identical continuations, thereby producing a more compact
data structure, which is a FSA.

2.3 Learning Morphological Structure

The model presented in this work provides a good means for the segmenta-
tion of words into morphemes. Alternatively, the model can be applied to word
form generation. The rather few restrictions incorporated in the current model
makes it a very permissive model of morphology. Such a model predicts a large
number of words outside of the observed training corpus. This is desirable be-
havior since a successful learning algorithm should be able to generalize to
unseen data. However, a permissive model also makes many mistakes. Many
alternative approaches to morphology learning focus on the acquisition of more
restrictive morphologies where far fewer words outside of the training corpus
are recognized.

Some works discover pairs of related words or pairs of multiword collocations.
Jacquemin [1997] discovers morphological variants of multiword collocations,
for example, ‘longitudinal recording’ vs. ‘longitudinally recorded’. The colloca-
tions essentially have the same semantics and can be identified through regular
suffix patterns, {e.g., (¢, ing), (ly, ed)}. Baroni et al. [2002] and Neuvel and Fulop
[2002] propose algorithms that learn similarities in the spelling of word pairs.
The discovery of patterns is not restricted to concatenation, but also include, for
instance, vowel change such as the German Umlaut: Anschlag vs. Anschlége.
Generation takes place by predicting missing word pairs. For instance, the pair
receive vs. reception yields the pair deceive vs. deception by analogy (where it
is assumed that the word deception was not in the training set).

Other works aim at forming larger groups of related word forms. Gaussier
[1999] learns derivational morphology from inflectional lexicons. Orthographi-
cally similar words are clustered into relational families. From the induced word
families, derivational rules can be acquired, such as the following French verb-
to-noun conversions: produire — production, produire — producteur. Schone
and Jurafsky [2000, 2001] make use of a Harris-like algorithm to separate
suffixes and prefixes from word stems. Whether two orthographically similar
word forms are morphologically related is determined from their context of
neighboring words. A semantic representation for a word is obtained from the
context using Latent Semantic Analysis (LSA). The semantic properties of a
word are assumed to emerge from a large context window, whereas syntactic
properties can be determined from a narrow window of the immediate word
context. In addition to orthographic, semantic, and syntactic similarity, transi-
tive closure is utilized as a forth component, that is, if conductive is related to
conduct and conductivity is related to conductive, then conductivity is related to
conduct.
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Yarowsky and Wicentowski [2000] and Yarowsky et al. [2001] discover shared
root forms for a group of inflected words. Verbs in numerous languages are stud-
ied. Frequency distributions are included as a clue to whether words are related.
For instance, the English word singed can be discarded as a past tense candi-
date of ‘to sing’ because singed is far too rare. Furthermore, parallel corpora in
multiple languages are utilized, and one language can function as a bridge for
another language. For example, the French verb croire can be discovered as the
root of croyaient, since these two forms are linked to the English verb believe
in a parallel text. A missing link from the resembling verb forms croissant and
croitre tells us that these are not likely to be related to croire. Wicentowski
[2004] learns a set of string transductions from inflection root pairs and uses
these to transform unseen inflections to their corresponding root forms. This
model, however, is trained in a supervised manner.

A further step consists in inducing complete inflectional paradigms, that is,
discovering sets of stems that can be combined with a particular set of suffixes.
Goldsmith [2001] formulates his well-known algorithm Linguistica in an MDL
framework, whereas Snover and Brent [2001] and Snover et al. [2002] present
a similar, probabilistically formulated, model. These models do not predict any
word forms outside of the training data. If the following English verb forms
have been observed: talk, talks, talking, walk, walked, walks, the verbs talk
and walk will go into separate paradigms, talk with the suffix set {¢, s, ing} and
walk with the suffix set {¢, ed, s}. More general paradigms can be obtained by
collapsing them together, that is clustering them based on context similarity
[Hu et al. 2005a]. This model can, in principle, predict the missing verb forms
talked and walking.

As mentioned in Section 2.1, existing models make the learning of higher-
level morphological structure computationally feasible by assuming that a word
consists of maximally two, or three, morphemes. In recent work, Goldsmith
and Hu [2004] and Hu et al. [2005b] move towards morphologies with a larger
number of morphemes per word. A heuristic is described that is capable of
learning 3- and 4-state FSA:s that model word forming in Swahili, a language
with rich prefixation.

2.4 Composition of Meaning and Form

A central question regarding morpheme segmentation is the compositionality
of meaning and form. If the meaning of a word is transparent in the sense that
it is the sum of the meaning of the parts, then the word can be split into the
parts, which are the morphemes, for example, English foot+print, joy+ful+ness,
play+er+s. However, it is not uncommon that the form consists of several mor-
phemes, which are the smallest elements of syntax, but the meaning is not
entirely compositional, for example, English foot+man (male servant wearing
a uniform), joy+stick (control device), sky+scrap+er (very tall building).

de Marcken [1996] proposes a model for unsupervised language acquisition,
in which he defines two central concepts: composition and perturbation. Com-
position means that an entry in the lexicon is composed of other entries, for in-
stance, joystick is composed of joy and stick. Perturbation means that changes
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are introduced that give the whole a unique identity, for example, the meaning
of joystick is not exactly the result of the composition of the parts. This frame-
work is similar to the class hierarchy of many programming languages where
classes can modify default behaviors that are inherited from superclasses. The
more of its properties a lexical parameter inherits from its components, the
fewer need to be specified via perturbations.

Among other things, de Marcken [1996] applies his model in a task of unsu-
pervised word segmentation of a text, where the blanks have been removed. As
a result, hierarchical segmentations are obtained, for instance, for the phrase
“for the purpose of”: [[flor]][[t[hell[[[p[url]l[[[po]ls] e]llofl]]]. The problem here
from a practical point of view is that there is no way of determining which level
of segmentation corresponds best to a conventional word segmentation. On the
coarsest level, the phrase works as an independent word (forthepurposeof). On
the most detailed level, the phrase is shattered into individual letters.

3. FORMULATION OF THE MORFESSOR MODEL STRUCTURE

The determination of a suitable model family, that is, model structure, is of
central importance since it sets a hard constraint on what can be learned in
principle. A too restricting model family may exclude all optimal and near-
optimal models, making learning a good model impossible, regardless of how
much data and computation time is spent. In contrast, a too flexible model
family is very hard to learn as it requires impractical amounts of data and
computation.

We present Morfessor, a probabilistic model family for morphology learning.
The model family consists of a number of distinct components which can be
interpreted to encode both syntactic and semantic aspects of morphs, which
are word segments discovered from data. Morfessor is a unifying framework
that encompasses the particular models introduced earlier in Creutz and Lagus
[2002], Creutz [2003], and Creutz and Lagus [2004, 2005a] and also has close
connections to models proposed by other researchers. Each of these particular
works has brought additional understanding regarding relevant problems and
how they can be solved.

This section contains the mathematical formulation of the general model
structure along with a discussion of the interpretation of its components. In
Section 4, we outline how our earlier models can be seen as particular instances
or subsets of this model. For a discussion on how to estimate any of the models
(i.e., for the details of the model search algorithms), the interested reader is
referred to our earlier publications.

3.1 Maximum a Posteriori Estimate of the Overall Probability

The task is to induce a model of language in an unsupervised manner from a
corpus of raw text. The model of language (M) consists of a morph vocabulary,
or a lexicon of morphs, and a grammar. We aim at finding the optimal model of
language for producing a segmentation of the corpus, that is, a set of morphs
that is concise and, moreover, gives a concise representation for the corpus.
The maximum a posteriori (MAP) estimate for the parameters, which is to be
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maximized, is:
argmax P(M |corpus) = argmax P(corpus| M) - P(M), where (1)
M M
P(M) = P(lexicon, grammar). (2)

As can be seen from Equation (1), the MAP estimate consists of two parts:
the probability of the model of language P(M) and the maximum likelihood
(ML) estimate of the corpus conditioned on the given model of language, writ-
ten as P(corpus|M). The probability of the model of language Equation (2)
is the joint probability of the probability of the induced lexicon and grammar.
It incorporates our assumptions of how some features should affect the mor-
phology learning task. This is the Bayesian notion of probability, that is, using
probabilities for expressing degrees of prior belief rather than counting relative
frequency of occurrence in some empirical test setting.

In the following, we will describe the components of the Morfessor model
in greater detail by studying the representation of the lexicon, grammar, and
corpus, as well as their respective components.

3.2 Lexicon

The lexicon contains one entry for each distinct morph (morph type) in the
segmented corpus. We use the term lexicon to refer to an inventory of whatever
information one might want to store regarding a set of morphs, including their
interrelations.

Suppose that the lexicon consists of M distinct morphs. The probability of
coming up with a particular set of M morphs ...y making up the lexicon
can be written as:

P(lexicon) = P(size(lexicon) = M) - P(properties(u1), ..., properties(uy)) - M.

3)
The product contains three factors: (i) the prior probability that the lexicon
contains exactly M distinct morphs, (ii) the joint probability that a set of M
morphs, each with a particular set of properties, is created, and (iii) the factor
M, which is explained by the fact that there are M! possible orderings of a
set of M items and the lexicon is the same regardless of the order in which the
M morphs emerged. (It is always possible to rearrange the morphs afterwards
into an unambiguously defined order such as alphabetical order.)

The effect of the first factor, P(size(lexicon) = M), is negligible since, in the
computation of a model involving thousands of morphs and their parameters,
one single probability value is of no practical significance. Thus, we have not
defined a prior distribution for P(size(lexicon)).!

The properties of a morph can be divided into information regarding (1) the
usage and (2) the form of the morph:

P(properties(u;)) = P(usage(i;), form(u;)). (4)

In Section 3.5, we present a set of properties, each of which corresponds to a

LIf one were to define a proper prior, one possible choice would be Rissanen’s universal prior for
positive numbers (see Equation (14)).
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component of the model, and group them under the usage and form aspects.
The purpose of this grouping is to facilitate the understanding of the model;
the model itself would be equivalent without it.

3.3 Grammar

Grammar can be viewed to contain information about how language units can
be combined. In this work we model a simple morphotactics, that is, word-
internal syntax. Instead of estimating the structure of the grammar from data,
we currently utilize a specific fixed structure. Therefore, we do not have to
calculate the probability of the grammar as a whole, and P(M) in Equation (2)
reduces to P(lexicon).

The fixed structure of the grammar is taken as the following: morphs are
generated from a small number of categories, prefix (PRE), stem (STM), suffix
(sur), and nonmorpheme (NoN), which will be described more thoroughly later.
Between the categories there are transition probabilities that exhibit the first-
order Markov property. Words can consist of any number of morphs, which can
be tagged with any categories, with a few restrictions. Suffixes are not allowed
in the beginning and prefixes at the end of words; furthermore, it is impossible to
move directly from a prefix to a suffix without passing through another morph.

It is possible for a morph to be assigned different categories in different
contexts. The tendency of a morph u; to be assigned a particular category C;,
P(C; | ui), (e.g., the probability that the English morph ness functions as a suffix)
is derived from the parameters related to the usage of the morph:

P(Cl | /Li) = P(Cl | usage(Mi)). (5)

The inverse probability, that is, the probability of a particular morph when
the category is known, is needed for expressing the probability of the segmenta-
tion of the corpus. This emission probability P(u; | C;) is obtained using Bayes’
formula:

P(C; | i) - P(ui) P(C; | i) - P(ui)

P(u; |1C) = = :
b 1€ P(C)) o PCi 1 1) - Pty ©

The category-independent probabilities P(u;) are maximum likelihood esti-
mates, that is, they are computed as the frequency of the morph u; in the corpus
divided by the total number of morph tokens.

3.4 Corpus

Every word form in the corpus can be represented as a sequence of some morphs
that are present in the lexicon. Usually, there are many possible segmentations
of a word. In MAP modeling, the one most probable segmentation is chosen.
The probability of the corpus, when a particular model of language (lexicon and
grammar) and morph segmentation is given, takes the form:

w n;
P(corpus| M) = 1_[ [P(Cﬂ | Cjo) l_[ [P(ir | Cit) - P(Cjsn) | Cjk)]} - (D
k=1

Jj=1
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Transition probabilities between morph categories
P(C;11Cjo) P(CplCj) — P(C3ICp) P(Citnj)! Cin)

Categories  (#) @

P(rj2| Cp)

Emission probabilities P(ujil Cyp) P(jnl Ciny)

Morphs Wi Hi2 Wi,

Fig. 2. The HMM model of a word according to Equation (7). The word consists of a sequence of
morphs which are emitted from latent categories. For instance, a possible category sequence for
the English word unavailable would be prefix + stem + suffix and the corresponding morphs would
be un + avail + able.

As mentioned in Section 3.3, this is a Hidden Markov Model, and it is visualized
in Figure 2. The product is taken over the W words in the corpus (token count),
which are each split into n; morphs. The £th morph in the jth word, us, is
assigned a category, Cj. The probability that the morph is emitted by the cate-
gory is written as P(u; | Cjz). There are transition probabilities P(C;¢+1) | Ciz)
between the categories, where Cj; denotes the category assigned to the kth
morph in the word, and Cj+1) denotes the category assigned to the following,
or (k + Dth, morph. The transition probabilities comprise transitions from a
special word boundary category (#) to the first morph in the word as well as the
transition from the last morph to a word boundary.

3.5 Usage and Form of Morphs

In order to find general patterns of how a morph is used, information is col-
lected about the distributional nature of the occurrences of the morph in the
segmented corpus. We refer to this distribution as the usage of the morph. This
includes both properties of the morph itself and properties of the context in
which it typically appears. The typical usage of the morph can be parameter-
ized and the parameters stored in the lexicon. Which parameter values are
likely is determined by probability density functions (pdf:s), which are prior
pdf:s in the Bayesian sense and favor solutions that are linguistically moti-
vated. The features that have been used for modeling usage in this work, as
well as possible extensions, are described in Section 3.5.2.

By the form of a morph we understand the symbolic representation of the
morph, that is, the string of letters of which it consists. Different strings
have different probabilities, which are determined using a prior probability
distribution.

Given this distinction between usage and form, we make the assumption
that they are statistically independent:

P(properties(j11), ..., properties(iuy)) =

P(usage(uy), ...,usage(iuy)) - P(form(uy), ..., form(up)). (8)

3.5.1 Form of a Morph. In the current model, we further make the simpli-
fying assumption that the forms of the morphs in the lexicon are independent
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of each other, thus

M
P(form(us), ..., form(uu)) = ]’[ P(form(u;)). 9
i=1

We draw inspiration from de Marcken [1996] in the sense that morphs in
the lexicon have hierarchical structure. A morph can either consist of a string
of letters or of two submorphs which can recursively consist of submorphs.
The probability of the form of the morph u; depends on whether the morph is
represented as a string of letters (Equation (10a)) or as the concatenation of
two submorphs (Equation (10b)):

P(form(u;)) =
(1= P(sub)) - [T P(cy). (10a)
P(sub) - P(Cj1|sub) - P(ui1]Ci1) - P(Ci2| Ci1) - P(uiz | Ci2). (10b)

P(sub) is the probability that a morph has substructure, that is, the morph
consists of two submorphs. P(sub) is estimated from the lexicon by dividing the
number of morphs having substructure by the total number of morphs.

In Equation (10a), P(c;) is the probability of the jth letter in the ith morph
in the lexicon. The last letter of the morph is the end-of-morph character which
terminates the morph. The probability distribution to use for the letters in the
alphabet can be estimated from the corpus (or the lexicon).

Equation (10b) resembles Equation (7), where the probability of the corpus
is given. P(C;1 | sub) is the probability that the first morph in the substructure
is assigned the category C;1. P(C;2|C;1) is the transition probability between
the categories of the first and second submorphs. P(u;1 | C;1) and P(u;g | C;2) are
the probabilities of the submorphs ;1 and w;2 conditioned on the categories C;;
and C;o. The transition and morph emission probabilities are the same as in
the probability of the corpus (Eq. 7). An example of concrete substructures are
given later (Section 4.3, Figure 4).

3.5.2 Features Related to the Usage of a Morph. The set of features that
could be used for describing usage is very large: The typical set of morphs
that occur in the context of the target morph could be stored. Typical syntactic
relations of the morph with other morphs could be included. The size of the
context could vary from very limited to large and complex. A complex context
might reveal different aspects of the usage of the morph from fine-grained syn-
tactic categories to broader semantic, pragmatic, or topical distinctions. One
might even use information from multimodal contexts (e.g., images, sounds)
for grounding morph meaning to perceptions of the world. This reasoning re-
lies on the philospohical view that the meaning of linguistic units (e.g., morphs)
is reflected directly in how they are used.

However, in this work only a very limited set of features is used, based only
on information contained in word lists. As properties of the morph itself, we
count the frequency of the morph in the segmented corpus and the length in
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letters of the morph. As distilled properties of the context the morph occurs in,
we consider the intraword right and left perplexity? of the morph.

Using these features, the probability of the usages of the morphs in the
lexicon becomes:

P(usage(u1), ..., usage(uy)) =

M
P(freq(u1), ..., freq(um)) - ]_[[P(length(m)) - P(right-ppl(w;)) - P(left-ppl(u;))].
=1 (11)

Due to practical considerations in the current implementation, we have as-
sumed that the length and the right and left perplexity of a morph are indepen-
dent of the corresponding values of other morphs. In contrast, the frequencies
of the morphs are given as a joint probability, that is, there is one single proba-
bility for an entire morph frequency distribution. The probability distributions
have been chosen due to their generality and simplicity. In a more sophisticated
model formulation, one could attempt to model dependencies between morphs
and their features, such as the general tendency of frequent morphs to be rather
short.

Next, we describe the individual features and the prior probability distri-
butions that are used for the range of possible values of these features. We
conclude the treatment of morph usage by reporting how the usage of a morph
translates into category membership probabilities in the current grammar. We
stress that this particular grammar, as well as the set of features used, is only
one possible solution among a large number of alternatives.

3.5.2.1 Frequency. Frequent and infrequent morphs generally have differ-
ent semantics. Frequent morphs can be function words and affixes as well as
common concepts. The meaning of frequent morphs is often ambiguous as op-
posed to rare morphs which are predominantly content words.

The knowledge of the frequency of a morph is required for calculating the
value of P(u;) in Equation (6). The probability that a particular frequency dis-
tribution emerges is defined by the following prior probability:

-1 M —-1)! — M)
P(freq(u1), ..., freq(uy)) = 1/(N ) _ ¢ NN )

M-1) (N —1)! ’ (12)

where N is the total number of morph tokens in the corpus, that equals the
sum of the frequencies of the M morph types that make up the lexicon. Equa-
tion (12) is derived from combinatorics: as there are (IAWIj) ways of choosing M
positive integers that sum up to NV, the probability of one particular frequency
distribution of M frequencies summing to N is 1/ (ﬁj)

3.5.2.2 Length. We assume that the length of a morph affects the proba-
bility of whether the morph is likely to be a stem or belong to another morph
category. Stems often carry semantic (as opposed to syntactic) information. As
the set of stems is very large in a language, stems are not likely to be very short
morphs because they need to be distinguishable from each other.

2Perplexity, a function of entropy, describes how predictable the context is given this morph.
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14 . M. Creutz and K. Lagus

The length of a morph can be deduced from its form if an end-of-morph char-
acter is used (see Section 3.5.1). However, the consequence of such an approach
is that the probability of observing a morph of a particular length decreases
exponentially with the length of the morph which is clearly unrealistic. Instead
of using an end-of-morph marker, one can explicitly model morph length with
more realistic prior probability distributions. A Poisson distribution can be jus-
tified when modeling the length distributions of word and morph tokens, for
instance, Nagata [1997], but for morph types (i.e., the set of morphs in the
lexicon) a gamma distribution seems more appropriate [Creutz 2003].

P(length(u;)) in Equation (11) assumes values from a gamma distribution if
such is used as a prior for morph length. Otherwise, if morph length is modeled
implicitly by using an end-of-morph marker, P(length(u;)) is superfluous.

3.5.2.3 Intraword Right and Left Perplexity. The left and right perplex-
ity give a very condensed image of the immediate context in which a morph
typically occurs. Perplexity serves as a measure for the predictability of the
preceding or following morph.

Grammatical affixes mainly carry syntactic information. They are likely to
be common general purpose morphs that can be used in connection with a large
number of other morphs. We assume that a morph is likely to be a prefix if it
is difficult to predict what the following morph is going to be, that is, there
are many possible right contexts of the morph and the right perplexity is high.
Correspondingly, a morph is likely to be a suffix if it is difficult to predict what
the preceding morph can be, and the left perplexity is high. The right perplexity
of a target morph u; is calculated as:

L
fu;

right-ppl(ju;) = [T Pojlw| . (13)

vj € right—of(y;)

There are f,, occurrences of the target morph u; in the corpus. The morph
tokens v; occur to the right of and immediately follow, the occurrences of 11;. The
probability distribution P(v; | u;) is calculated over all such v;. Left perplexity
can be computed analogously.®

As a reasonable probability distribution over the possible values of right
and left perplexity, we use Rissanen’s universal prior for positive numbers
([Rissanen 1989]):*

Pn)~ 2 log, c—logy n—log, logy n—logy log, logy n—... (14)

b

where the sum includes all positive iterates, and c is a constant, about 2.865.

3In fact, the best results are obtained when only context morphs v ; that are longer than three
letters are included in the perplexity calculation. This means that the right and left perplexity are
mainly estimates of the predictability of the stems that can occur in the context of a target morph.
Including shorter morphs seems to make the estimates less reliable because of the existence of
nonmorphemes (noise morphs).

4Actually Rissanen defines his universal prior over all nonnegative numbers, and he would write
P(n — 1) on the left side of the equation. Since the lowest possible perplexity is one, we do not
include zero as a possible value in our formula.
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Fig. 3. Sketch of sigmoids, which express our prior belief of how the right and left perplexity as
well as the length of a morph affects its tendency to function as a prefix, suffix, or stem.

To obtain P(right-ppl(i;)) and P(left-ppl(u;)), the variable n is substituted by
the appropriate value, right-ppl(u;) or left-ppl(u;).

3.5.83 Category Membership Probabilities. Inthe grammar, the tendency of
amorph to be assigned a particular category (PRE, STM, SUF, or NON) is determined
by the usage (distributional nature) of the morph (Equation (5)). The exact
relationship,

P(C; |usage(u;)) = P(C; | freq(u;), length(u;), right-ppl(u;), left-ppl(w;)), (15)

could probably be learned purely from the data, but currently we use a fixed
scheme involving a few adjustable parameters.

We obtain a measure of prefix-likeness by applying a graded threshold real-
ized as a sigmoid function to the right perplexity of a morph (see Figure 3(a)):

prefix-like(u;) = (1 + expl—a - (right-ppl(u;) — b)) L. (16)

The parameter b is the perplexity threshold, which indicates the point where
a morph p; is as likely to be a prefix as a nonprefix. The parameter a governs
the steepness of the sigmoid. The equation for suffix-likeness is identical except
that left perplexity is applied instead of right perplexity (Figure 3(b)).

As for stems, we assume that the stem-likeness of a morph correlates posi-
tively with the length in letters of the morph. A sigmoid function is employed,
which yields:

stem-like(u;) = (1 + expl—c - (length(u;) — d)])~*. an)

where d is the length threshold and ¢ governs the steepness of the curve (Fig-
ure 3(c)).

Prefix-, suffix- and stem-likeness assume values between zero and one, but
they are not probabilities since they usually do not sum up to one. A proper prob-
ability distribution is obtained by first introducing the nonmorpheme category,
which corresponds to cases where none of the proper morph classes is likely.
Nonmorphemes are typically short, like the affixes, but their right and left per-
plexity are low, which indicates that they do not occur in a sufficient number of
different contexts in order to qualify as a prefix or suffix. The probability that
a segment is a nonmorpheme (NON) is:

P(NON | ;) = [1 — prefix-like(u;)] - [1 — suffix-like(u;)] - [1 — stem-like(u;)]. (18)
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Then the remaining probability mass is distributed between prefix, stem, and
suffix, for example,:

prefix-like(u;)? - [1 — P(NON | u;)]
prefix-like(1;)? + stem-like(u; ) + suffix-like(u; )7

P(PRE | ;) = (19)
The exponent g affects the normalization. High values of ¢ produce spiky dis-
tributions (winner-take-all effect), whereas low values produce flatter distribu-
tions. We have tested the values ¢ =1 and q = 2.

As mentioned in Section 3.5.2.1, the frequency of a morph could possibly
be used for distinguishing between semantic morphs (stems) and grammatical
morphs (affixes). In the current scheme, the frequency as such is only used for
computing the category-independent probabilities P(u;) (Eq. 6). Nonetheless,
right and left perplexity are indirect measures of frequency, because a high
frequency is a precondition for a high perplexity.

There is a similar idea of using the features frequency, mutual information,
and left and right entropy in the induction of a Chinese dictionary from an
untagged text corpus [Chang et al. 1995]. There the features are applied in
classifying character sequences as either words or nonwords, which resembles
our morpheme categories and the nonmorpheme category. In another work,
Feng et al. [2004], a somewhat simpler feature called accessor variety was used
in order to discover words in Chinese text. These features are not new within
the field of word segmentation. In the pioneering work of Harris [1955] some-
thing very akin to accessor variety was introduced. Entropy was explored in a
Harrisian approach to the segmentation of English words by Hafer and Weiss
[1974]. However, in Morfessor, perplexity is not utilized to discover potential
morph boundaries, but to assign potential grammatical categories to suggested
morphs.

4. MODEL VARIANTS

Our earlier work can be seen as instances of the general Morfessor model since
each of the previous models implements a subset of the components of Morfes-
sor. These models and their central properties are summarized in Table 1.

The widely known benchmark, John Goldsmith’s algorithm Linguistica
[Goldsmith 2001; Goldsmith 2005], is also included in the comparison even
though it does not fit entirely into the Morfessor model family.

4.1 Baseline and Baseline-Length

The Morfessor Baseline model was originally presented as the Recursive MDL
Model in Creutz and Lagus [2002]. The formulation followed from the Minimum
Description Length (MDL) principle in a mathematically simplified way. In the
Baseline, no context sensitivity is modeled, which corresponds to having only
one morph category in the HMM in the grammar. The only feature related to
morph usage that is taken into account is morph frequency. The form of the
morph is flat, which means that a morph always consists of a string of letters
and never has substructure. The Baseline model can be trained on a collection
of either word tokens or word types. The former corresponds to a corpus, a
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Table I. Summary of Some Properties of the Morphology Learning Algorithms
In the Optim. column, the nature of the optimization task is indicated. Context
sensitivity (Ctxt-sens.) implies that the position in a word affects the probability of a
morph, that is, some notion of morphotactics is included in the model. The Usage
column lists the features of morph usage that are accounted for in the form of explicit
prior distributions in the probability of the lexicon: frequency (F), gamma distribution
for morph length (G), right (R) and left (L) perplexity. The structure of the form of
morphs is given in the Form column. The Train column tells whether the model is
trained on a corpus (tok: word token collection) or corpus vocabulary (typ: word type
collection). The Long seq. column signals whether the model in question is suitable for
morphologies where words can consist of lengthy sequences of morphemes.

Model Name Optim. Ctxt-sens. Usage Form Train Long seq.
Baseline MAP no F flat tok & typ yes
Baseline-Length ~ MAP no FG flat tok & typ yes
Categories-ML ML yes FGRL flat typ yes
Categories-MAP  MAP yes FGRL  hierar. tok (& typ) yes
Linguistica MAP yes - signat.  typ (& tok?) no

piece of text, where words can occur many times. The latter corresponds to a
corpus vocabulary where only one occurrence of every distinct word form in the
corpus has been listed. These two different types of data lead to different morph
segmentations.

The choice of the term baseline signals that this model is indeed very simple.
In essence, words are split into strings that occur frequently within the words
in the corpus without consideration of the intraword context in which these
segments occur. The more elaborate category-based Morfessor models make use
of the Baseline algorithm in order to produce an initial segmentation which is
then refined.

Morfessor Baseline-Length is a slight modification of the model introduced in
Creutz [2003]. It is identical to the Baseline except that a gamma distribution
is utilized for modeling morph length. Compared to the Baseline, the Baseline-
Length algorithm performs better in a morpheme segmentation task, especially
on small amounts of data, but the difference diminishes when the amount of
data is increased.

Software implementing the Morfessor Baseline model variants is publicly
available® under the GNU General Public License. User’s instructions are pro-
vided in a technical report [Creutz and Lagus 2005b] which further describes
the models and the search algorithm used. In brief, the search takes place as
follows: the word forms in the corpus are processed, one at a time. First, the
word as a whole is considered as a morph to be added to the lexicon. Then, every
possible split of the word into two substrings is evaluated. The split (or no split)
yielding the highest probability is selected. In case of a split, splitting of the two
parts continues recursively and stops when no more gains can be obtained. All
words in the corpus are reprocessed until convergence of the overall probability.

The advancement of the search algorithm can be characterized as follows. In
order to split a word into two parts, the algorithm must recognize at least one
of the parts as a morph. Initially, all entire word forms are considered potential

Shttp://www.cis.hut. fi/projects/morpho/.
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morphs. Since many word stems occur in isolation as entire words (e.g., English
match), the algorithm begins to discover suffixes and prefixes by splitting off
the known stems from longer words (e.g., match+es, match+ing, mis+match).
The newly discovered morphs can in turn be found in words where none of the
parts occur in isolation (e.g., invit+ing). As a result of iterating this top-down
splitting, the words in the corpus are gradually split down into shorter morphs.b

Both Baselines produce segmentations that are closer to a linguistic mor-
pheme segmentation when trained on a word type collection instead of a word
token collection. The use of word types means that all information about word
frequency in the corpus is lost. If we are interested in drawing parallels to lan-
guage processing in humans, this is an undesirable property because word fre-
quency seems to play an important role in human language processing. Baayen
and Schreuder [2000] refer to numerous psycholinguistic studies that report
that high-frequency words are responded to more quickly and accurately than
low-frequency words in various experimental tasks. This effect is obtained re-
gardless of whether the words have compositional structure or not (both for reg-
ular derived and inflected words). Note, however, that these findings may not
apply to all linguistic tasks. When test persons were exposed to word forms that
were ungrammatical in context, high-frequency regular word forms seemed
to be processed as if they were compositional rather than unanalyzed wholes
[Allen et al. 2003].

4.2 Categories-ML

The Morfessor Categories-ML model has been presented in Creutz and Lagus
[2004]. The model is a maximum likelihood (ML) model that is applied for
reanalyzing a segmentation produced by the Baseline-Length algorithm. The
morphotactics of the full Morfessor model is used in Categories-ML and all four
usage features are included. However, the computation of the category mem-
bership probabilities (Section 3.5.3) is only utilized for initializing a category
tagging of the morph segmentation obtained from Baseline-Length. Emission
probabilities (Equation (6)) are then obtained as maximum likelihood estimates
from the tagging.

The size of the morph lexicon is not taken into account directly in the calcula-
tion of the overall probability, but some heuristics are applied. If a morph in the
lexicon consists of other morphs that are present in the lexicon (e.g., seemed =
seem+ed), the most probable split (essentially according to Equation (10b)) is
selected and the redundant morph is removed. A split into nonmorphemes is not
allowed, however. If, on the contrary, a word has been shattered into many short
fragments, these are removed by joining them with their neighboring morphs
which hopefully creates a proper morph (e.g., flu+s+ter+ed becomes fluster+ed).
This takes place by joining together nonmorphemes with their shortest neigh-
bors until the resulting morph can qualify as a stem which is determined by

60ther search strategies could be explored in the future, especially when dealing with languages
where free stems are rare, such as Latin (e.g., absurd+us, absurd+a, absurd+um, absurd+ae, ab-
surd+o, etc.). However, initial experiments on Latin suggest that here also the current search
algorithm manages to get a grip on the affixes and stems as the result of a long chain reaction.
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oppositio/STM + kansanedustaja/STM straightforwardness/STM
op/NON  positio/STM  kansanedusta/STM ja/SUF straightforward/STM ness/SUF
/\ /\
kansan/STM edusta/STM straight/STM  forward/STM
/\ /\
kansa/STM  n/SUF for/NON ward/STM
(@ (b)

Fig. 4. The hierarchical segmentations of (a) the Finnish word oppositiokansanedustaja (MP of
the opposition) and (b) the English word straightforwardness (obtained by the Categories-MAP
model for the largest datasets). The finest resolution that does not contain nonmorphemes has
been identified with boldface.

Equation (17). The Categories-ML algorithm operates on data consisting of
word types.

4.3 Categories-MAP

The latest model, Categories-MAP, was introduced in Creutz and Lagus [2005a].
It is the most extensive model, and its formulation is the complete structure
presented in Section 3.

The search for the most probable Categories-MAP segmentation takes place
using a greedy search algorithm. In an attempt to avoid local maxima of the
overall probability function, steps of resplitting and rejoining morphs are al-
ternated; see Creutz and Lagus [2005a] for details including (i) initialization of
a segmentation using Baseline-Length, (ii) splitting of morphs, (iii) joining of
morphs using a bottom-up strategy, (iv) resplitting of morphs, (v) resegmenta-
tion of the corpus using the Viterbi algorithm and re-estimation of probabilities
until convergence, (vi) repetition of Steps (iii)—(v) once.

Figure 4 shows hierarchical representations obtained by Categories-MAP for
the Finnish word oppositiokansanedustaja (member of parliament of the oppo-
sition) and the English word straightforwardness. The Categories-MAP model
utilizes information about word frequency: The English word has been frequent
enough in the corpus to be included in the lexicon as an entry of its own. The
Finnish word has been less common and is split into oppositio (opposition) and
kansanedustaja (member of parliament) which are two separate entries in the
lexicon induced from the Finnish corpus. Frequent words and word segments
can thus be accessed directly which is economical and fast. At the same time, the
inner structure of the words is retained in the lexicon because the morphs are
represented as the concatenation of other (sub)morphs, which are also present
in the lexicon: the Finnish word can be bracketed as [op positio][[[kansa n]
edusta] ja] and the English word as [[straight [for ward]] ness].

Additionally, every morph is tagged with a category which is the most likely
category for that morph in that context. Not all morphs in the lexicon need to
be morpheme-like in the sense that they represent a meaning. Some morphs
correspond more closely to syllables and other short fragments of words. The
existence of these nonmorphemes (NoN) makes it possible to represent some
longer morphs more economically, e.g., the Finnish oppositio consists of op and
positio (position), where op has been tagged as a nonmorpheme and positio as a
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stem. Sometimes this helps against the oversegmentation of rather rare words.
When, for instance, a new name must be memorized, it can be constructed from
shorter familiar fragments. This means that a fewer number of observations
of this name in the corpus suffice for the name to be added as a morph to
the lexicon compared to a situation where the name would need to be memo-
rized letter-by-letter. For instance, in one of the English experiments the name
Zubovski occurred twice in the corpus and was added to the morph lexicon as
zubov/sT™ + ski/NON. One might draw a parallel from the nonmorphemes in the
Categories-MAP model to findings within psycholinguistic research. McKinnon
et al. [2003] suggest that morphological decomposition and representation ex-
tend to nonproductive morphemes, such as -ceive, -mit, and -cede in English
words, e.g., conceive, permit, recede.

4.3.1 Using Categories-MAP in a Morpheme Segmentation Task. In the
task of morpheme segmentation, the described data structure is very useful.
While de Marcken (Section 2.4) had no means of knowing which level of segmen-
tation is the desired one, we can expand the hierarchical representation to the
finest resolution that does not contain nonmorphemes. In Figure 4, thislevel has
been indicated using a boldface font. The Finnish word is expanded to opposi-
tio+kansa+n+edusta+ja (literally opposition+people+of+represent+ative). The
English word is expanded into straight + forward + ness. The morph forward is
not expanded into for + ward, although this might be appropriate because for is
tagged as a nonmorpheme in the current context.

4.4 Linguistica

The model of Linguistica is formulated in an MDL framework that is equivalent
to a MAP model. In the Linguistica algorithm, a morphotactics is implemented
where words are assumed to consist of a stem, optionally preceded by a prefix,
and usually followed by a suffix. The stem can recursively consist of a substem
and a succeeding suffix. This structure is less general than the one used in
Morfessor because Linguistica does not allow consecutive stems (as in, e.g.,
coast+guard+s+man). Thus, morphologies involving compounding cannot be
modeled satisfactorily.

Linguistica groups stems and suffixes into collections called signatures (sig-
nat. in the Form column in Table I), which can be thought of as inflectional
paradigms: a certain set of stems goes together with a certain set of suffixes.
Words will be left unsplit unless the potential stem and suffix fit into a signa-
ture. Linguistica is trained on a word type collection, but it seems that word
token collections could be used as well.

5. EXPERIMENTS

Careful evaluation of any proposed method is essential. Depending on the goal,
the evaluation could be carried out directly in some NLP task such as speech
recognition. However, as the performance in such a task depends on many issues
and not only on the morphs, it is also useful to evaluate the morph segmentation
directly.
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Fig. 5. (a) Sizes of the test data subsets used in the evaluation. (b) Curves of the number of word
types observed for growing portions of the Finnish and English test sets.

In the current article, the methods discussed are evaluated in a linguistic
morpheme segmentation task. The goal is to find the locations of morpheme
boundaries as accurately as possible. Experiments are performed on Finnish
and English corpora and on datasets of different sizes. As a gold standard
for the desired locations of the morpheme boundaries, Hutmegs is used (see
Section 5.2). Hutmegs consists of fairly accurate conventional linguistic mor-
pheme segmentations for a large number of word forms.

5.1 Finnish and English Datasets

The Finnish corpus consists of news texts from the CSC (The Finnish IT Cen-
ter for Science)” and the Finnish News Agency (STT). The corpus contains
32 million words. It has been divided into a development set and a test set,
each containing 16 million words.

For experiments on English, we use a collection of texts from the Gutenberg
project (mostly novels and scientific articles),® and a sample from the Gigaword
corpus and the Brown corpus.? The English corpus contains 24 million words.
It has been divided into a development and a test set, each consisting of 12
million words. The development sets are utilized for optimizing the algorithms
and for selecting parameter values. The test sets are used solely in the final
evaluation.

What is often overlooked is that a comparison of different algorithms on one
single dataset size does not give a reliable picture of how the algorithms behave
when the amount of data changes. Therefore, we evaluate our algorithms with
increasing amounts of test data. The amounts in each subset of the test set are
shown in Figure 5(a), both as number of word tokens (words of running text)
and number of word types (distinct word forms). Figure 5(b) further shows how

Thttp://www.csc.fi/kielipankki/.

8http://www.gutenberg.org/browse/languages/en.

9The Gigaword sample and the Brown corpus are available at the Linguistic Data Consortium:
http://wuw.ldc.upenn.edu/.
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the number of word types grows as a function of the number of word tokens for
the Finnish and English test sets. As can be seen, for Finnish, the number of
types grows fast when more text is added, that is, many new word forms are
encountered. In contrast, with English text, a larger proportion of the words in
the added text has been observed before.

5.2 Morphological Gold Standard Segmentation

The Helsinki University of Technology Morphological Evaluation Gold Stan-
dard (Hutmegs) [Creutz and Lindén 2004] contains morpheme segmentations
for 1.4 million Finnish word forms and 120,000 English word forms. Hut-
megs is based on the two-level morphological analyzer FINTWOL for Finn-
ish [Koskenniemi 1983] and the CELEX database for English [Baayen et al.
1995]. These existing resources provide a morphological analysis of words but
no surface-level segmentation. For instance, the English word bacteriologist
yields the analysis bacterium-+ology+ist. The main additional work related to
the creation of Hutmegs consists in the semi-automatic production of surface-
level, or allomorph, segmentations (e.g., bacteri+olog+ist). Hakulinen [1979]
has been used as an authoritative guideline for the Finnish morphology and
Quirk et al. [1985] for the English morphology. Both inflectional and deriva-
tional morphemes are marked in the gold standard.

The Hutmegs package is publicly available on the Internet.!® For full access
to the Finnish morpheme segmentations, an inexpensive license must addition-
ally be purchased from Lingsoft, Inc.!! Similarly, the English CELEX database
is required for full access to the English material.'?

As there can sometimes be many plausible segmentations of a word, Hutmegs
provides several alternatives when appropriate, for instance, English evening
(time of day) vs. even+ing (verb). There is also an option for so called fuzzy
boundaries in the Hutmegs annotations which we have chosen to use. Fuzzy
boundaries are applied in cases where it is inconvenient to define one exact
transition point between two morphemes. For instance, in English, the stem-
final e is dropped in some forms. Here we allow two correct segmentations,
namely, the traditional linguistic segmentation in invite, invite+s, invit+ed and
invit+ing, as well as the alternative interpretation, where the e is considered
part of the suffix, as in: invit+e, invit+es, invit+ed and invit+ing.!? In the former
case, there are two allomorphs (realization variants) of the stem (invite and
invit), and one allomorph for the suffixes. In the latter case, there is only one
allomorph of the stem (invit), whereas there are two allomorphs of the third
person present tense (-s and -es) and an additional infinitive ending (-e). Since
there are a much greater number of different stems than suffixes in the English

Ohttp://www.cis.hut. fi/projects/morpho/.

Uhttp://www.lingsoft.fi.

12The CELEX databases for English, Dutch and German are available at the Linguistic Data
Consortium: http://www.1ldc.upenn.edu/.

13Note that the possible segmentation invite+d is not considered correct due to the fact that there
is no indication that the regular past tense ending -ed ever loses its e, whereas the preceding stem
unquestionably does so, for example, in inviting.
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language, the latter interpretation lends itself to more compact concatenative
models of morphology.

5.3 Evaluation Measures

As evaluation measures, we use precision and recall on discovered morpheme
boundaries. Precision is the proportion of correctly discovered boundaries
among all discovered boundaries by the algorithm. Recall is the proportion
of correctly discovered boundaries among all correct boundaries. A high preci-
sion thus tells us that when a morpheme boundary is suggested, it is probably
correct, but it does not tell us the proportion of missed boundaries. A high recall
tells us that most of the desired boundaries were indeed discovered, but it does
not tell us how many incorrect boundaries were suggested as well.

In order to get a comprehensive idea of the performance of a method, both
measures must be taken into account. A measure that combines precision and
recall is the F-measure, which is the harmonic mean of the two:

1 1 1
F-Measure =1/ [Q (Precision + Recall>i| ' (20)

We compare performances using all three measures.

Furthermore, the evaluation measures can be computed either using word
tokens or word types. If the segmentation of word tokens is evaluated, frequent
word forms will dominate in the result because every occurrence (of identical
segmentations) of a word is included. If, instead, the segmentation of word types
is evaluated, every distinct word form, frequent or rare, will have equal weight.
When inducing the morphology of a language, we consider all word forms to
be important regardless of their frequency. Therefore, in this article, precision
and recall for word types is reported.

For each of the data sizes 10,000, 50,000, and 250,000 words, the algorithms
are run on five separate subsets of the test data, and the average results
are reported. Furthermore, statistical significance of the differences in perfor-
mance have been assessed using T-tests. The largest datasets, 16 million words
(Finnish) and 12 million words (English), are exceptions since they contain all
available test data which constrains the number of runs to one.

5.4 Methods to be Evaluated

We report experiments on the following methods from the Morfessor family:
Baseline-Length, Categories-ML and Categories-MAP (see Table I for a concise
description). The Baseline-Length model was trained on a collection of word
types. Parameter values related to the priors of the category models (a, b, ¢, d,
and ¢ in Equations (16), (17) and (19)) were determined from the development
set. The model evaluation was performed using independent test sets.

In addition, we benchmark against Linguistica [Goldsmith 2001, 2005].14
In the Linguistica algorithm, we used the commands Find suffix system and

14We have used the December 2003 version of the Linguistica program that is publicly available
on the Internet http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000/.
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Fig. 6. Morpheme segmentation performance (F-measure of discovered morpheme boundaries) of
the algorithms on (a) Finnish and (b) English test data. Each data point is an average of 5 runs on
separate test sets with the exception of the 16 million words for Finnish and the 12 million words
for English (1 test set). In these cases, the lack of test data constrained the number of runs. The
standard deviations of the averages are shown as intervals around the data points. There is no
data point for Linguistica on the largest Finnish test set because the program is unsuited for very
large amounts of data due to its considerable memory consumption.

Find prefixes of suffixal stems. We interpreted the results in two ways: (i) to
allow a word to be segmented into a maximum of three segments—an optional
prefix, followed by a stem, followed by an optional suffix; (ii) to decompose stems
that consist of a substem and a suffix which makes it possible for a word to be
segmented into more than three segments. The former solution (i) surprisingly
produced better results, and thus these results are reported in this work.

5.5 Results

Figures 6-8 depict the morph splitting performance of the evaluated methods in
the Finnish and English morph segmentation tasks. The F-measures shown in
Figure 6 allow for a direct comparison of the methods, whereas the precisions in
Figure 7 and the recalls in Figures 8 shed more light on their relative strengths
and weaknesses. Furthermore, some examples of the segmentations produced
are listed in Tables I and III.

We will now briefly comment on the performance of each method in relation
to the other methods.

5.5.1 Baseline-Length. When evaluated against a linguistic morpheme
segmentation, the Baseline methods suffer because they undersegment fre-
quent strings (e.g., English having, soldiers, states, seemed), especially when
trained on word token collections (where several word forms occur a high num-
ber of times). With more data, the undersegmentation problem also becomes
more severe when trained on word type collections (where each unique word
form is encountered only once). This is due to the fact that the addition of more
examples of frequent word segments justify their inclusion as morphs of their
own in the lexicon. This shows as a decrease in overall performance on the
largest data sizes in Figure 6 and in recall in Figure 8.
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Fig. 7. Precision of discovered morpheme boundaries obtained by the algorithms on (a) Finnish
and (b) English data. Standard deviations are shown as intervals around the data points.
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Fig. 8. Recall of discovered morpheme boundaries obtained by the algorithms on (a) Finnish and
(b) English data. Standard deviations are shown as intervals around the data points. Precision
(Figure 7) measures the accuracy of the proposed splitting points, while, recall describes the cov-
erage of the splits.

The opposite problem consists in the oversegmentation of infrequent strings
(e.g., flu+s+ter+ed). Moreover, the method makes segmentation errors that en-
sue from considering the goodness of each morph without looking at its context
in the word, causing errors such as in Table II ja+n+ille where ja is incorrectly
identified as a morph because it is frequently used as a suffix in the Finnish
language. These kinds of segmentation errors are particularly common with
English, which explains the generally low precision of the method in Figure 7(b).
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Table II.
Examples of Finnish morpheme segmentations learned by versions of Morfessor from the
16 million word Finnish test set. Additionally, the corresponding gold standard segmentations
are supplied. Proposed prefixes are underlined, stems are rendered in bold-face, and suffixes
are slanted. Square brackets [] indicate higher-level stems and parentheses () higher-level
suffixes in the hierarchical lexicon

Baseline-Length

Categories-ML

Categories-MAP

Gold standard

aarre kammioissa
aarre kammioon
bahama laiset
bahama saari en
epa esteettis iksi
epidtasapaino inen
haapa koskeen
haapa koskella
janille

jaadytta & kseen
ma clare n

nais autoilija a
paéi aiheesta
péa aiheista
padhan

sano t takoon
sano ttiin ko

tyo tapaaminen
tohri misista

voi mmeko

voisi mme kin

aarre kammio i ssa
aarre kammio on
bahama lais et
bahama saarien
epa este et ¢ isi ksi
epd tasa paino in en
haap a koske en
haap a koske lla
jani lle

jaady ttd d kseen
maclare n

nais auto ili ja a
pad aihe e sta

péd aihe i sta

Ei hin

sano tta ko on
sano tti in ko

tyo tapa ¢ mine n
tohri mis i st
voim meko

voisi mme kin

[aarre kammio] issa
[aarre kammio] on
bahama laiset
bahama [saari en]
epa [[esteet ¢i] s] iksi

[epa [[tasa paino] inen]]

[h_aapa [koskee n]]
[haapa [koske lla]]
jani lle

[jaady ttaal kseen
maclare n

[nais [autoili jal] a
paa [aihe esta]
[pa4 [aihe istal]
[pad hin]

[sano ttakoon]
[sano ttiin] ko

tyo [tapaa minen]
tohri (mis istd)
[[voi mme] kol
[voisi mme] kin

aarre kammio i ssa
aarre kammio on
bahama laise t
bahama saar i en
epéaesteett is i ksi
epétasa painoinen
haapa koske en
haapa koske lla
jani lle

jaady ttd d kse en
nais autoili ja a
paa aihee sta

paa aihe i sta

paa hin

sano tta ko on
sano ¢t i in ko

tyo tapaa minen
tohri mis i std

voi mme ko

vo isi mme kin

Table III.
Examples of English morpheme segmentations learned by the four algorithms from the
12 million word English test set

Baseline-Length

Categories-ML

Categories-MAP

Linguistica

accomplish es
accomplish ment
beautiful ly
configu ration
dis appoint
expression istic
express ive ness
flu s ter ed
insur e

insur ed

insur es

insur ing

long fellow ’s
master piece s
micro organism s
photograph ers
present ly found
re side d

re side s

re s id ing

un expect ed ly

accomplish es
accomplish ment
beauti ful ly

con figu r ation
dis appoint
express ion ist ic
express ive ness
fluster ed

insur e

insur ed

insur es

insur ing

long fellow ’s
master piece s
micro organ ism s
photo graph ers
present lyfound
re side d

re side s

re sid ing

un expect ed ly

accomplish es]
accomplish ment]
beautiful ly]
configur ation]
disappoint
expression istic
[expressive ness]
[fluster ed]

insure

insur ed]

insure s]

insur ing]

long fellow] ’s]
master piece] s]
micro [organism s]]
[[photo graph] er] s]
present ly] found
resided

[reside s]

[re siding]

[[un [expect ed]] ly]

[
[
[
[

ac compli shes
accomplish ment
beautiful ly

con figura tion
disappoi nt
expression istic
expressive ness
fluster ed

insur e

insur ed

insure s

insur ing
longfellow ’s
masterpiece s
micro organism s
photograph ers
presentlyfou nd
resid ed

reside s

resid ing

un expected ly
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5.5.2 Categories-ML. Out of the compared methods, Categories-ML con-
sistently shows the highest results in Figure 6 for both Finnish and English with
all data sizes. When compared to Baseline-Length in Figures 7(a) and 8(a), it ap-
pears that the considerable improvement is due to the fact that many previously
undersegmented words have been split into smaller parts by Categories-ML.
Many of the new proposed boundaries are correct (higher recall), but some are
incorrect (lower precision). Apparently the simple morphotactics helps correct
many mistakes caused by the lack of specific contextual information. However,
the morphotactics is fairly primitive, and, consequently, new errors emerge
when incorrect alternations of stems and suffixes are proposed, for example,
Finnish, epd+este+et+t+isi+ksi (plural translative of epiesteettinen, unaes-
thetic), tyo+tapa+a+mine+n (tyo+tapaa+minen, job meeting). The drop in pre-
cision for Categories-ML with the largest English dataset (Figure 7(b)) is appar-
ently caused by the multitude of word forms (many foreign words and names),
which give rise to the discovery of suffixes that are not considered correct in
contemporary English, for instance, plex+us, styl+us.

5.5.83 Categories-MAP. Figure 6(a) shows that Categories-MAP challenges
Categories-ML as the best-performing algorithm for Finnish. For two data sizes
(10,000 and 250,000 words), the difference between the two is not even sta-
tistically significant (T-test level 0.05). Also for English (Figure 6(b)) where
the difference between all the algorithms is overall smaller than for Finnish,
Categories-MAP places itself below the best-forming Categories-ML and above
the Baseline-Length method except on the largest dataset where it falls slightly
below Baseline-Length. Note, however, that the difference in performance is
statistically significant only between Categories-ML and the lowest-scoring al-
gorithm at each data size (Linguistica at 10,000 words; Baseline-Length at
50,000 and 250,000 words).

When looking at the detailed measures in Figures 7 and 8, one can see that
Categories-MAP performs very well for Finnish, with both precision and recall
rising as new data is added. However, for English, there is a fallback in recall
on the largest dataset (Figure 8(b)), which is also reflected in decreased F-
measure. This seems to be due to the fact that only the most frequent English
prefixes and suffixes are detected reliably. In general, Categories-MAP is a more
conservative splitter than Categories-ML.

5.5.4 Linguistica. Linguistica is a conservative word splitter for small
amounts of data, which explains the low recall but high precision for small
data sets. As the amount of data increases, recall goes up and precision goes
down because more and more signatures (paradigms) are suggested, some of
them correct and some incorrect. At some point, the new signatures proposed
are mainly incorrect, which means that both precision and recall decrease.
This can be observed as peculiar suffixes of words, for instance, disappoi+nt,
longitu+de, presentlyfou+nd, sorr+ow. The recall of Linguistica can never rise
very high because the algorithm only separates prefixes and suffixes from the
stem and thereby misses many boundaries in compound words, for example,
longfellow+’s, masterpiece+s, thanksgiv+ing.
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Linguistica cannot compete with the other algorithms on the Finnish data,
but, for English, it works at the level of Categories-ML for the datasets
containing 50,000 and 250,000 words. (Note that Linguistica was not run on
datasets for Finnish larger than 250,000 words because the program is unsuited
for very large amounts of data due to its considerable memory consumption.)

5.5.5 Behavior with Different Amounts of Data. In the experiments on
Finnish, Categories-ML and Categories-MAP both improve their performance
with the addition of more data. The rising curves may be due to the fact that
these models have more parameters to be estimated than the other models
due to the HMM model for categories. The larger number of free parameters
require more data in order to obtain good estimates. However, on the largest
English set, all algorithms have difficulties, which seems to be due to the many
foreign words contained in this set: patterns are discovered that do not belong
to contemporary English morphology.

Linguistica does not benefit from increasing amounts of data. The best re-
sults were obtained with medium-sized datasets, around 50,000 words for
Finnish and 250,000 words for English. Similarly, Baseline-Length does not
seem to benefit from ever-increasing data sizes as it reaches its best perfor-
mance with the data sets of 250,000 words.

5.6 Computational Requirements

The Categories-MAP algorithm was implemented as a number of Perl scripts
and makefiles. The largest Finnish dataset took 34 hours and the largest En-
glish set 2% hours to run on an AMD Opteron 248, 2200MHz processor. The
memory consumption never exceeded 1GB. The other algorithms were consid-
erably faster (by an order of magnitude), but Linguistica was very memory-
consuming.

6. DISCUSSION

Only the accuracy of the placement of morph boundaries has been evaluated
quantitatively in the current article. It is worth remembering that the gold
standard for splitting used in these evaluations is based on a traditional mor-
phology. If the segmentations were evaluated using a real-world application,
perhaps somewhat different segmentations would be most useful. For exam-
ple, the tendency to keep common words together, seen in the Baseline and
Categories-MAP models, might not be bad, for instance, in speech recognition
or machine translation applications. In fact, quite the opposite, excessive split-
ting might be a problem in both applications.

The algorithms produce different amounts of information: the Baseline and
Baseline-Length methods only produce a segmentation of the words, whereas
the other algorithms (Categories-ML, Categories-MAP and Linguistica) also in-
dicate whether a segment functions as a prefix, stem, or suffix. Additionally, by
expanding the entries in the lexicon learned by Categories-MAP, a hierarchical
representation is obtained, which can be visualized using a tree structure or
nested brackets.

ACM Transactions on Speech and Language Processing, Vol. 4, No. 1, Article 3, Publication date: January 2007.



Unsupervised Models for Morpheme Segmentation and Morphology Learning . 29

We will use the example segmentations obtained for a number of Finnish and
English words (in Tables IT and III) to briefly illustrate some aspects beyond the
discovery of an accurate morpheme segmentation of words. In Table II, the gold
standard segmentations for the Finnish words are given as a reference, whereas
examples for Linguistica are lacking because the algorithm could not be run
on the largest Finnish test set. English results are available for Linguistica in
Table III, but the corresponding gold standard segmentations are not included
due to limited space and to the fact that all readers are familiar with the English
language. Readers interested in the analyses of further word forms can try our
demonstration program on the Internet.!®

6.1 Tagging of Categories

As has been shown, the introduction of a simple morphotactics, or word-internal
syntax, in the Categories models reduced the occurrences of undersegmented
and oversegmented words as well as misalignments due to the insensitivity of
context which were observed in the Baseline models. Examples of such cases in
Tables IT and III comprise the Finnish words aarre+kammio+i+ssa (in treasure
chambers), jani+lle (for Jani), sano+tta+ko+on (may it be said); and the English
words photo+graph+er+s and fluster+ed.

Additionally, the simple morphotactics can sometimes resolve semantic am-
biguities when the same morph is tagged differently in different contexts, for
example, pdd is a prefix in pddaiheesta and péddaiheista (about [the] main
topic(s)), whereas pédé is a stem in pddhén (in [the] head). (In this example,
the Categories-ML algorithm tagged the occurrences of pai correctly, while
Categories-MAP made some mistakes.)

From the point of view of natural language processing, the identification
and separation of semantic segments (mainly stems) and syntactic segments
(mainly affixes) can be beneficial. The stems contained in a word form could be
considered as a canonic (or base) form of the word, while the affixes could be
considered as inflections. Such a canonic form for words could be an alternative
to the base forms retrieved by handmade morphological analyzers or stemming
algorithms which are used, for example, in information retrieval.

6.2 Bracketing

The hierarchical representation produced by the Categories-MAP algorithm,
shown using nested brackets in Tables II and III, can be interpreted as the
attachment hierarchy of the morphemes. With the current model, the con-
struction of the hierarchy is likely to take place in the order of most fre-
quently cooccurring word segments. Sometimes this is also grammatically
elegant, for example, Finnish [ep4 [[tasa paino] inen]] (imbalanced, literaly
bracketed as [un [[even weight] ed]]), [nais [autoili ja]] a (partitive of [fe-
male [car-driv er]]; English: [[[photo graph] er] s], [[un [expect ed]] ly]. But
the probability of coming up with grammatically less elegant solutions is also
high, for example, English [micro [organism s]]. (Note that the gold standard

Bhttp://www.cis.hut. fi/projects/morpho/.
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segmentation for epdtasapainoinen is strange. Categories-MAP produces the
correct segmentation.)

6.3 Overgeneralization

The algorithms can incorrectly overgeneralize and, for instance, suggest a suffix
where there is none, such as, maclare+n (MacLaren). Furthermore, nonsensi-
cal sequences of suffixes (which in other contexts are true suffixes) can be sug-
gested, such as, epid+este+et+t+isi+ ksi, which should be epi+esteett+is+i+ksi.
A model with more fine-grained categories might reduce such shortcomings in
that it could model morphotactics more accurately.

The use of signatures in Linguistica should conceivably prevent overgener-
alization. In general, to propose the segmentation maclare+n, other forms of
the proposed stem would be expected to occur in the data, such as maclare
or maclare+ssa. If none of these exist, the segmentation should be discarded.
However, especially with large amounts of data. Linguistica is oversensitive
to common strings that occur at the end of words and proposes segmentations
such as allu+de, alongsi+de, longitu+de; anyh+ow, highbr+ow, longfell+ow.

Solutions to this problem could be found, in an approach such as that ad-
vocated by Yarowsky and Wicentowski [2000], who study how distributional
patterns in a corpus can be utilized to decide whether words are related or not.
For instance, their method is able to determine that the English word singed is
not an inflected form of to sing.

6.4 Allomorphy

Allomorphs are morphs representing the same morpheme, that is, morphs
having the same meaning but used in complementary distributions. The cur-
rent algorithms cannot in principle discover which morphs are allomorphs,
for instance, that in Finnish on and en mark the same case, namely, illative,
in aarre+kammio+on (into [the] treasure chamber) and Haapa+koske+en (to
Haapakoski).'® To enable such discovery in principle, one would probably need
to look at contexts of nearby words, not just the word-internal context. Ad-
ditionally, one should allow for the learning of a model with richer category
structure.

Moreover, on and en do not always mark the illative case. In bahama+saari+
en (of the Bahama islands), the genitive is marked as en, and in sano+tta+ko+on
(may it be said), on marks the third person singular. Similar examples can be
found for English such as, ed and d are allomorphs in insur+ed vs. re+side+d,
and so are es and s in insur+es vs. re+side+s (Categories-ML).

Many cases of allomorphy can be modeled using morphophonological rules.
The so-called Item and Process (IP) model of morphology assumes that some
canonic forms of morphemes are appended to each other to form words and,
when the morphemes meet, sound changes may typically ensue at the mor-
pheme boundaries. For instance, the final e in insure is dropped when followed
by the suffix ed. In principle, such rules could be learned in an unsupervised

16Furthermore the algorithm cannot deduce that the illative is actually realized as a vowel length-
ening + n: kammioon vs. koskeen.
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manner from unannotated data. Kontorovich et al. [2003] apply machine learn-
ing in the acquisition of allomorphic rules, but their method requires aligned
training data.

Quite generally, much of the work in unsupervised morphology learning does
not focus on concatenative morphology, that is, the discovery of consecutive word
segments. Some algorithms learn relationships between words by comparing
the orthographic and semantic similarity of pairs of words, (e.g., Neuvel and
Fulop [2002] and Baroni et al. [2002]). These approaches can handle noncon-
catenative morphological processes such as the unmlaut sound change in Ger-
man. However, none of these models as such suits highly-inflecting languages
as they assume only two or three constituents per word, analogous to possible
prefix, stem, and suffix.

Moreover, there is some evidence that humans may simply memorize al-
lomorphs without applying morphophonological transformations on what they
hear (or read) [Jarvikivi and Niemi 2002]. In this case, the morphology-learning
models presented in this work are perhaps closer to human language processing
than the IP model of morphology.

7. CONCLUSION

We have attempted to provide the reader with a broad understanding of the
morphology learning problem. It is hoped that the general probabilistic model
family presented, called Morfessor, and the discussion of each component opens
new and fruitful ways to think about modeling morphology learning. The exper-
imental comparison of different instances of the general model in a morpheme
segmentation task sheds light on the usefulness and role of particular model
components.

The development of good model search algorithms deserves additional
consideration in the future. The categorial labelings of the morphs produced
by the later model variants might be useful in other tasks such as information
retrieval. An interesting avenue for future research is the consideration of how
to extend the feature set applied in the modeling of morph usage, possibly to
the point where one is able to ground meanings of morphs using multimodal
information.
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