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Abstract tion about their occurrence in a corpus into vec-
tors. Theseontext vectorare then compared for
similarity. Existing approaches differ primarily in
their definition of “context”, e.g. the surrounding
words or the entire document, and their choice of
distance metric for calculating similarity between
the context vectors representing each term.
Manual creation of lexical semantic resources
is open to the problems of bias, inconsistency and
In this paper, we compare several existing limited coverage. It is difficult to account for the
approaches to approximating the nearest- needs of the many domains in which.p tech-

Accurately representing synonymy using
distributional similarity requires large vol-
umes of data to reliably represent infre-
guent words. However, the naive nearest-
neighbour approach to comparing context
vectors extracted from large corpora scales
poorly (O(n?) in the vocabulary size).

neighbour search for distributional simi- nigues are now being applied and for the rapid
larity. We investigate the trade-off be- change in language use. The assisted or auto-
tween efficiency and accuracy, and find  matic creation and maintenance of these resources
thatsAsH (Houle and Sakuma, 2005) pro- would be of great advantage.
vides the best balance. Finding synonyms using distributional similar-
. ity requires a nearest-neighbour search over the
1 Introduction context vectors of each term. This is computation-

It is a general property of Machine Learning that@lly intensive, scaling t@(n?m) for the number
increasing the volume of training data increase®f termsn and the size of their context vectors
the accuracy of results. This is no more evidenincreasing the volume of input data will increase
than in Natural Language Processing ), where the size of botm andm, decreasing the efficiency
massive quantities of text are required to modePf @ naive nearest-neighbour approach.
rare language events. Despite the rapid increase in Many approaches to reduce this complexity
computational power available forLp systems, have been suggested. In this paper we evaluate
the volume of raw data available still outweighs State-of-the-art techniques proposed to solve this
our ability to process it.Unsupervised learning problem. We find that the Spatial Approximation
which does not require the expensive and timeSample Hierarchy (Houle and Sakuma, 2005) pro-
consuming human annotation of data, offers aryides the best accuracy/efficiency trade-off.
opportunity to use this wealth of data. Curran TRTIR AT
and Moens (2002) show that synonymy extraction2 Distributional Similarity
for lexical semantic resources usidigtributional  Measuring distributional similarity first requires
similarity produces continuing gains in accuracythe extraction of context information for each of
as the volume of input data increases. the vocabulary terms from raw text. These terms
Extracting synonymy relations using distribu- are then compared for similarity using a nearest-
tional similarity is based on thdistributional hy- neighbour search or clustering based on distance
pothesighatsimilar words appear in similar con- calculations between the statistical descriptions of
texts Terms are described by collating informa- their contexts.



2.1 Extraction the results. There are many techniques to reduce

A context relationis defined as a tupléw, r, w') d_imensionality while avoiding this p_roblem. The

whereuw is a term, which occurs in some grammat—s'mpleSt methods use feature selection techniques,
such as information gain, to remove the attributes

ical relationr with another wordw’ in some sen- ; ; ;
tence. We refer to the tuple, w') as anattribute that are less informative. Other techniques smooth
’ the data while reducing dimensionality.

of w. For example(dog, direct-obj, walk) indicates

thatdog was the direct object afalk in a sentence.  Latent Semantic Analysis ¢A, Landauer and
In our experiments context extraction beginsPumais, 1997) is a smoothing and dimensional-

with a Maximum Entropypos tagger and chun- ity reduction technique based on the intuition that
ker. The $XTANT relation extractor (Grefen- the true dimensionality of data iatentin the sur-

stette, 1994) produces context relations that arf2c€ dimensionality. Landauer and Dumais admit
then lemmatised. The relations for each term ar&1at from a pragmatic perspective, the same effect

collected together and counted, producing a vectoRS -SA can be generated by using large volumes

of attributes and their frequencies in the corpus. ©f data with very long attribute vectors. Experi-
ments withLsA typically use attribute vectors of a

2.2 Measuresand Weights dimensionality of around 1000. Our experiments

Both nearest-neighbour and cluster analysis metf1@ve @ dimensionality of 500,000 to 1,500,000.
ods require a distance measure to calculate thBECOMPoOsitions on data this size are computation-

similarity between context vectors. Curran (2004)2ly difficult. - Dimensionality reduction is often

decomposes this intmeasureand weight func- used before usingsA to improve its scalability.

tions. The measurecalculates the similarity 31 Heurigics

between two weighted context vectors and the™

weightcalculates the informativeness of each conAnother technique is to use an initial heuristic

text relation from the raw frequencies. comparison to reduce the number of f@(m)
For these experiments we use the Jaccard (Mector comparisons that are performed. If the

measure and the TTest (2) weight functions, foundheuristic comparison is sufficiently fast and a suffi-

by Curran (2004) to have the best performance. cient number of full comparisons are avoided, the
cost of an additional check will be easily absorbed

2 rry LW (Wi, 7, w0"), W(wy, 7, w') ) by the savings made.
E(va,) max(W(wp,, 7, w'), W(wy,, r,w')) (1) Curran and Moens (2002) introduces a vector of
canonicalattributes (of bounded length < m),
p(w,r,w") — p(,r,w)p(w, *, *) selected from the full vector, to represent the term.

(2) These attributes are the most strongly weighted
verb attributes, chosen because they constrain the
2.3 Nearest-neighbour Search semantics of the term more and partake in fewer

The simplest algorithm for finding synonyms is idiomatic collocations. If a pair of terms share at
a k-nearest-neighbourk¢NN) search, which in- least one canonical attribute then a full similarity
volves pair-wise vector comparison of the targetcomparison is performed, otherwise the terms are
term with every term in the vocabulary. Given annot compared. They show an 89% reduction in
n term vocabulary and up ta attributes for each Search time, with only a 3.9% loss in accuracy.
term, the asymptotic time complexity of nearest- There is a significant improvement in the com-
neighbour search i©(n?m). This is very expen- putational complexity. If a maximum af posi-
sive, with even a moderate vocabulary making thdive results are returned, our complexity becomes
use of huge datasets infeasible. Our largest expef?(n°k + npm). Whenp < n, the system will

iments used a vocabulary of over 184,000 words.be faster as many fewer full comparisons will be
made, but at the cost of accuracy as more possibly

3 Dimensionality Reduction near results will be discarded out of hand.

Vp(Cx,r,w)p(w, *, %)

Using a cut-off to remove low frequency terms 4 Randomised Techniques

can significantly reduce the value of Unfortu-

nately, reducingn by eliminating low frequency Conventional dimensionality reduction techniques
contexts has a significant impact on the quality oftan be computationally expensive: a more scal-



able solution is required to handle the volumes ofvector is created by sampling a Gaussian function

data we propose to use. Randomised techniques’ times, with a mean of 0 and a variance of 1.

provide a possible solution to this. For each termw we construct its bit signature
We present two techniques that have been usedksing the function

recently for distributional similarity: Random In-

dexing (Kanerva et al., 2000) and Locality Sensi- . 1 70 >0

tive Hashing (sH, Broder, 1997). hi(w) = {0 T < 0

41 Random Indexing wherer’is a spherically symmetric random vector

Random Indexing K1) is a hashing technique of lengthd. The signatureso, is thed length bit

based onSparse Distributed Memor{Kanerva, vector:

1993). Karlgren and Sahlgren (2001) showad

produces results similar tosA using theTest of W = {hy (W), hyz (D), . .., hyy (W) }

English as a Foreign Languag@OEFL) evalua-

tion. Sahlgren and Karlgren (2005) showed theThe cost to build alk signatures i) (nm/d).

technique to be successful in generating bilingual For termsu and v, Goemans and Williamson

lexicons from parallel corpora. (1995) approximate the angular similarity by
In RI, we first allocate al length index vec- 0(@.7)
i i - R . U, u
tqr to each unique attribute. The vectors con p(ha(i@) = hp(7)) = 1 — (4)
sist of a large number of Os and small number ™

(¢) number of randomly distributedt1s. Context where(i, @) is the angle betweed andii. The

vectors identifying terms, are generated by SUM-_ ular similarity gives the cosine b
ming the index vectors of the attributes for each g Y9 y

non-unigue context in which a term appears. The cos(0(T, 7)) =

context vector for a term appearing in contexts cos(’(l = p(he(@d) = ha(#)))7) 5)

¢ = [1,0,0,—1] andey = [0,1,0, —1] would be " "

[1,1,0,—2]. The distance between these contextrhe probability can be derived from the Hamming
vectors is then measured using the cosine measurgistance:

N
<L

H(a,v)

cos(f(u,v)) = y

©) p(hr(u) = hy(v) =1 -

| ©)
This technique allows for incremental sampling,By combining equations 5 and 6 we get the fol-

where the index vector for an attribute is only gen-lowing approximation of the cosine distance:

erated when the attribute is encountered. Con-

struction complexity i€)(nmd) and search com- cos(0(id, ) = cos <<H(Ua’0)> 7T> @

plexity is O(n2d). d

=
=N

4.2 Locality Sensitive Hashing That is, the cosine of two context vectors is ap-
. I . roximated by the cosine of the Hamming distance

LSH is a probabilistic technique that allows thep y ) ng
between their two signatures normalised by the

?fggg;(irtiﬂggezfai Zimi:i;?n;l;gﬁﬂgp j[heB;ng;@ize of the signatures. Search is performed using
Prop bp quation 7 and scales @(n2d).

similarity function using min-wise independent

funcftions. Charika}r (2002) propo§ed an approXt  pata Structures

imation of the cosine measure using random hy-

perplanes Ravichandran et al. (2005) used this cdFhe methods presented above fail to address the

sine variant and showed it to produce over 70%»? component of the search complexity. Many

accuracy in extracting synonyms when comparediata structures have been proposed that can be

against Pantel and Lin (2002). used to address this problem in similarity search-
Given we haven terms in anm’ dimensional ing. We present three data structures: Thatage

space, we creai¢ < m’ unit random vectors also point tree (vPT, Yianilos, 1993), which indexes

of m’ dimensions, labelledr1,75,...,7;}. Each points in a metric spacdoint Location in Equal



Balls (PLEB Indyk and Motwani, 1998), a proba- the list, the radius is updated to the distance from

bilistic structure that uses the bit signatures generthe target to the new'” closest term.

ated byLsH, and theSpatial Approximation Sam-  Construction complexity i€)(nlogn). Search

ple Hierarchy(sAsH, Houle and Sakuma, 2005), complexity is claimed to b&(log n) for small ra-

which approximates &-NN search. dius searches. This does not hold for our decreas-
Another option inspired byr is attribute index- ing radius search, whose worst case complexity is

ing INDEX). In this technique, in addition to each O(n).

term having a reference to its attributes, each até

tribute has a reference to the terms referencing it

Each term is then On|y Compared with the terms°LEB is a randomised structure that uses the bit

with which it shares attributes. We will give a the- Signatures generated hysH. It was used by

oretically comparison against other techniques. Ravichandran et al. (2005) to improve the effi-
ciency of distributional similarity calculations.

5.1 Vantage Point Tree Having generated out length bit signatures for

Metri o id Ut each of oum terms, we take these signatures and
etric spacedata structures provide a solution to randomly permute the bits. Each vector has the

_r;ﬁar-nelglhboulr Isearchr:as In very hlghfdlmensmn_SSame permutation applied. This is equivalent to a
ese rely solely on t_e eX|stence_ o a comparteq i ymn reordering in a matrix where the rows are
son function that satisfies the conditions of metri-

lity: . i dth the terms and the columns the bits. After applying
ca Iy: n_on—neggtwny, equality, symmetry and the o permutation, the list of terms is sorted lexico-
triangle inequality.

_ _ graphically based on the bit signatures. The listis
VPT is typical of these structures and has beerg:anneqd sequentially, and each term is compared
used successfully in many applications. NI 4 jts B nearest neighbours in the list. The choice
is a binary tree designed for range searches. Thesg p will effect the accuracy/efficiency trade-off,
are searches limited to some distance from the tat;,q need not be related to the choice:ofThis is
getterm but can be mod|f|eq féFNN se_arc_h. ~ performedg times, using a different random per-
VPT is constructed recursively. Beginning with mytation function each time. After each iteration,
a set ofU terms, we take any term to be our van-the current closest terms are stored.
tage pointp. This becomes our root. We now find  For 3 fixedd, the complexity for the permuta-

the median distance, of all other terms top:  tjon step isO(¢qn), the sortingD(gn log n) and the
my = median{dist(p,u)|u € U}. Those terms searchO(¢Bn)

u such thatdist(p, u) < m, are inserted into the

left sub-tree, and the remainder into the right sub5.3 Spatial Approximation Sample Hierarchy

tree. Each sub-tree is then constructed as a newasH approximates &-NN search by precomput-

VPT, choosing a new vantage point from within its ing some near neighbours for each node (terms in

terms, until all terms are exhausted. our case). This produces multiple paths between
Searching aPT is also recursive. Given a term terms, allowingsSAsH to shape itself to the data

g and radius-, we begin by measuring the distanceset (Houle, 2003). The following description is

to the root termp. If dist(q,p) < rweentepinto  adapted from Houle and Sakuma (2005).

our list of near terms. Itlist(q,p) — r < m, we The sAsH is a directed, edge-weighted graph

enter the left sub-tree anddfst(q,p) + r > mp  with the following properties (see Figure 1):

we enter the right sub-tree. Both sub-trees may be

entered. The process is repeated for each entered

subtree, taking the vantage point of the sub-tree to ® The nodes are arranged into a hierarchy of
be the new root term. levels, with the bottom level containing

nodes and the top containing a single root
node. Each level, except the top, will contain

2 Point Location in Equal Balls

e Each term corresponds to a unique node.

To perform ak-NN search we use #&ack-
tracking decreasing radius sear¢Burkhard and

Keller, 1973). The search begins with= oo, half as many nodes as the level below.
and terms are added to a list of the clogetrms. e Edges between nodes are linked to consecu-
When thek!" closest term is found, the radius is tive levels. Each node will have at most

set to the distance between this term and the tar- parentnodes in the level above, ardchild
get. Each time a new, closer element is added to  nodes in the level below.



2
3
4
5
e Every node must have at least one parent s@his changes our search complexity to:
that all nodes are reachable from the root. L1
k +@ pC2
T 5 logn 9)
Construction begins with the nodes being ran- ktogn

domly distributed between the levelssAsH is  We use this geometric function in our experiments.
then constructed iteratively by each node finding Gorman and Curran (2005a; 2005b) found the
its closestp parents in the level above. The par-performance okAsH for distributional similarity
ent will keep the closestof these children, form- could be improved by replacing the initial random
ing edges in the graph, and reject the rest. Anyrdering with a frequency based ordering. In ac-
nodes without parents after being rejected are thegsordance with Zipf's law, the majority of terms
assigned as children of the nearest node in the prérave low frequencies. Comparisons made with
vious level with fewer tham children. these low frequency terms are unreliable (Curran

Searching is performed by finding thenearest and Moens, 2002). CreatirgasH with high fre-
nodes at each level, which are added to a set agfuency terms near the root produces more reliable
near nodes. To limit the search, only those node#itial paths, but comparisons against these terms
whose parents were found to be nearest at the preére more expensive.
vious level are searched. Theslosest nodes from The best accuracy/efficiency trade-off was
the set of near nodes are then returned. The searébund when usingnorereliable initial paths rather
complexity isO(ck logn). than themostreliable. This is done bfolding the

In Figure 1, the filled nodes demonstrate adata around some mean number of relations. For

search for the near-neighbours of some ngdes- ~ €ach term, if its number of relations; is greater
ing k = 2. Our search begins with the root nodethan some chosen number of relatiafg, it is
A. As we are using: = 2, we must find the two given a new ranking based on the scgfe. Oth-
nearest children afl using our similarity measure. erwise its ranking based on its number of relations.
In this caseC and D are closer tham3. We now  This has the effect of pushing very high and very
find the closest two children @f andD. E is not  low frequency terms away from the root.
checked as it is only a child a@B. All other nodes
are checked, including’ andG, which are shared
as children byB andC'. From this level we chose The simplest method for evaluation is the direct
G andH. Thefinal levels are considered similarly. comparison of extracted synonyms with a manu-
At this point we now have the list of near nodesally created gold standard (Grefenstette, 1994). To
A, C,D,G, H, I, J, KandL. From this we reduce the problem of limited coverage, our evalu-
chose the two nodes nearegstd and marked in ~ ation combines three electronic thesauri: the Mac-
black, which are then returned. quarie, Roget's and Moby thesauri.
k can be varied at each level to force a larger We follow Curran (2004) and use two perfor-

number of elements to be tested at the base of tf#ance measures: direct matchesRECT) and
SASH using, for instance, the equation: inverse rank (WvR). DIRECT is the number of

returned synonyms found in the gold standard.
i 1 INVR is the sum of the inverse rank of each match-
ki = max{ k"~ Tosn, 5170} (8)  ing synonym, e.g. matches at ranks 3, 5 and 28

6 Evaluation Measures



CORPUS CUTOFF TERMS AVERAGE CUT-OFF
RELATIONS 5 100
PER TERM NAIVE 172 171
BNC 0 [ 246,067 43 HEURISTIC | 1.65 1.66
5| 88,926 116 RI 0.80 0.93
100 | 14,862 617 LSHi0000 | 1.26 1.31
LARGE 0 | 541,722 97 SASH 173 171
5 | 184,494 281
100 | 35,618 1,400 Table 2: NVR vs frequency cut-off

Table 1: Extracted Context Information o _ _
The initial experiments orRl produced quite

: . 1 1 , poor results. The intuition was that this was
give an inverse rank score (éf+ 5 + 5g. With o

. : caused by the lack of smoothing in the algo-
at most 100 matching synonyms, the maxmumrithm Experiments were performed using the
INVR is 5.187. This more fine grained as it in- ' P P 9

corporates the both the number of matches angmghts given in Curran (2004). - Of these, mu-

their ranking. The same 300 single word nounj;al information (10), evaluated with an extra

/ i I -_
were used for evaluation as used by Curran (200 i/gg E/J; E;Uég’ wrl;z]ié Jiﬁfrbsgtdrgg:;s{ t)o ?Ez'
for his large scale evaluation. These were chosen » P -

valuesd = 1000 ande = 5 were found to produce
randomly from WordNet such that they covered
. . the best results.
a range over the following propertiefrequency All . ‘ ; q 3.9GH
number of sensesspecificity and concreteness g);perlmr?n S W%r]edfgeBr;rme on . z
For each of these terms, the closest 100 terms a@éeon machines wi AM.

their similarity scores were extracted.
y 8 Results

7 Experiments As the accuracy of comparisons between terms in-

We use two corpora in our experiments: thecreases with frequency (Curran, 2004), applying a
smaller is the non-speech portion of the Britishfrequency cut-off will both reduce the size of the
National CorpusgNc), 90 million words covering Vvocabulary {) and increase the average accuracy
a wide range of domains and formats; the largeof comparisons. Table 1 shows the reduction in
consists of th@&Nc, the Reuters Corpus Volume 1 vocabulary and increase in average context rela-
and most of the English news holdings of the LDCtions per term as cut-off increases. FOXRGE,
in 2003, representing over 2 billion words of text the initial 541,722 word vocabulary is reduced by
(LARGE, Curran, 2004). 66% when a cut-off of 5 is applied and by 86%
The semantic similarity system implemented bywhen the cut-off is increased to 100. The average
Curran (2004) provides our baseline. This perfiumber of relations increases from 97 to 1400.

forms a brute-forcek-NN search (MIVE). We The work by Curran (2004) largely uses a fre-
present results for the canonical attribute heuristiqquency cut-off of 5. When this cut-off was used
(HEURISTIC), RI, LSH, PLEB, VPT andSASH. with the randomised techniquasandLsH, it pro-

We take the optimal canonical attribute vectorduced quite poor results. When the cut-off was
length of 30 for HeurisTIC from Curran (2004). increased to 100, as used by Ravichandran et al.

ForsasHwe take optimal values @f = 4 andc =  (2005), the results improved significantly. Table 2
16 and use the folded ordering takiogl = 1000  shows the MvR scores for our various techniques
from Gorman and Curran (2005b). using theBNC with cut-offs of 5 and 100.

ForRrl, LsH andpPLEB we found optimal values Table 3 shows the results of a full thesaurus ex-
experimentally using theNnc. ForLsH we chose traction using theenc and LARGE corpora using
d = 3,000 (LSH3000) and 10,000 (LSH10,000), a cut-off of 100. The averagelRECT score and

showing the effect of changing the dimensionality.INvVR are from the 300 test words. The total exe-

The frequency statistics were weighted using mueution time is extrapolated from the average search

tual information, as in Ravichandran et al. (2005):time of these test words and includes the setup
, time. For LARGE, extraction using MIVE takes

log( p(w,r,w) ) (10) 444 hours: over 18 days. If the 184,494 word vo-

p(w, #, %)p(e,r,w') cabulary were used, it would take over 7000 hours,

PLEB used the valueg = 500 and B = 100. or nearly 300 days. This gives some indication of




BNC LARGE

DIRECT INVR Time | DIRECT INVR Time
NAIVE 15.7 1.71 38.0hr] 17.1 1.93 444.3hr
HEURISTIC 14.9 1.66 2.0hr| 16.6 1.93 30.2hr
RI 8.9 0.93 0.4hr 7.2 0.85 1.9hr
RImI 105 141  0O.hr 13.8 1.75 1.%hr
LSH3,000 6.0 0.76 0.7hr 8.8 1.07 3.6hr
LSH10,000 11.1 1.31 2.3hr] 11.3 1.40 8.4hr
PLEB3,000 6.0 0.76 1.2hr 8.6 1.07 4.1hr
PLEB10,000 11.0 1.30 3.9hr] 10.9 1.37 11.8hr
VPT 15.7 1.71 15.9hr] 17.1 1.93 336.1hr
SASH 155 1.71  2.0hr 15.9 1.89 23.7hr

Table 3: Full thesaurus extraction

the scale of the problem. LARGE
Th | hni b | CUT-OFF 0 5 100
e only technique to become less accurate NANVE [ SALT20 184393 3561
when the corpus size is increasedisit is likely SASH 10,599 8,796 6,231
thatRri is sensitive to high frequency, low informa- INDEX 5844 13,187 32,663

tion contexts that are more prevalent iARGE.
Weighting reduces this effect, improving accuracy.

The importance of the choice dfcan be seenin
the results foLsH. While much slower . SHio 000~ Considering that different tasks may require differ-
is also much more accurate thagHs o9, while  entweights and measures (Weeds and Weir, 2005).
still being much faster than NVE. Introducing RI also suffersn® complexity, where asASH is
the PLEB data structure does not improve the ef-n logn. Taking these into account, and that the im-
ficiency while incurring a small cost on accuracy. provements are barely significasasHis a better
We are not using large enough datasets to show thehoice.
improved time complexity usingLEB. The results fon.sH are disappointing. It per-

VPT is only slightly faster slightly faster than forms consistently worse than the other methods
NAIVE. This is not surprising in light of the origi- exceptvpPT. This could be improved by using
nal design of the data structure: decreasing radiugrger bit vectors, but there is a limit to the size of
search does not guarantee search efficiency. these as they represent a significant memory over-

A significant influence in the speed of the ran-head, particularly as the vocabulary increases.
domised techniquesy! andLSH, is the fixed di- Table 4 presents the theoretical analysis of at-
mensionality. The randomised techniques use #ibute indexing. The average number of com-
fixed length vector which is not influenced by the parisons made for various cut-offs oRRGE are
size ofm. The drawback of this is that the size of shown. NIVE andINDEX are the actual values
the vector needs to be tuned to the dataset. for those techniques. The values feAsH are

It would seem at first glance thatedRris-  worst casewhere the maximum number of terms
TiIC and SASH provide very similar results, with are compared at each level. The actual number
HEuRISTIC slightly slower, but more accurate. of comparisons made will be much less. The ef-
This misses the difference in time complexity be-ficiency of INDEX is sensitive to the density of
tween the methods: #URISTIC is n? andsAsH  attributes and increasing the cut-off increases the
nlogn. The improvement in execution time over density. This is seen in the dramatic drop in per-
NAIVE decreases as corpus size increases and tHisgrmance as the cut-off increases. This problem of
would be expected to continue. Further tuning ofdensity will increase as volume of raw input data
SASH parameters may improve its accuracy. increases, further reducing its effectivenesssH

Riv) produces similar result usingARGE to is only dependent on the number of terms, not the
SASH usingBNC. This does not include the cost density.
of extracting context relations from the raw text, so Where the need for computationally efficiency
the true comparison is much worseasH allows  out-weighs the need for accuradgyiy, provides
the free use of weight and measure functions, bubetter results.SAsH is the most balanced of the
RI is constrained by having to transform any con-techniques tested and provides the most scalable,
text space into & space. This is important when high quality results.

Table 4: Average number of comparisons per term



9 Conclusion James Gorman and James Curran. 2005a. Approximate
searching for distributional similarity. [IACL-SIGLEX

We have evaluated several state-of-the-art tech- ﬁﬁoag\ffghfp on Deep Lexical Acquisiti¢nn Arbor,
niques for improving the efficiency of distribu- » O3/, U JUne.
tional similarity measurements. We found that,James Gorman and James Curran. 2005b. Augmenting ap-

; - : proximate similarity searching with lexical information.
in terms of raw efficiency, Random Indexing) In Australasian Language Technology WorkshSpdney,

was significantly faster than any other technique, Australia, 9-11 November.

but at the cost of accuracy. Even after our mOd_Gregory Grefenstette. 199&xplorations in Automatic The-

ifications to ther| algorithm to significantly im- saurus DiscoveryKluwer Academic Publishers, Boston.

prove its accuracysASH still provides a better ac- .

.. .. . Michael E. Houle and Jun Sakuma. 2005. Fast approximate
curacy/efficiency trade-off. This is more evident = gimjjarity search in extremely high-dimensional data sets
when considering the time to extract context in- In Proceedings of the 21st International Conference on
formation from the raw textsAsH, unlike R1, also Data Engineeringpages 619-630, Tokyo, Japan.
allows us to choose both the weight and the meamichael E. Houle. 2003. Navigating massive data sets via

International Conference on Knowledge Discovery and

the efficiency ofri or the accuracy ofAsH. Data Mining pages 547-552, Washington, DC, USA.

We intend to use this knowledge to process even , , ,
Piotr Indyk and Rajeev Motwani. 1998. Approximate near-

larger F:orpora to prqduce more acgurate result.s. est neighbors: towards removing the curse of dimension-
Having set out to improve the efficiency of dis-  ality. In Proceedings of the 30th annual ACM Symposium
: ; P ; P on Theory of Computingages 604—613, New York, NY,

trlbutl_onal similarity searches Wh!le limiting any USA, 24-26 May, ACM Press.

loss in accuracy, we are producing full nearest-

neighbour searches 18 times faster. with 0n|y a Zo/gentti Kanerva, Jan Kristoferson, and Anders Holst. 2000.
. ’ Random indexing of text samples for latent semantic anal-
loss in accuracy. ysis. InProceedings of the 22nd Annual Conference of the

Cognitive Science Societyage 1036, Mahwah, NJ, USA.
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