
December 14, 2010 09:22 ham_338065_ch02 Sheet number 1 Page number 27 cyan black

27

c h a p t e r

2
Instruction Set Architecture

Chapter Objectives

In this chapter you will learn about:

• Machine instructions and program execution

• Addressing methods for accessing register
and memory operands

• Assembly language for representing machine
instructions, data, and programs

• Stacks and subroutines

December 14, 2010 09:22 ham_338065_ch02 Sheet number 2 Page number 28 cyan black

28 C H A P T E R 2 • Instruction Set Architecture

This chapter considers the way programs are executed in a computer from the machine instruction set view-
point. Chapter 1 introduced the general concept that both program instructions and data operands are stored
in the memory. In this chapter, we discuss how instructions are composed and study the ways in which se-
quences of instructions are brought from the memory into the processor and executed to perform a given task.
The addressing methods that are commonly used for accessing operands in memory locations and processor
registers are also presented.

The emphasis here is on basic concepts. We use a generic style to describe machine instructions and
operand addressing methods that are typical of those found in commercial processors. A sufficient number
of instructions and addressing methods are introduced to enable us to present complete, realistic programs
for simple tasks. These generic programs are specified at the assembly-language level, where machine
instructions and operand addressing information are represented by symbolic names. A complete instruction
set, including operand addressing methods, is often referred to as the instruction set architecture (ISA) of
a processor. For the discussion of basic concepts in this chapter, it is not necessary to define a complete
instruction set, and we will not attempt to do so. Instead, we will present enough examples to illustrate the
capabilities of a typical instruction set.

The concepts introduced in this chapter and in Chapter 3, which deals with input/output techniques, are
essential for understanding the functionality of computers. Our choice of the generic style of presentation
makes the material easy to read and understand. Also, this style allows a general discussion that is not
constrained by the characteristics of a particular processor.

Since it is interesting and important to see how the concepts discussed are implemented in a real computer,
we supplement our presentation in Chapters 2 and 3 with four examples of popular commercial processors.
These processors are presented in Appendices B to E. Appendix B deals with the Nios II processor from Altera
Corporation. Appendix C presents the ColdFire processor from Freescale Semiconductor, Inc. Appendix D
discusses the ARM processor from ARM Ltd. Appendix E presents the basic architecture of processors
made by Intel Corporation. The generic programs in Chapters 2 and 3 are presented in terms of the specific
instruction sets in each of the appendices.

The reader can choose only one processor and study the material in the corresponding appendix to get
an appreciation for commercial ISA design. However, knowledge of the material in these appendices is not
essential for understanding the material in the main body of the book.

The vast majority of programs are written in high-level languages such as C, C++, or Java. To execute a
high-level language program on a processor, the program must be translated into the machine language for that
processor, which is done by a compiler program. Assembly language is a readable symbolic representation
of machine language. In this book we make extensive use of assembly language, because this is the best way
to describe how computers work.

We will begin the discussion in this chapter by considering how instructions and data are stored in the
memory and how they are accessed for processing.

2.1 Memory Locations and Addresses

We will first consider how the memory of a computer is organized. The memory consists of
many millions of storage cells, each of which can store a bit of information having the value
0 or 1. Because a single bit represents a very small amount of information, bits are seldom
handled individually. The usual approach is to deal with them in groups of fixed size. For

December 14, 2010 09:22 ham_338065_ch02 Sheet number 3 Page number 29 cyan black

2.1 Memory Locations and Addresses 29

this purpose, the memory is organized so that a group of n bits can be stored or retrieved in
a single, basic operation. Each group of n bits is referred to as a word of information, and
n is called the word length. The memory of a computer can be schematically represented
as a collection of words, as shown in Figure 2.1.

Modern computers have word lengths that typically range from 16 to 64 bits. If the
word length of a computer is 32 bits, a single word can store a 32-bit signed number or four
ASCII-encoded characters, each occupying 8 bits, as shown in Figure 2.2. A unit of 8 bits is
called a byte. Machine instructions may require one or more words for their representation.
We will discuss how machine instructions are encoded into memory words in a later section,
after we have described instructions at the assembly-language level.

Accessing the memory to store or retrieve a single item of information, either a word
or a byte, requires distinct names or addresses for each location. It is customary to use
numbers from 0 to 2k − 1, for some suitable value of k, as the addresses of successive
locations in the memory. Thus, the memory can have up to 2k addressable locations. The
2k addresses constitute the address space of the computer. For example, a 24-bit address
generates an address space of 224 (16,777,216) locations. This number is usually written
as 16M (16 mega), where 1M is the number 220 (1,048,576). A 32-bit address creates an
address space of 232 or 4G (4 giga) locations, where 1G is 230. Other notational conventions

Second word

First word

n bits

Last word

i th word

Figure 2.1 Memory words.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 4 Page number 30 cyan black

30 C H A P T E R 2 • Instruction Set Architecture

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers

 for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=

b31 1=

Figure 2.2 Examples of encoded information in a 32-bit word.

that are commonly used are K (kilo) for the number 210 (1,024), and T (tera) for the
number 240.

2.1.1 Byte Addressability

We now have three basic information quantities to deal with: bit, byte, and word. A byte
is always 8 bits, but the word length typically ranges from 16 to 64 bits. It is impractical
to assign distinct addresses to individual bit locations in the memory. The most practical
assignment is to have successive addresses refer to successive byte locations in the memory.
This is the assignment used in most modern computers. The term byte-addressable memory
is used for this assignment. Byte locations have addresses 0, 1, 2, Thus, if the word
length of the machine is 32 bits, successive words are located at addresses 0, 4, 8, . . . , with
each word consisting of four bytes.

2.1.2 Big-Endian and Little-Endian Assignments

There are two ways that byte addresses can be assigned across words, as shown in Figure 2.3.
The name big-endian is used when lower byte addresses are used for the more significant
bytes (the leftmost bytes) of the word. The name little-endian is used for the opposite
ordering, where the lower byte addresses are used for the less significant bytes (the rightmost
bytes) of the word. The words “more significant” and “less significant” are used in relation
to the weights (powers of 2) assigned to bits when the word represents a number. Both
little-endian and big-endian assignments are used in commercial machines. In both cases,
byte addresses 0, 4, 8, . . . , are taken as the addresses of successive words in the memory

December 14, 2010 09:22 ham_338065_ch02 Sheet number 5 Page number 31 cyan black

2.1 Memory Locations and Addresses 31

2
k

4– 2
k

3– 2
k

2– 2
k

1– 2
k

4–2
k

4–

0 1 2 3

4 5 6 7

0 0

4

2
k

1– 2
k

2– 2
k

3– 2
k

4–

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Big-endian assignment (b) Little-endian assignment

4

Word
address

Figure 2.3 Byte and word addressing.

of a computer with a 32-bit word length. These are the addresses used when accessing the
memory to store or retrieve a word.

In addition to specifying the address ordering of bytes within a word, it is also necessary
to specify the labeling of bits within a byte or a word. The most common convention, and
the one we will use in this book, is shown in Figure 2.2a. It is the most natural ordering
for the encoding of numerical data. The same ordering is also used for labeling bits within
a byte, that is, b7, b6, . . . , b0, from left to right.

2.1.3 WordAlignment

In the case of a 32-bit word length, natural word boundaries occur at addresses 0, 4, 8, . . . ,

as shown in Figure 2.3. We say that the word locations have aligned addresses if they begin
at a byte address that is a multiple of the number of bytes in a word. For practical reasons
associated with manipulating binary-coded addresses, the number of bytes in a word is a
power of 2. Hence, if the word length is 16 (2 bytes), aligned words begin at byte addresses
0, 2, 4, . . . , and for a word length of 64 (23 bytes), aligned words begin at byte addresses
0, 8, 16,

There is no fundamental reason why words cannot begin at an arbitrary byte address.
In that case, words are said to have unaligned addresses. But, the most common case is to
use aligned addresses, which makes accessing of memory operands more efficient, as we
will see in Chapter 8.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 6 Page number 32 cyan black

32 C H A P T E R 2 • Instruction Set Architecture

2.1.4 Accessing Numbers and Characters

A number usually occupies one word, and can be accessed in the memory by specifying its
word address. Similarly, individual characters can be accessed by their byte address.

For programming convenience it is useful to have different ways of specifying addresses
in program instructions. We will deal with this issue in Section 2.4.

2.2 Memory Operations

Both program instructions and data operands are stored in the memory. To execute an
instruction, the processor control circuits must cause the word (or words) containing the
instruction to be transferred from the memory to the processor. Operands and results must
also be moved between the memory and the processor. Thus, two basic operations involving
the memory are needed, namely, Read and Write.

The Read operation transfers a copy of the contents of a specific memory location to
the processor. The memory contents remain unchanged. To start a Read operation, the
processor sends the address of the desired location to the memory and requests that its
contents be read. The memory reads the data stored at that address and sends them to the
processor.

The Write operation transfers an item of information from the processor to a specific
memory location, overwriting the former contents of that location. To initiate a Write
operation, the processor sends the address of the desired location to the memory, together
with the data to be written into that location. The memory then uses the address and data
to perform the write.

The details of the hardware implementation of these operations are treated in Chapters
5 and 6. In this chapter, we consider all operations from the viewpoint of the ISA, so we
concentrate on the logical handling of instructions and operands.

2.3 Instructions and Instruction Sequencing

The tasks carried out by a computer program consist of a sequence of small steps, such
as adding two numbers, testing for a particular condition, reading a character from the
keyboard, or sending a character to be displayed on a display screen. A computer must
have instructions capable of performing four types of operations:

• Data transfers between the memory and the processor registers
• Arithmetic and logic operations on data
• Program sequencing and control
• I/O transfers

We begin by discussing instructions for the first two types of operations. To facilitate the
discussion, we first need some notation.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 7 Page number 33 cyan black

2.3 Instructions and Instruction Sequencing 33

2.3.1 Register Transfer Notation

We need to describe the transfer of information from one location in a computer to another.
Possible locations that may be involved in such transfers are memory locations, processor
registers, or registers in the I/O subsystem. Most of the time, we identify such locations
symbolically with convenient names. For example, names that represent the addresses of
memory locations may be LOC, PLACE, A, or VAR2. Predefined names for the processor
registers may be R0 or R5. Registers in the I/O subsystem may be identified by names such
as DATAIN or OUTSTATUS. To describe the transfer of information, the contents of any
location are denoted by placing square brackets around its name. Thus, the expression

R2← [LOC]
means that the contents of memory location LOC are transferred into processor register R2.

As another example, consider the operation that adds the contents of registers R2 and
R3, and places their sum into register R4. This action is indicated as

R4← [R2] + [R3]
This type of notation is known as Register Transfer Notation (RTN). Note that the right-
hand side of an RTN expression always denotes a value, and the left-hand side is the name
of a location where the value is to be placed, overwriting the old contents of that location.

In computer jargon, the words “transfer” and “move” are commonly used to mean
“copy.” Transferring data from a source location A to a destination location B means that
the contents of location A are read and then written into location B. In this operation, only
the contents of the destination will change. The contents of the source will stay the same.

2.3.2 Assembly-Language Notation

We need another type of notation to represent machine instructions and programs. For
this, we use assembly language. For example, a generic instruction that causes the transfer
described above, from memory location LOC to processor register R2, is specified by the
statement

Load R2, LOC

The contents of LOC are unchanged by the execution of this instruction, but the old contents
of register R2 are overwritten. The name Load is appropriate for this instruction, because
the contents read from a memory location are loaded into a processor register.

The second example of adding two numbers contained in processor registers R2 and
R3 and placing their sum in R4 can be specified by the assembly-language statement

Add R4, R2, R3

In this case, registers R2 and R3 hold the source operands, while R4 is the destination.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 8 Page number 34 cyan black

34 C H A P T E R 2 • Instruction Set Architecture

An instruction specifies an operation to be performed and the operands involved. In the
above examples, we used the English words Load andAdd to denote the required operations.
In the assembly-language instructions of actual (commercial) processors, such operations
are defined by using mnemonics, which are typically abbreviations of the words describing
the operations. For example, the operation Load may be written as LD, while the operation
Store, which transfers a word from a processor register to the memory, may be written as
STR or ST. Assembly languages for different processors often use different mnemonics for
a given operation. To avoid the need for details of a particular assembly language at this
early stage, we will continue the presentation in this chapter by using English words rather
than processor-specific mnemonics.

2.3.3 RISC and CISC Instruction Sets

One of the most important characteristics that distinguish different computers is the nature
of their instructions. There are two fundamentally different approaches in the design of
instruction sets for modern computers. One popular approach is based on the premise
that higher performance can be achieved if each instruction occupies exactly one word in
memory, and all operands needed to execute a given arithmetic or logic operation specified
by an instruction are already in processor registers. This approach is conducive to an
implementation of the processing unit in which the various operations needed to process
a sequence of instructions are performed in “pipelined” fashion to overlap activity and
reduce total execution time of a program, as we will discuss in Chapter 6. The restriction
that each instruction must fit into a single word reduces the complexity and the number
of different types of instructions that may be included in the instruction set of a computer.
Such computers are called Reduced Instruction Set Computers (RISC).

An alternative to the RISC approach is to make use of more complex instructions
which may span more than one word of memory, and which may specify more complicated
operations. This approach was prevalent prior to the introduction of the RISC approach
in the 1970s. Although the use of complex instructions was not originally identified by
any particular label, computers based on this idea have been subsequently called Complex
Instruction Set Computers (CISC).

We will start our presentation by concentrating on RISC-style instruction sets because
they are simpler and therefore easier to understand. Later we will deal with CISC-style
instruction sets and explain the key differences between the two approaches.

2.3.4 Introduction to RISC Instruction Sets

Two key characteristics of RISC instruction sets are:

• Each instruction fits in a single word.
• A load/store architecture is used, in which

– Memory operands are accessed only using Load and Store instructions.

– All operands involved in an arithmetic or logic operation must either be in proces-
sor registers, or one of the operands may be given explicitly within the instruction
word.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 9 Page number 35 cyan black

2.3 Instructions and Instruction Sequencing 35

At the start of execution of a program, all instructions and data used in the program are
stored in the memory of a computer. Processor registers do not contain valid operands at
that time. If operands are expected to be in processor registers before they can be used by
an instruction, then it is necessary to first bring these operands into the registers. This task
is done by Load instructions which copy the contents of a memory location into a processor
register. Load instructions are of the form

Load destination, source

or more specifically

Load processor_register, memory_location

The memory location can be specified in several ways. The term addressing modes is used
to refer to the different ways in which this may be accomplished, as we will discuss in
Section 2.4.

Let us now consider a typical arithmetic operation. The operation of adding two
numbers is a fundamental capability in any computer. The statement

C =A+ B

in a high-level language program instructs the computer to add the current values of the two
variables called A and B, and to assign the sum to a third variable, C. When the program
containing this statement is compiled, the three variables, A, B, and C, are assigned to
distinct locations in the memory. For simplicity, we will refer to the addresses of these
locations as A, B, and C, respectively. The contents of these locations represent the values
of the three variables. Hence, the above high-level language statement requires the action

C← [A] + [B]
to take place in the computer. To carry out this action, the contents of memory locations A
and B are fetched from the memory and transferred into the processor where their sum is
computed. This result is then sent back to the memory and stored in location C.

The required action can be accomplished by a sequence of simple machine instructions.
We choose to use registers R2, R3, and R4 to perform the task with four instructions:

Load R2, A
Load R3, B
Add R4, R2, R3
Store R4, C

We say that Add is a three-operand, or a three-address, instruction of the form

Add destination, source1, source2

The Store instruction is of the form

Store source, destination

where the source is a processor register and the destination is a memory location. Observe
that in the Store instruction the source and destination are specified in the reverse order
from the Load instruction; this is a commonly used convention.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 10 Page number 36 cyan black

36 C H A P T E R 2 • Instruction Set Architecture

Note that we can accomplish the desired addition by using only two registers, R2 and
R3, if one of the source registers is also used as the destination for the result. In this case
the addition would be performed as

Add R3, R2, R3

and the last instruction would become

Store R3, C

2.3.5 Instruction Execution and Straight-Line Sequencing

In the preceding subsection, we used the task C = A + B, implemented as C← [A] + [B],
as an example. Figure 2.4 shows a possible program segment for this task as it appears in
the memory of a computer. We assume that the word length is 32 bits and the memory is
byte-addressable. The four instructions of the program are in successive word locations,
starting at location i. Since each instruction is 4 bytes long, the second, third, and fourth
instructions are at addresses i + 4, i + 8, and i + 12. For simplicity, we assume that a desired

R4, R2, R3

R3, B

R2, A

Addi + 8

Begin execution here Loadi

ContentsAddress

C

B

A

the program
Data for

segment
program
4-instructionLoadi + 4

R4, CStorei + 12

Figure 2.4 A program for C← [A] + [B].

December 14, 2010 09:22 ham_338065_ch02 Sheet number 11 Page number 37 cyan black

2.3 Instructions and Instruction Sequencing 37

memory address can be directly specified in Load and Store instructions, although this is not
possible if a full 32-bit address is involved. We will resolve this issue later in Section 2.4.

Let us consider how this program is executed. The processor contains a register called
the program counter (PC), which holds the address of the next instruction to be executed.
To begin executing a program, the address of its first instruction (i in our example) must be
placed into the PC. Then, the processor control circuits use the information in the PC to fetch
and execute instructions, one at a time, in the order of increasing addresses. This is called
straight-line sequencing. During the execution of each instruction, the PC is incremented
by 4 to point to the next instruction. Thus, after the Store instruction at location i + 12 is
executed, the PC contains the value i + 16, which is the address of the first instruction of
the next program segment.

Executing a given instruction is a two-phase procedure. In the first phase, called
instruction fetch, the instruction is fetched from the memory location whose address is in
the PC. This instruction is placed in the instruction register (IR) in the processor. At the
start of the second phase, called instruction execute, the instruction in IR is examined to
determine which operation is to be performed. The specified operation is then performed
by the processor. This involves a small number of steps such as fetching operands from
the memory or from processor registers, performing an arithmetic or logic operation, and
storing the result in the destination location. At some point during this two-phase procedure,
the contents of the PC are advanced to point to the next instruction. When the execute phase
of an instruction is completed, the PC contains the address of the next instruction, and a
new instruction fetch phase can begin.

2.3.6 Branching

Consider the task of adding a list of n numbers. The program outlined in Figure 2.5 is
a generalization of the program in Figure 2.4. The addresses of the memory locations
containing the n numbers are symbolically given as NUM1, NUM2, . . . , NUMn, and
separate Load and Add instructions are used to add each number to the contents of register
R2. After all the numbers have been added, the result is placed in memory location SUM.

Instead of using a long list of Load and Add instructions, as in Figure 2.5, it is possible
to implement a program loop in which the instructions read the next number in the list and
add it to the current sum. To add all numbers, the loop has to be executed as many times
as there are numbers in the list. Figure 2.6 shows the structure of the desired program. The
body of the loop is a straight-line sequence of instructions executed repeatedly. It starts at
location LOOP and ends at the instruction Branch_if_[R2]>0. During each pass through
this loop, the address of the next list entry is determined, and that entry is loaded into R5 and
added to R3. The address of an operand can be specified in various ways, as will be described
in Section 2.4. For now, we concentrate on how to create and control a program loop.

Assume that the number of entries in the list, n, is stored in memory location N, as
shown. Register R2 is used as a counter to determine the number of times the loop is
executed. Hence, the contents of location N are loaded into register R2 at the beginning of
the program. Then, within the body of the loop, the instruction

Subtract R2, R2, #1

December 14, 2010 09:22 ham_338065_ch02 Sheet number 12 Page number 38 cyan black

38 C H A P T E R 2 • Instruction Set Architecture

NUMn

NUM2

NUM1

R2, R2, R3

R3, NUMn

R2, R2, R3

R3, NUM3

R2, R2, R3

Add

Load

Add

SUM

Add

Load

R2, NUM1Load

R3, NUM2Load

R2, SUMStore

i

i + 4

i + 8

i + 12

i + 16

i + 8n – 4

i + 8n – 8

i + 8n – 12

Figure 2.5 A program for adding n numbers.

reduces the contents of R2 by 1 each time through the loop. (We will explain the significance
of the number sign ‘#’ in Section 2.4.1.) Execution of the loop is repeated as long as the
contents of R2 are greater than zero.

We now introduce branch instructions. This type of instruction loads a new address
into the program counter. As a result, the processor fetches and executes the instruction
at this new address, called the branch target, instead of the instruction at the location that
follows the branch instruction in sequential address order. A conditional branch instruction
causes a branch only if a specified condition is satisfied. If the condition is not satisfied, the
PC is incremented in the normal way, and the next instruction in sequential address order
is fetched and executed.

In the program in Figure 2.6, the instruction

Branch_if_[R2]>0 LOOP

December 14, 2010 09:22 ham_338065_ch02 Sheet number 13 Page number 39 cyan black

2.3 Instructions and Instruction Sequencing 39

R2, NLoad

NUMn

NUM2

NUM1

R3, SUM

R2, R2, #1

"Next" number into R5,

LOOP

Subtract

Store

LOOP

loop
Program

Determine address of
"Next" number, load the

N

SUM

n

R3Clear

Branch_if_[R2]>0

and add it to R3

Figure 2.6 Using a loop to add n numbers.

is a conditional branch instruction that causes a branch to location LOOP if the contents
of register R2 are greater than zero. This means that the loop is repeated as long as there
are entries in the list that are yet to be added to R3. At the end of the nth pass through the
loop, the Subtract instruction produces a value of zero in R2, and, hence, branching does
not occur. Instead, the Store instruction is fetched and executed. It moves the final result
from R3 into memory location SUM.

The capability to test conditions and subsequently choose one of a set of alternative
ways to continue computation has many more applications than just loop control. Such
a capability is found in the instruction sets of all computers and is fundamental to the
programming of most nontrivial tasks.

One way of implementing conditional branch instructions is to compare the contents of
two registers and then branch to the target instruction if the comparison meets the specified

December 14, 2010 09:22 ham_338065_ch02 Sheet number 14 Page number 40 cyan black

40 C H A P T E R 2 • Instruction Set Architecture

requirement. For example, the instruction that implements the action

Branch_if_[R4]>[R5] LOOP

may be written in generic assembly language as

Branch_greater_than R4, R5, LOOP

or using an actual mnemonic as

BGT R4, R5, LOOP

It compares the contents of registers R4 and R5, without changing the contents of either
register. Then, it causes a branch to LOOP if the contents of R4 are greater than the contents
of R5.

A different way of implementing branch instructions uses the concept of condition
codes, which we will discuss in Section 2.10.2.

2.3.7 Generating MemoryAddresses

Let us return to Figure 2.6. The purpose of the instruction block starting at LOOP is to
add successive numbers from the list during each pass through the loop. Hence, the Load
instruction in that block must refer to a different address during each pass. How are the
addresses specified? The memory operand address cannot be given directly in a single Load
instruction in the loop. Otherwise, it would need to be modified on each pass through the
loop. As one possibility, suppose that a processor register, Ri, is used to hold the memory
address of an operand. If it is initially loaded with the address NUM1 before the loop is
entered and is then incremented by 4 on each pass through the loop, it can provide the
needed capability.

This situation, and many others like it, give rise to the need for flexible ways to specify
the address of an operand. The instruction set of a computer typically provides a number
of such methods, called addressing modes. While the details differ from one computer to
another, the underlying concepts are the same. We will discuss these in the next section.

2.4 Addressing Modes

We have now seen some simple examples of assembly-language programs. In general,
a program operates on data that reside in the computer’s memory. These data can be
organized in a variety of ways that reflect the nature of the information and how it is used.
Programmers use data structures such as lists and arrays for organizing the data used in
computations.

Programs are normally written in a high-level language, which enables the programmer
to conveniently describe the operations to be performed on various data structures. When
translating a high-level language program into assembly language, the compiler generates
appropriate sequences of low-level instructions that implement the desired operations. The

December 14, 2010 09:22 ham_338065_ch02 Sheet number 15 Page number 41 cyan black

2.4 Addressing Modes 41

Table 2.1 RISC-type addressing modes.

Name Assembler syntax Addressing function

Immediate #Value Operand = Value

Register Ri EA= Ri

Absolute LOC EA= LOC

Register indirect (Ri) EA= [Ri]

Index X(Ri) EA= [Ri] + X

Base with index (Ri,Rj) EA= [Ri] + [Rj]

EA= effective address
Value = a signed number
X = index value

different ways for specifying the locations of instruction operands are known as addressing
modes. In this section we present the basic addressing modes found in RISC-style proces-
sors. A summary is provided in Table 2.1, which also includes the assembler syntax we
will use for each mode. The assembler syntax defines the way in which instructions and
the addressing modes of their operands are specified; it is discussed in Section 2.5.

2.4.1 Implementation of Variables and Constants

Variables are found in almost every computer program. In assembly language, a variable
is represented by allocating a register or a memory location to hold its value. This value
can be changed as needed using appropriate instructions.

The program in Figure 2.5 uses only two addressing modes to access variables. We
access an operand by specifying the name of the register or the address of the memory
location where the operand is located. The precise definitions of these two modes are:

Register mode—The operand is the contents of a processor register; the name of the register
is given in the instruction.

Absolute mode—The operand is in a memory location; the address of this location is given
explicitly in the instruction.

Since in a RISC-style processor an instruction must fit in a single word, the number of
bits that can be used to give an absolute address is limited, typically to 16 bits if the word
length is 32 bits. To generate a 32-bit address, the 16-bit value is usually extended to 32
bits by replicating bit b15 into bit positions b31−16 (as in sign extension). This means that an
absolute address can be specified in this manner for only a limited range of the full address
space. We will deal with the issue of specifying full 32-bit addresses in Section 2.9. To
keep our examples simple, we will assume for now that all addresses of memory locations
involved in a program can be specified in 16 bits.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 16 Page number 42 cyan black

42 C H A P T E R 2 • Instruction Set Architecture

The instruction

Add R4, R2, R3

uses the Register mode for all three operands. Registers R2 and R3 hold the two source
operands, while R4 is the destination.

The Absolute mode can represent global variables in a program. A declaration such as

Integer NUM1, NUM2, SUM;

in a high-level language program will cause the compiler to allocate a memory location to
each of the variables NUM1, NUM2, and SUM. Whenever they are referenced later in the
program, the compiler can generate assembly-language instructions that use the Absolute
mode to access these variables.

The Absolute mode is used in the instruction

Load R2, NUM1

which loads the value in the memory location NUM1 into register R2.
Constants representing data or addresses are also found in almost every computer

program. Such constants can be represented in assembly language using the Immediate
addressing mode.

Immediate mode—The operand is given explicitly in the instruction.

For example, the instruction

Add R4, R6, 200immediate

adds the value 200 to the contents of register R6, and places the result into register R4.
Using a subscript to denote the Immediate mode is not appropriate in assembly languages.
A common convention is to use the number sign (#) in front of the value to indicate that
this value is to be used as an immediate operand. Hence, we write the instruction above in
the form

Add R4, R6, #200

In the addressing modes that follow, the instruction does not give the operand or its
address explicitly. Instead, it provides information from which an effective address (EA)
can be derived by the processor when the instruction is executed. The effective address is
then used to access the operand.

2.4.2 Indirection and Pointers

The program in Figure 2.6 requires a capability for modifying the address of the memory
operand during each pass through the loop. A good way to provide this capability is to use
a processor register to hold the address of the operand. The contents of the register are then
changed (incremented) during each pass to provide the address of the next number in the
list that has to be accessed. The register acts as a pointer to the list, and we say that an item

December 14, 2010 09:22 ham_338065_ch02 Sheet number 17 Page number 43 cyan black

2.4 Addressing Modes 43

R5

Load R2, (R5)

B

Main memory

OperandB

Figure 2.7 Register indirect addressing.

in the list is accessed indirectly by using the address in the register. The desired capability
is provided by the indirect addressing mode.

Indirect mode—The effective address of the operand is the contents of a register that is
specified in the instruction.

We denote indirection by placing the name of the register given in the instruction in paren-
theses as illustrated in Figure 2.7 and Table 2.1.

To execute the Load instruction in Figure 2.7, the processor uses the value B, which
is in register R5, as the effective address of the operand. It requests a Read operation to
fetch the contents of location B in the memory. The value from the memory is the desired
operand, which the processor loads into register R2. Indirect addressing through a memory
location is also possible, but it is found only in CISC-style processors.

Indirection and the use of pointers are important and powerful concepts in program-
ming. They permit the same code to be used to operate on different data. For example,
register R5 in Figure 2.7 serves as a pointer for the Load instruction to load an operand from
the memory into register R2. At one time, R5 may point to location B in memory. Later,
the program may change the contents of R5 to point to a different location, in which case
the same Load instruction will load the value from that location into R2. Thus, a program
segment that includes this Load instruction is conveniently reused with only a change in
the pointer value.

Let us now return to the program in Figure 2.6 for adding a list of numbers. Indirect
addressing can be used to access successive numbers in the list, resulting in the program
shown in Figure 2.8. Register R4 is used as a pointer to the numbers in the list, and the
operands are accessed indirectly through R4. The initialization section of the program loads
the counter value n from memory location N into R2. Then, it uses the Clear instruction
to clear R3 to 0. The next instruction uses the Immediate addressing mode to place the
address value NUM1, which is the address of the first number in the list, into R4. Observe
that we cannot use the Load instruction to load the desired immediate value, because the
Load instruction can operate only on memory source operands. Instead, we use the Move
instruction

Move R4, #NUM1

December 14, 2010 09:22 ham_338065_ch02 Sheet number 18 Page number 44 cyan black

44 C H A P T E R 2 • Instruction Set Architecture

Load R2, N Load the size of the list.
Clear R3 Initialize sum to 0.
Move R4, #NUM1 Get address of the first number.

LOOP: Load R5, (R4) Get the next number.
Add R3, R3, R5 Add this number to sum.
Add R4, R4, #4 Increment the pointer to the list.
Subtract R2, R2, #1 Decrement the counter.
Branch_if_[R2]>0 LOOP Branch back if not finished.
Store R3, SUM Store the final sum.

Figure 2.8 Use of indirect addressing in the program of Figure 2.6.

In many RISC-type processors, one general-purpose register is dedicated to holding
a constant value zero. Usually, this is register R0. Its contents cannot be changed by a
program instruction. We will assume that R0 is used in this manner in our discussion of
RISC-style processors. Then, the above Move instruction can be implemented as

Add R4, R0, #NUM1

It is often the case that Move is provided as a pseudoinstruction for the convenience of
programmers, but it is actually implemented using the Add instruction.

The first three instructions in the loop in Figure 2.8 implement the unspecified instruc-
tion block starting at LOOP in Figure 2.6. The first time through the loop, the instruction

Load R5, (R4)

fetches the operand at location NUM1 and loads it into R5. The first Add instruction adds
this number to the sum in register R3. The second Add instruction adds 4 to the contents of
the pointer R4, so that it will contain the address value NUM2 when the Load instruction
is executed in the second pass through the loop.

As another example of pointers, consider the C-language statement

A= *B;

where B is a pointer variable and the ‘*’ symbol is the operator for indirect accesses. This
statement causes the contents of the memory location pointed to by B to be loaded into
memory location A. The statement may be compiled into

Load R2, B
Load R3, (R2)
Store R3, A

Indirect addressing through registers is used extensively. The program in Figure 2.8
shows the flexibility it provides.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 19 Page number 45 cyan black

2.4 Addressing Modes 45

2.4.3 Indexing andArrays

The next addressing mode we discuss provides a different kind of flexibility for accessing
operands. It is useful in dealing with lists and arrays.

Index mode—The effective address of the operand is generated by adding a constant value
to the contents of a register.

For convenience, we will refer to the register used in this mode as the index register.
Typically, this is just a general-purpose register. We indicate the Index mode symbolically
as

X(Ri)

where X denotes a constant signed integer value contained in the instruction and Ri is the
name of the register involved. The effective address of the operand is given by

EA= X + [Ri]

The contents of the register are not changed in the process of generating the effective
address.

In an assembly-language program, whenever a constant such as the value X is needed,
it may be given either as an explicit number or as a symbolic name representing a numerical
value. The way in which a symbolic name is associated with a specific numerical value
will be discussed in Section 2.5. When the instruction is translated into machine code, the
constant X is given as a part of the instruction and is restricted to fewer bits than the word
length of the computer. Since X is a signed integer, it must be sign-extended (see Section
1.4) to the register length before being added to the contents of the register.

Figure 2.9 illustrates two ways of using the Index mode. In Figure 2.9a, the index
register, R5, contains the address of a memory location, and the value X defines an offset
(also called a displacement) from this address to the location where the operand is found. An
alternative use is illustrated in Figure 2.9b. Here, the constant X corresponds to a memory
address, and the contents of the index register define the offset to the operand. In either
case, the effective address is the sum of two values; one is given explicitly in the instruction,
and the other is held in a register.

To see the usefulness of indexed addressing, consider a simple example involving a list
of test scores for students taking a given course. Assume that the list of scores, beginning at
location LIST, is structured as shown in Figure 2.10. A four-word memory block comprises
a record that stores the relevant information for each student. Each record consists of the
student’s identification number (ID), followed by the scores the student earned on three
tests. There are n students in the class, and the value n is stored in location N immediately
in front of the list. The addresses given in the figure for the student IDs and test scores
assume that the memory is byte addressable and that the word length is 32 bits.

We should note that the list in Figure 2.10 represents a two-dimensional array having
n rows and four columns. Each row contains the entries for one student, and the columns
give the IDs and test scores.

Suppose that we wish to compute the sum of all scores obtained on each of the tests
and store these three sums in memory locations SUM1, SUM2, and SUM3. A possible

December 14, 2010 09:22 ham_338065_ch02 Sheet number 20 Page number 46 cyan black

46 C H A P T E R 2 • Instruction Set Architecture

Operand1020

Load R2, 1000(R5)

R5

R5

Load R2, 20(R5)

Operand1020

201000

20 = offset

20 = offset

10001000

(a) Offset is given as a constant

(b) Offset is in the index register

Figure 2.9 Indexed addressing.

program for this task is given in Figure 2.11. In the body of the loop, the program uses the
Index addressing mode in the manner depicted in Figure 2.9a to access each of the three
scores in a student’s record. Register R2 is used as the index register. Before the loop is
entered, R2 is set to point to the ID location of the first student record which is the address
LIST.

On the first pass through the loop, test scores of the first student are added to the running
sums held in registers R3, R4, and R5, which are initially cleared to 0. These scores are
accessed using the Index addressing modes 4(R2), 8(R2), and 12(R2). The index register
R2 is then incremented by 16 to point to the ID location of the second student. Register
R6, initialized to contain the value n, is decremented by 1 at the end of each pass through
the loop. When the contents of R6 reach 0, all student records have been accessed, and

December 14, 2010 09:22 ham_338065_ch02 Sheet number 21 Page number 47 cyan black

2.4 Addressing Modes 47

Student 1

Student 2

Test 3

Test 2

Test 1

Student ID

Test 3

Test 2

Student ID

nN

LIST

Test 1LIST + 4

LIST + 8

LIST + 12

LIST + 16

Figure 2.10 A list of students’ marks.

Move R2, #LIST Get the address LIST.
Clear R3
Clear R4
Clear R5
Load R6, N Load the value n.

LOOP: Load R7, 4(R2) Add the mark for next student's
Add R3, R3, R7 Test 1 to the partial sum.
Load R7, 8(R2) Add the mark for that student's
Add R4, R4, R7 Test 2 to the partial sum.
Load R7, 12(R2) Add the mark for that student's
Add R5, R5, R7 Test 3 to the partial sum.
Add R2, R2, #16 Increment the pointer.
Subtract R6, R6, #1 Decrement the counter.
Branch_if_[R6]>0 LOOP Branch back if not finished.
Store R3, SUM1 Store the total for Test 1.
Store R4, SUM2 Store the total for Test 2.
Store R5, SUM3 Store the total for Test 3.

Figure 2.11 Indexed addressing used in accessing test scores in the list in Figure
2.10.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 22 Page number 48 cyan black

48 C H A P T E R 2 • Instruction Set Architecture

the loop terminates. Until then, the conditional branch instruction transfers control back
to the start of the loop to process the next record. The last three instructions transfer the
accumulated sums from registers R3, R4, and R5, into memory locations SUM1, SUM2,
and SUM3, respectively.

It should be emphasized that the contents of the index register, R2, are not changed
when it is used in the Index addressing mode to access the scores. The contents of R2 are
changed only by the last Add instruction in the loop, to move from one student record to
the next.

In general, the Index mode facilitates access to an operand whose location is defined
relative to a reference point within the data structure in which the operand appears. In the
example just given, the ID locations of successive student records are the reference points,
and the test scores are the operands accessed by the Index addressing mode.

We have introduced the most basic form of indexed addressing that uses a register Ri
and a constant offset X. Several variations of this basic form provide for efficient access to
memory operands in practical programming situations (although they may not be included
in some processors). For example, a second register Rj may be used to contain the offset
X, in which case we can write the Index mode as

(Ri,Rj)

The effective address is the sum of the contents of registers Ri and Rj. The second register is
usually called the base register. This form of indexed addressing provides more flexibility
in accessing operands, because both components of the effective address can be changed.

Yet another version of the Index mode uses two registers plus a constant, which can be
denoted as

X(Ri,Rj)

In this case, the effective address is the sum of the constant X and the contents of registers Ri
and Rj. This added flexibility is useful in accessing multiple components inside each item
in a record, where the beginning of an item is specified by the (Ri,Rj) part of the addressing
mode.

Finally, we should note that in the basic Index mode

X(Ri)

if the contents of the register are equal to zero, then the effective address is just equal to
the sign-extended value of X. This has the same effect as the Absolute mode. If register R0
always contains the value zero, then the Absolute mode is implemented simply as

X(R0)

2.5 Assembly Language

Machine instructions are represented by patterns of 0s and 1s. Such patterns are awkward
to deal with when discussing or preparing programs. Therefore, we use symbolic names to
represent the patterns. So far, we have used normal words, such as Load, Store, Add, and

December 14, 2010 09:22 ham_338065_ch02 Sheet number 23 Page number 49 cyan black

2.5 Assembly Language 49

Branch, for the instruction operations to represent the corresponding binary code patterns.
When writing programs for a specific computer, such words are normally replaced by
acronyms called mnemonics, such as LD, ST, ADD, and BR. A shorthand notation is also
useful when identifying registers, such as R3 for register 3. Finally, symbols such as LOC
may be defined as needed to represent particular memory locations. A complete set of
such symbolic names and rules for their use constitutes a programming language, generally
referred to as an assembly language. The set of rules for using the mnemonics and for
specification of complete instructions and programs is called the syntax of the language.

Programs written in an assembly language can be automatically translated into a se-
quence of machine instructions by a program called an assembler. The assembler program
is one of a collection of utility programs that are a part of the system software of a computer.
The assembler, like any other program, is stored as a sequence of machine instructions in
the memory of the computer. A user program is usually entered into the computer through
a keyboard and stored either in the memory or on a magnetic disk. At this point, the user
program is simply a set of lines of alphanumeric characters. When the assembler program
is executed, it reads the user program, analyzes it, and then generates the desired machine-
language program. The latter contains patterns of 0s and 1s specifying instructions that
will be executed by the computer. The user program in its original alphanumeric text for-
mat is called a source program, and the assembled machine-language program is called an
object program. We will discuss how the assembler program works in Section 2.5.2 and in
Chapter 4. First, we present a few aspects of assembly language itself.

The assembly language for a given computer may or may not be case sensitive, that
is, it may or may not distinguish between capital and lower-case letters. In this section, we
use capital letters to denote all names and labels in our examples to improve the readability
of the text. For example, we write a Store instruction as

ST R2, SUM

The mnemonic ST represents the binary pattern, or operation (OP) code, for the operation
performed by the instruction. The assembler translates this mnemonic into the binary OP
code that the computer recognizes.

The OP-code mnemonic is followed by at least one blank space or tab character. Then
the information that specifies the operands is given. In the Store instruction above, the
source operand is in register R2. This information is followed by the specification of
the destination operand, separated from the source operand by a comma. The destination
operand is in the memory location that has its binary address represented by the name SUM.

Since there are several possible addressing modes for specifying operand locations, an
assembly-language instruction must indicate which mode is being used. For example, a
numerical value or a name used by itself, such as SUM in the preceding instruction, may be
used to denote the Absolute mode. The number sign usually denotes an immediate operand.
Thus, the instruction

ADD R2, R3, #5

adds the number 5 to the contents of register R3 and puts the result into register R2.
The number sign is not the only way to denote the Immediate addressing mode. In some
assembly languages, the Immediate addressing mode is indicated in the OP-code mnemonic.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 24 Page number 50 cyan black

50 C H A P T E R 2 • Instruction Set Architecture

For example, the previous Add instruction may be written as

ADDI R2, R3, 5

The suffix I in the mnemonic ADDI states that the second source operand is given in the
Immediate addressing mode.

Indirect addressing is usually specified by putting parentheses around the name or
symbol denoting the pointer to the operand. For example, if register R2 contains the
address of a number in the memory, then this number can be loaded into register R3 using
the instruction

LD R3, (R2)

2.5.1 Assembler Directives

In addition to providing a mechanism for representing instructions in a program, assembly
language allows the programmer to specify other information needed to translate the source
program into the object program. We have already mentioned that we need to assign
numerical values to any names used in a program. Suppose that the name TWENTY is
used to represent the value 20. This fact may be conveyed to the assembler program through
an equate statement such as

TWENTY EQU 20

This statement does not denote an instruction that will be executed when the object program
is run; in fact, it will not even appear in the object program. It simply informs the assembler
that the name TWENTY should be replaced by the value 20 wherever it appears in the
program. Such statements, called assembler directives (or commands), are used by the
assembler while it translates a source program into an object program.

To illustrate the use of assembly language further, let us reconsider the program in
Figure 2.8. In order to run this program on a computer, it is necessary to write its source code
in the required assembly language, specifying all of the information needed to generate the
corresponding object program. Suppose that each instruction and each data item occupies
one word of memory. Also assume that the memory is byte-addressable and that the word
length is 32 bits. Suppose also that the object program is to be loaded in the main memory
as shown in Figure 2.12. The figure shows the memory addresses where the machine
instructions and the required data items are to be found after the program is loaded for
execution. If the assembler is to produce an object program according to this arrangement,
it has to know

• How to interpret the names
• Where to place the instructions in the memory
• Where to place the data operands in the memory

To provide this information, the source program may be written as shown in Figure 2.13. The
program begins with the assembler directive, ORIGIN, which tells the assembler program
where in the memory to place the instructions that follow. It specifies that the instructions

December 14, 2010 09:22 ham_338065_ch02 Sheet number 25 Page number 51 cyan black

2.5 Assembly Language 51

NUM2

NUMn

NUM1

R4, #NUM1Move

R3, SUM

R2, R2, #1

R4, R4, #4

R3, R3, R5

150

132

804

212

208

204

200

128

124

120

116

112

108

104

100

SUM

N

LOOP

LOOP

Subtract

Add

Add

Store

R3

R2, NLoad

Clear

R5, (R4)Load

Branch_if_[R2]>0

Figure 2.12 Memory arrangement for the program in Figure 2.8.

of the object program are to be loaded in the memory starting at address 100. It is followed
by the source program instructions written with the appropriate mnemonics and syntax.
Note that we use the statement

BGT R2, R0, LOOP

to represent an instruction that performs the operation

Branch_if_[R2]>0 LOOP

The second ORIGIN directive tells the assembler program where in the memory to
place the data block that follows. In this case, the location specified has the address 200.
This is intended to be the location in which the final sum will be stored. A 4-byte space
for the sum is reserved by means of the assembler directive RESERVE. The next word,
at address 204, has to contain the value 150 which is the number of entries in the list.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 26 Page number 52 cyan black

52 C H A P T E R 2 • Instruction Set Architecture

Memory Addressing
address or data
label Operation information

Assembler directive ORIGIN 100

Statements that LD R2, N
generate CLR R3
machine MOV R4, #NUM1
instructions LOOP: LD R5, (R4)

ADD R3, R3, R5
ADD R4, R4, #4
SUB R2, R2, #1
BGT R2, R0, LOOP
ST R3, SUM
next instruction

Assembler directives ORIGIN 200
SUM: RESERVE 4
N: DATAWORD 150
NUM1: RESERVE 600

END

Figure 2.13 Assembly language representation for the program in Figure 2.12.

The DATAWORD directive is used to inform the assembler of this requirement. The next
RESERVE directive declares that a memory block of 600 bytes is to be reserved for data.
This directive does not cause any data to be loaded in these locations. Data may be loaded
in the memory using an input procedure, as we will explain in Chapter 3. The last statement
in the source program is the assembler directive END, which tells the assembler that this is
the end of the source program text.

We previously described how the EQU directive can be used to associate a specific
value, which may be an address, with a particular name. A different way of associating
addresses with names or labels is illustrated in Figure 2.13. Any statement that results in
instructions or data being placed in a memory location may be given a memory address
label. The assembler automatically assigns the address of that location to the label. For
example, in the data block that follows the second ORIGIN directive, we used the labels
SUM, N, and NUM1. Because the first RESERVE statement after the ORIGIN directive
is given the label SUM, the name SUM is assigned the value 200. Whenever SUM is
encountered in the program, it will be replaced with this value. Using SUM as a label in

December 14, 2010 09:22 ham_338065_ch02 Sheet number 27 Page number 53 cyan black

2.5 Assembly Language 53

this manner is equivalent to using the assembler directive

SUM EQU 200

Similarly, the labels N and NUM1 are assigned the values 204 and 208, respectively,
because they represent the addresses of the two word locations immediately following the
word location with address 200.

Most assembly languages require statements in a source program to be written in the
form

Label: Operation Operand(s) Comment

These four fields are separated by an appropriate delimiter, perhaps one or more blank or
tab characters. The Label is an optional name associated with the memory address where
the machine-language instruction produced from the statement will be loaded. Labels may
also be associated with addresses of data items. In Figure 2.13 there are four labels: LOOP,
SUM, N, and NUM1.

The Operation field contains an assembler directive or the OP-code mnemonic of
the desired instruction. The Operand field contains addressing information for accessing
the operands. The Comment field is ignored by the assembler program. It is used for
documentation purposes to make the program easier to understand.

We have introduced only the very basic characteristics of assembly languages. These
languages differ in detail and complexity from one computer to another.

2.5.2 Assembly and Execution of Programs

A source program written in an assembly language must be assembled into a machine-
language object program before it can be executed. This is done by the assembler program,
which replaces all symbols denoting operations and addressing modes with the binary codes
used in machine instructions, and replaces all names and labels with their actual values.

The assembler assigns addresses to instructions and data blocks, starting at the addresses
given in the ORIGIN assembler directives. It also inserts constants that may be given
in DATAWORD commands, and it reserves memory space as requested by RESERVE
commands.

A key part of the assembly process is determining the values that replace the names. In
some cases, where the value of a name is specified by an EQU directive, this is a straightfor-
ward task. In other cases, where a name is defined in the Label field of a given instruction,
the value represented by the name is determined by the location of this instruction in the
assembled object program. Hence, the assembler must keep track of addresses as it gen-
erates the machine code for successive instructions. For example, the names LOOP and
SUM in the program of Figure 2.13 will be assigned the values 112 and 200, respectively.

In some cases, the assembler does not directly replace a name representing an address
with the actual value of this address. For example, in a branch instruction, the name that
specifies the location to which a branch is to be made (the branch target) is not replaced by the
actual address. A branch instruction is usually implemented in machine code by specifying
the branch target as the distance (in bytes) from the present address in the Program Counter

December 14, 2010 09:22 ham_338065_ch02 Sheet number 28 Page number 54 cyan black

54 C H A P T E R 2 • Instruction Set Architecture

to the target instruction. The assembler computes this branch offset, which can be positive
or negative, and puts it into the machine instruction. We will show how branch instructions
may be implemented in Section 2.13.

The assembler stores the object program on the secondary storage device available
in the computer, usually a magnetic disk. The object program must be loaded into the
main memory before it is executed. For this to happen, another utility program called a
loader must already be in the memory. Executing the loader performs a sequence of input
operations needed to transfer the machine-language program from the disk into a specified
place in the memory. The loader must know the length of the program and the address in the
memory where it will be stored. The assembler usually places this information in a header
preceding the object code. Having loaded the object code, the loader starts execution of the
object program by branching to the first instruction to be executed, which may be identified
by an address label such as START. The assembler places that address in the header of the
object code for the loader to use at execution time.

When the object program begins executing, it proceeds to completion unless there are
logical errors in the program. The user must be able to find errors easily. The assembler can
only detect and report syntax errors. To help the user find other programming errors, the
system software usually includes a debugger program. This program enables the user to
stop execution of the object program at some points of interest and to examine the contents
of various processor registers and memory locations.

In this section, we introduced some important issues in assembly and execution of
programs. Chapter 4 provides a more detailed discussion of these issues.

2.5.3 Number Notation

When dealing with numerical values, it is often convenient to use the familiar decimal
notation. Of course, these values are stored in the computer as binary numbers. In some
situations, it is more convenient to specify the binary patterns directly. Most assemblers
allow numerical values to be specified in different ways, using conventions that are defined
by the assembly-language syntax. Consider, for example, the number 93, which is repre-
sented by the 8-bit binary number 01011101. If this value is to be used as an immediate
operand, it can be given as a decimal number, as in the instruction

ADDI R2, R3, 93

or as a binary number identified by an assembler-specific prefix symbol such as a percent
sign, as in

ADDI R2, R3, %01011101

Binary numbers can be written more compactly as hexadecimal, or hex, numbers, in
which four bits are represented by a single hex digit. The first ten patterns 0000, 0001, . . . ,

1001, referred to as binary-coded decimal (BCD), are represented by the digits 0, 1, . . . , 9.

The remaining six 4-bit patterns, 1010, 1011, . . . , 1111, are represented by the letters A,
B, . . . , F. In hexadecimal representation, the decimal value 93 becomes 5D. In assembly
language, a hex representation is often identified by the prefix 0x (as in the C language) or

December 14, 2010 09:22 ham_338065_ch02 Sheet number 29 Page number 55 cyan black

2.6 Stacks 55

by a dollar sign prefix. Thus, we would write

ADDI R2, R3, 0x5D

2.6 Stacks

Data operated on by a program can be organized in a variety of ways. We have already
encountered data structured as lists. Now, we consider an important data structure known
as a stack. A stack is a list of data elements, usually words, with the accessing restriction
that elements can be added or removed at one end of the list only. This end is called the top
of the stack, and the other end is called the bottom. The structure is sometimes referred to as
a pushdown stack. Imagine a pile of trays in a cafeteria; customers pick up new trays from
the top of the pile, and clean trays are added to the pile by placing them onto the top of the
pile. Another descriptive phrase, last-in–first-out (LIFO) stack, is also used to describe this
type of storage mechanism; the last data item placed on the stack is the first one removed
when retrieval begins. The terms push and pop are used to describe placing a new item on
the stack and removing the top item from the stack, respectively.

In modern computers, a stack is implemented by using a portion of the main memory
for this purpose. One processor register, called the stack pointer (SP), is used to point to a
particular stack structure called the processor stack, whose use will be explained shortly.

Data can be stored in a stack with successive elements occupying successive memory
locations. Assume that the first element is placed in location BOTTOM, and when new
elements are pushed onto the stack, they are placed in successively lower address locations.
We use a stack that grows in the direction of decreasing memory addresses in our discussion,
because this is a common practice.

Figure 2.14 shows an example of a stack of word data items. The stack contains
numerical values, with 43 at the bottom and −28 at the top. The stack pointer, SP, is used
to keep track of the address of the element of the stack that is at the top at any given time.
If we assume a byte-addressable memory with a 32-bit word length, the push operation can
be implemented as

Subtract SP, SP, #4
Store Rj, (SP)

where the Subtract instruction subtracts 4 from the contents of SP and places the result in
SP. Assuming that the new item to be pushed on the stack is in processor register Rj, the
Store instruction will place this value on the stack. These two instructions copy the word
from Rj onto the top of the stack, decrementing the stack pointer by 4 before the store (push)
operation. The pop operation can be implemented as

Load Rj, (SP)
Add SP, SP, #4

These two instructions load (pop) the top value from the stack into register Rj and then
increment the stack pointer by 4 so that it points to the new top element. Figure 2.15 shows
the effect of each of these operations on the stack in Figure 2.14.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 30 Page number 56 cyan black

56 C H A P T E R 2 • Instruction Set Architecture

register

Stack
pointer

739

17

BOTTOM

0

SP
Current
top element

element
Bottom

43

Stack

28–

2
k

1–

Figure 2.14 A stack of words in the memory.

2.7 Subroutines

In a given program, it is often necessary to perform a particular task many times on different
data values. It is prudent to implement this task as a block of instructions that is executed
each time the task has to be performed. Such a block of instructions is usually called a
subroutine. For example, a subroutine may evaluate a mathematical function, or it may sort
a list of values into increasing or decreasing order.

It is possible to reproduce the block of instructions that constitute a subroutine at every
place where it is needed in the program. However, to save space, only one copy of this block
is placed in the memory, and any program that requires the use of the subroutine simply
branches to its starting location. When a program branches to a subroutine we say that it is
calling the subroutine. The instruction that performs this branch operation is named a Call
instruction.

After a subroutine has been executed, the calling program must resume execution,
continuing immediately after the instruction that called the subroutine. The subroutine is
said to return to the program that called it, and it does so by executing a Return instruction.
Since the subroutine may be called from different places in a calling program, provision
must be made for returning to the appropriate location. The location where the calling

December 14, 2010 09:22 ham_338065_ch02 Sheet number 31 Page number 57 cyan black

2.7 Subroutines 57

(b) After pop into Rj(a) After push from Rj

17

739

43

R j

SP

Stack

SP

R j

19

17

739

19

43

28–

28–28–

Stack

Figure 2.15 Effect of stack operations on the stack in Figure 2.14.

program resumes execution is the location pointed to by the updated program counter (PC)
while the Call instruction is being executed. Hence, the contents of the PC must be saved
by the Call instruction to enable correct return to the calling program.

The way in which a computer makes it possible to call and return from subroutines is
referred to as its subroutine linkage method. The simplest subroutine linkage method is
to save the return address in a specific location, which may be a register dedicated to this
function. Such a register is called the link register. When the subroutine completes its task,
the Return instruction returns to the calling program by branching indirectly through the
link register.

The Call instruction is just a special branch instruction that performs the following
operations:

• Store the contents of the PC in the link register
• Branch to the target address specified by the Call instruction

The Return instruction is a special branch instruction that performs the operation

• Branch to the address contained in the link register

Figure 2.16 illustrates how the PC and the link register are affected by the Call and Return
instructions.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 32 Page number 58 cyan black

58 C H A P T E R 2 • Instruction Set Architecture

ReturnCall

1000

204

204

Link

PC

Return

1000

location
Memory

Calling program
Memory
location

200
204

Call SUB
next instruction

Subroutine SUB

first instruction

Figure 2.16 Subroutine linkage using a link register.

2.7.1 Subroutine Nesting and the Processor Stack

A common programming practice, called subroutine nesting, is to have one subroutine call
another. In this case, the return address of the second call is also stored in the link register,
overwriting its previous contents. Hence, it is essential to save the contents of the link
register in some other location before calling another subroutine. Otherwise, the return
address of the first subroutine will be lost.

Subroutine nesting can be carried out to any depth. Eventually, the last subroutine
called completes its computations and returns to the subroutine that called it. The return
address needed for this first return is the last one generated in the nested call sequence. That
is, return addresses are generated and used in a last-in–first-out order. This suggests that the
return addresses associated with subroutine calls should be pushed onto the processor stack.

Correct sequencing of nested calls is achieved if a given subroutine SUB1 saves the
return address currently in the link register on the stack, accessed through the stack pointer,
SP, before it calls another subroutine SUB2. Then, prior to executing its own Return
instruction, the subroutine SUB1 has to pop the saved return address from the stack and
load it into the link register.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 33 Page number 59 cyan black

2.7 Subroutines 59

2.7.2 Parameter Passing

When calling a subroutine, a program must provide to the subroutine the parameters, that is,
the operands or their addresses, to be used in the computation. Later, the subroutine returns
other parameters, which are the results of the computation. This exchange of information
between a calling program and a subroutine is referred to as parameter passing. Parameter
passing may be accomplished in several ways. The parameters may be placed in registers
or in memory locations, where they can be accessed by the subroutine. Alternatively, the
parameters may be placed on the processor stack.

Passing parameters through processor registers is straightforward and efficient. Figure
2.17 shows how the program in Figure 2.8 for adding a list of numbers can be implemented
as a subroutine, LISTADD, with the parameters passed through registers. The size of the
list, n, contained in memory location N, and the address, NUM1, of the first number, are
passed through registers R2 and R4. The sum computed by the subroutine is passed back to
the calling program through register R3. The first four instructions in Figure 2.17 constitute
the relevant part of the calling program. The first two instructions load n and NUM1 into

Calling program

Load R2, N Parameter 1 is list size.
Move R4, #NUM1 Parameter 2 is list location.
Call LISTADD Call subroutine.
Store R3, SUM Save result.

Subroutine

LISTADD: Subtract SP, SP, #4 Save the contents of
Store R5, (SP) R5 on the stack.
Clear R3 Initialize sum to 0.

LOOP: Load R5, (R4) Get the next number.
Add R3, R3, R5 Add this number to sum.
Add R4, R4, #4 Increment the pointer by 4.
Subtract R2, R2, #1 Decrement the counter.
Branch_if_[R2]>0 LOOP
Load R5, (SP) Restore the contents of R5.
Add SP, SP, #4
Return Return to calling program.

::

Figure 2.17 Program of Figure 2.8 written as a subroutine; parameters passed
through registers.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 34 Page number 60 cyan black

60 C H A P T E R 2 • Instruction Set Architecture

R2 and R4. The Call instruction branches to the subroutine starting at location LISTADD.
This instruction also saves the return address (i.e., the address of the Store instruction in
the calling program) in the link register. The subroutine computes the sum and places it in
R3. After the Return instruction is executed by the subroutine, the sum in R3 is stored in
memory location SUM by the calling program.

In addition to registers R2, R3, and R4, which are used for parameter passing, the
subroutine also uses R5. Since R5 may be used in the calling program, its contents are
saved by pushing them onto the processor stack upon entry to the subroutine and restored
before returning to the calling program.

If many parameters are involved, there may not be enough general-purpose registers
available for passing them to the subroutine. The processor stack provides a convenient
and flexible mechanism for passing an arbitrary number of parameters. Figure 2.18 shows
the program of Figure 2.8 rewritten as a subroutine, LISTADD, which uses the processor
stack for parameter passing. The address of the first number in the list and the number of
entries are pushed onto the processor stack pointed to by register SP. The subroutine is then
called. The computed sum is placed on the stack before the return to the calling program.

Figure 2.19 shows the stack entries for this example. Assume that before the subroutine
is called, the top of the stack is at level 1. The calling program pushes the address NUM1
and the value n onto the stack and calls subroutine LISTADD. The top of the stack is now at
level 2. The subroutine uses four registers while it is being executed. Since these registers
may contain valid data that belong to the calling program, their contents should be saved
at the beginning of the subroutine by pushing them onto the stack. The top of the stack is
now at level 3. The subroutine accesses the parameters n and NUM1 from the stack using
indexed addressing with offset values relative to the new top of the stack (level 3). Note
that it does not change the stack pointer because valid data items are still at the top of the
stack. The value n is loaded into R2 as the initial value of the count, and the address NUM1
is loaded into R4, which is used as a pointer to scan the list entries.

At the end of the computation, register R3 contains the sum. Before the subroutine
returns to the calling program, the contents of R3 are inserted into the stack, replacing the
parameter NUM1, which is no longer needed. Then the contents of the four registers used
by the subroutine are restored from the stack. Also, the stack pointer is incremented to point
to the top of the stack that existed when the subroutine was called, namely the parameter
n at level 2. After the subroutine returns, the calling program stores the result in location
SUM and lowers the top of the stack to its original level by incrementing the SP by 8.

Observe that for subroutine LISTADD in Figure 2.18, we did not use a pair of instruc-
tions

Subtract SP, SP, #4
Store Rj, (SP)

to push the contents of each register on the stack. Since we have to save four registers,
this would require eight instructions. We needed only five instructions by adjusting SP
immediately to point to the top of stack that will be in effect once all four registers are
saved. Then, we used the Index mode to store the contents of registers. We used the same
optimization when restoring the registers before returning from the subroutine.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 35 Page number 61 cyan black

2.7 Subroutines 61

Assume top of stack is at level 1 in Figure 2.19.

Move R2, #NUM1 Push parameters onto stack.
Subtract SP, SP, #4
Store R2, (SP)
Load R2, N
Subtract SP, SP, #4
Store R2, (SP)
Call LISTADD Call subroutine

(top of stack is at level 2).
Load R2, 4(SP) Get the result from the stack
Store R2, SUM and save it in SUM.
Add SP, SP, #8 Restore top of stack

(top of stack is at level 1).

LISTADD: Subtract SP, SP, #16 Save registers
Store R2, 12(SP)
Store R3, 8(SP)
Store R4, 4(SP)
Store R5, (SP) (top of stack is at level 3).
Load R2, 16(SP) Initialize counter to n.
Load R4, 20(SP) Initialize pointer to the list.
Clear R3 Initialize sum to 0.

LOOP: Load R5, (R4) Get the next number.
Add R3, R3, R5 Add this number to sum.
Add R4, R4, #4 Increment the pointer by 4.
Subtract R2, R2, #1 Decrement the counter.
Branch_if_[R2]>0 LOOP
Store R3, 20(SP) Put result in the stack.
Load R5, (SP) Restore registers.
Load R4, 4(SP)
Load R3, 8(SP)
Load R2, 12(SP)
Add SP, SP, #16 (top of stack is at level 2).
Return Return to calling program.

::

Figure 2.18 Program of Figure 2.8 written as a subroutine; parameters passed on the
stack.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 36 Page number 62 cyan black

62 C H A P T E R 2 • Instruction Set Architecture

Level 3

[R4]

[R5]

[R2]

[R3]

n

NUM1

Level 2

Level 1

Figure 2.19 Stack contents for the program in Figure 2.18.

We should also note that some computers have special instructions for loading and
storing multiple registers. For example, the four registers in Figure 2.18 may be saved on
the stack by using the instruction

StoreMultiple R2−R5, −(SP)

The source registers are specified by the range R2−R5. The notation −(SP) specifies that
the stack pointer must be adjusted accordingly. The minus sign in front indicates that SP
must be decremented (by 4) before the contents of each register are placed on the stack.

Similarly, the instruction

LoadMultiple R2−R5, (SP)+

will load registers R2, R3, R4, and R5, in reverse order, with the values that were saved
on the stack. The notation (SP)+ indicates that the stack pointer must be incremented (by
4) after each value has been loaded into the corresponding register. We will discuss the
addressing modes denoted by −(SP) and (SP)+ in more detail in Section 2.9.1.

Parameter Passing by Value and by Reference
Note the nature of the two parameters, NUM1 and n, passed to the subroutines in

Figures 2.17 and 2.18. The purpose of the subroutines is to add a list of numbers. Instead
of passing the actual list entries, the calling program passes the address of the first number
in the list. This technique is called passing by reference. The second parameter is passed
by value, that is, the actual number of entries, n, is passed to the subroutine.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 37 Page number 63 cyan black

2.7 Subroutines 63

2.7.3 The Stack Frame

Now, observe how space is used in the stack in the example in Figures 2.18 and 2.19.
During execution of the subroutine, six locations at the top of the stack contain entries
that are needed by the subroutine. These locations constitute a private work space for
the subroutine, allocated at the time the subroutine is entered and deallocated when the
subroutine returns control to the calling program. Such space is called a stack frame. If the
subroutine requires more space for local memory variables, the space for these variables
can also be allocated on the stack.

Figure 2.20 shows an example of a commonly used layout for information in a stack
frame. In addition to the stack pointer SP, it is useful to have another pointer register, called
the frame pointer (FP), for convenient access to the parameters passed to the subroutine and
to the local memory variables used by the subroutine. In the figure, we assume that four
parameters are passed to the subroutine, three local variables are used within the subroutine,
and registers R2, R3, and R4 need to be saved because they will also be used within the
subroutine. When nested subroutines are used, the stack frame of the calling subroutine
would also include the return address, as we will see in the example that follows.

SP
(stack pointer)

FP
(frame pointer)

saved [R4]

saved [R3]

Stack
frame

for
called

subroutine

localvar3

localvar2

localvar1

saved [FP]

Old TOS

param2

param1

param3

param4

saved [R2]

Figure 2.20 A subroutine stack frame example.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 38 Page number 64 cyan black

64 C H A P T E R 2 • Instruction Set Architecture

With the FP register pointing to the location just above the stored parameters, as shown
in Figure 2.20, we can easily access the parameters and the local variables by using the Index
addressing mode. The parameters can be accessed by using addresses 4(FP), 8(FP),
The local variables can be accessed by using addresses−4(FP),−8(FP), The contents
of FP remain fixed throughout the execution of the subroutine, unlike the stack pointer SP,
which must always point to the current top element in the stack.

Now let us discuss how the pointers SP and FP are manipulated as the stack frame is
allocated, used, and deallocated for a particular invocation of a subroutine. We begin by
assuming that SP points to the old top-of-stack (TOS) element in Figure 2.20. Before the
subroutine is called, the calling program pushes the four parameters onto the stack. Then
the Call instruction is executed. At this time, SP points to the last parameter that was pushed
on the stack. If the subroutine is to use the frame pointer, it should first save the contents
of FP by pushing them on the stack, because FP is usually a general-purpose register and
it may contain information of use to the calling program. Then, the contents of SP, which
now points to the saved value of FP, are copied into FP.

Thus, the first three instructions executed in the subroutine are

Subtract SP, SP, #4
Store FP, (SP)
Move FP, SP

The Move instruction copies the contents of SP into FP.After these instructions are executed,
both SP and FP point to the saved FP contents. Space for the three local variables is now
allocated on the stack by executing the instruction

Subtract SP, SP, #12

Finally, the contents of processor registers R2, R3, and R4 are saved by pushing them onto
the stack. At this point, the stack frame has been set up as shown in Figure 2.20.

The subroutine now executes its task. When the task is completed, the subroutine pops
the saved values of R4, R3, and R2 back into those registers, deallocates the local variables
from the stack frame by executing the instruction

Add SP, SP, #12

and pops the saved old value of FP back into FP. At this point, SP points to the last parameter
that was placed on the stack. Next, the Return instruction is executed, transferring control
back to the calling program.

The calling program is responsible for deallocating the parameters from the stack
frame, some of which may be results passed back by the subroutine. After deallocation
of the parameters, the stack pointer points to the old TOS, and we are back to where we
started.

Stack Frames for Nested Subroutines
When nested subroutines are used, it is necessary to ensure that the return addresses are

properly saved. When a calling program calls a subroutine, say SUB1, the return address
is saved in the link register. Now, if SUB1 calls another subroutine, SUB2, it must save the

December 14, 2010 09:22 ham_338065_ch02 Sheet number 39 Page number 65 cyan black

2.8 Additional Instructions 65

current contents of the link register before it makes the call to SUB2. The appropriate place
for saving this return address is within the stack frame for SUB1. If SUB2 then calls SUB3,
it must save the current contents of the link register within the stack frame associated with
SUB2, and so on.

An example of a main program calling a first subroutine SUB1, which then calls a
second subroutine SUB2, is shown in Figure 2.21. The stack frames corresponding to these
two nested subroutines are shown in Figure 2.22. All parameters involved in this example
are passed on the stack. The two figures only show the flow of control and data among the
main program and the two subroutines. The actual computations are not shown.

The flow of execution is as follows. The main program pushes the two parameters
param2 and param1 onto the stack, in that order, and then calls SUB1. This first subroutine
is responsible for computing a single result and passing it back to the main program on the
stack. During the course of its computations, SUB1 calls the second subroutine, SUB2, in
order to perform some other subtask. SUB1 passes a single parameter param3 to SUB2,
and the result is passed back to it via the same location on the stack. After SUB2 executes
its Return instruction, SUB1 loads this result into register R4. SUB1 then continues its
computations and eventually passes the required answer back to the main program on the
stack. When SUB1 executes its return to the main program, the main program stores
this answer in memory location RESULT, restores the stack level, then continues with its
computations at the next instruction at address 2040. Note how the return address to the
calling program, 2028, is stored within the stack frame for SUB1 in Figure 2.22.

The comments in Figure 2.21 provide the details of how this flow of execution is
managed. The first action performed by each subroutine is to save on the stack the contents
of all registers used in the subroutine, including the frame pointer and link register (if
needed). This is followed by initializing the frame pointer. SUB1 uses four registers, R2
to R5, and SUB2 uses two registers, R2 and R3. These registers, the frame pointer, and
the link register in the case of SUB1, are restored just before the Return instructions are
executed.

The Index addressing mode involving the frame pointer register FP is used to load
parameters from the stack and place answers back on the stack. The byte offsets used in
these operations are always 4, 8, . . . , as discussed for the general stack frame in Figure
2.20. Finally, note that each calling routine is responsible for removing its own parameters
from the stack. This is done by the Add instructions, which lower the top of the stack.

2.8 Additional Instructions

So far, we have introduced the following instructions: Load, Store, Move, Clear, Add,
Subtract, Branch, Call, and Return. These instructions, along with the addressing modes in
Table 2.1, have allowed us to write programs to illustrate machine instruction sequencing,
including branching and subroutine linkage. In this section we introduce a few more
instructions that are found in most instruction sets.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 40 Page number 66 cyan black

66 C H A P T E R 2 • Instruction Set Architecture

Memory location Instructions Comments

Main program
::

2000 Load R2, PARAM2 Place parameters on stack.
2004 Subtract SP, SP, #4
2008 Store R2, (SP)
2012 Load R2, PARAM1
2016 Subtract SP, SP, #4
2020 Store R2, (SP)
2024 Call SUB1 Call the subroutine.
2028 Load R2, (SP) Store result.
2032 Store R2, RESULT
2036 Add SP, SP, #8 Restore stack level.
2040 next instruction

::
First subroutine
2100 SUB1: Subtract SP, SP, #24 Save registers.
2104 Store LINK_reg,20(SP)
2108 Store FP, 16(SP)
2112 Store R2, 12(SP)
2116 Store R3, 8(SP)
2120 Store R4, 4(SP)
2124 Store R5, (SP)
2128 Add FP, SP, #16 Initialize the frame pointer.
2132 Load R2, 8(FP) Get first parameter.
2136 Load R3, 12(FP) Get second parameter.

::
Load R4, PARAM3 Place a parameter on stack.
Subtract SP, SP, #4
Store R4, (SP)
Call SUB2
Load R4, (SP) Get result from SUB2.
Add SP, SP, #4
::
Store R5, 8(FP) Place answer on stack.
Load R5, (SP) Restore registers.
Load R4, 4(SP)
Load R3, 8(SP)
Load R2, 12(SP)
Load FP, 16(SP)
Load LINK_reg,20(SP)
Add SP, SP, #24
Return Return to Main program.

...continued in part b.

Figure 2.21 Nested subroutines (part a).

December 14, 2010 09:22 ham_338065_ch02 Sheet number 41 Page number 67 cyan black

2.8 Additional Instructions 67

Memory
location Instructions Comments

Second subroutine

3000 SUB2: Subtract SP, SP, #12 Save registers.
3004 Store FP, 8(SP)

Store R2, 4(SP)
Store R3, (SP)
Add FP, SP, #8 Initialize the frame pointer.
Load R2, 4(FP) Get the parameter.

Store R3, 4(FP) Place SUB2 result on stack.
Load R3, (SP) Restore registers.
Load R2, 4(SP)
Load FP, 8(SP)
Add SP, SP, #12
Return Return to Subroutine 1.

::

Figure 2.21 Nested subroutines (part b).

2.8.1 Logic Instructions

Logic operations such as AND, OR, and NOT, applied to individual bits, are the basic
building blocks of digital circuits, as described in Appendix A. It is also useful to be able
to perform logic operations in software, which is done using instructions that apply these
operations to all bits of a word or byte independently and in parallel. For example, the
instruction

And R4, R2, R3

computes the bit-wise AND of operands in registers R2 and R3, and leaves the result in R4.
An immediate form of this instruction may be

And R4, R2, #Value

where Value is a 16-bit logic value that is extended to 32 bits by placing zeros into the 16
most-significant bit positions.

Consider the following application for this logic instruction. Suppose that four ASCII
characters are contained in the 32-bit register R2. In some task, we wish to determine if the
rightmost character is Z. If it is, then a conditional branch to FOUNDZ is to be made. From
Table 1.1 in Chapter 1, we find that the ASCII code for Z is 01011010, which is expressed
in hexadecimal notation as 5A. The three-instruction sequence

And R2, R2, #0xFF
Move R3, #0x5A
Branch_if_[R2]=[R3] FOUNDZ

December 14, 2010 09:22 ham_338065_ch02 Sheet number 42 Page number 68 cyan black

68 C H A P T E R 2 • Instruction Set Architecture

FP

FP

[FP] from SUB1

Stack
frame

for
SUB1

[R2] from Main

param3

[R5] from Main

[R4] from Main

[R3] from Main

Old TOS

2028

[FP] from Main

param1

param2

[R2] from SUB1

[R3] from SUB1

Stack
frame

for
SUB2

Figure 2.22 Stack frames for Figure 2.21.

implements the desired action. The And instruction clears all bits in the leftmost three
character positions of R2 to zero, leaving the rightmost character unchanged. This is the
result of using an immediate operand that has eight 1s at its right end, and 0s in the 24 bits
to the left. The Move instruction loads the hex value 5A into R3. Since both R2 and R3
have 0s in the leftmost 24 bits, the Branch instruction compares the remaining character at
the right end of R2 with the binary representation for the character Z, and causes a branch
to FOUNDZ if there is a match.

2.8.2 Shift and Rotate Instructions

There are many applications that require the bits of an operand to be shifted right or left
some specified number of bit positions. The details of how the shifts are performed depend
on whether the operand is a signed number or some more general binary-coded information.
For general operands, we use a logical shift. For a signed number, we use an arithmetic
shift, which preserves the sign of the number.

Logical Shifts
Two logical shift instructions are needed, one for shifting left (LShiftL) and another for

shifting right (LShiftR). These instructions shift an operand over a number of bit positions

December 14, 2010 09:22 ham_338065_ch02 Sheet number 43 Page number 69 cyan black

2.8 Additional Instructions 69

specified in a count operand contained in the instruction. The general form of a Logical-
shift-left instruction is

LShiftL Ri, Rj, count

which shifts the contents of register Rj left by a number of bit positions given by the count
operand, and places the result in register Ri, without changing the contents of Rj. The
count operand may be given as an immediate operand, or it may be contained in a processor
register. To complete the description of the shift left operation, we need to specify the bit
values brought into the vacated positions at the right end of the destination operand, and to
determine what happens to the bits shifted out of the left end. Vacated positions are filled
with zeros. In computers that do not use condition code flags, the bits shifted out are simply
dropped. In computers that use condition code flags, which will be discussed in Section
2.10.2, these bits are passed through the Carry flag, C, and then dropped. Involving the C
flag in shifts is useful in performing arithmetic operations on large numbers that occupy
more than one word. Figure 2.23a shows an example of shifting the contents of register R3
left by two bit positions. The Logical-shift-right instruction, LShiftR, works in the same
manner except that it shifts to the right. Figure 2.23b illustrates this operation.

Digit-Packing Example
Consider the following short task that illustrates the use of both shift operations and

logic operations. Suppose that two decimal digits represented in ASCII code are located in
the memory at byte locations LOC and LOC+ 1. We wish to represent each of these digits
in the 4-bit BCD code and store both of them in a single byte location PACKED. The result
is said to be in packed-BCD format. Table 1.1 in Chapter 1 shows that the rightmost four
bits of the ASCII code for a decimal digit correspond to the BCD code for the digit. Hence,
the required task is to extract the low-order four bits in LOC and LOC+ 1 and concatenate
them into the single byte at PACKED.

The instruction sequence shown in Figure 2.24 accomplishes the task using register R2
as a pointer to the ASCII characters in memory, and using registers R3 and R4 to develop
the BCD digit codes. The program uses the LoadByte instruction, which loads a byte from
the memory into the rightmost eight bit positions of a 32-bit processor register and clears
the remaining higher-order bits to zero. The StoreByte instruction writes the rightmost byte
in the source register into the specified destination location, but does not affect any other
byte locations. The value 0xF in the And instruction is used to clear to zero all but the
four rightmost bits in R4. Note that the immediate source operand is written as 0xF, which,
interpreted as a 32-bit pattern, has 28 zeros in the most-significant bit positions.

Arithmetic Shifts
In an arithmetic shift, the bit pattern being shifted is interpreted as a signed number. A

study of the 2’s-complement binary number representation in Figure 1.3 reveals that shifting
a number one bit position to the left is equivalent to multiplying it by 2, and shifting it to
the right is equivalent to dividing it by 2. Of course, overflow might occur on shifting
left, and the remainder is lost when shifting right. Another important observation is that
on a right shift the sign bit must be repeated as the fill-in bit for the vacated position
as a requirement of the 2’s-complement representation for numbers. This requirement
when shifting right distinguishes arithmetic shifts from logical shifts in which the fill-in

December 14, 2010 09:22 ham_338065_ch02 Sheet number 44 Page number 70 cyan black

70 C H A P T E R 2 • Instruction Set Architecture

CR30

before:

after:

0

1

0 0 01 1 1 . . . 11

0 0 1 1 1 000

(b) Logical shift right LShiftR R3, R3, #2

(a) Logical shift left LShiftL R3, R3, #2

C R3 0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

C

before:

after:

0

1

1 1 00 0 1 . . . 01

1 1 0 0 1 011

(c) Arithmetic shift right AShiftR R3, R3, #2

R3

. . .

. . .

Figure 2.23 Logical and arithmetic shift instructions.

bit is always 0. Otherwise, the two types of shifts are the same. An example of anArithmetic-
shift-right instruction, AShiftR, is shown in Figure 2.23c. The Arithmetic-shift-left is
exactly the same as the Logical-shift-left.

Rotate Operations
In the shift operations, the bits shifted out of the operand are lost, except for the last

bit shifted out which is retained in the Carry flag C. For situations where it is desirable to
preserve all of the bits, rotate instructions may be used instead. These are instructions that

December 14, 2010 09:22 ham_338065_ch02 Sheet number 45 Page number 71 cyan black

2.8 Additional Instructions 71

Move R2, #LOC R2 points to data.
LoadByte R3, (R2) Load first byte into R3.
LShiftL R3, R3, #4 Shift left by 4 bit positions.
Add R2, R2, #1 Increment the pointer.
LoadByte R4, (R2) Load second byte into R4.
And R4, R4, #0xF Clear high-order bits to zero.
Or R3, R3, R4 Concatenate the BCD digits.
StoreByte R3, PACKED Store the result.

Figure 2.24 A routine that packs two BCD digits into a byte.

move the bits shifted out of one end of the operand into the other end. Two versions of both
the Rotate-left and Rotate-right instructions are often provided. In one version, the bits of
the operand are simply rotated. In the other version, the rotation includes the C flag. Figure
2.25 shows the left and right rotate operations with and without the C flag being included
in the rotation. Note that when the C flag is not included in the rotation, it still retains the
last bit shifted out of the end of the register. The OP codes RotateL, RotateLC, RotateR,
and RotateRC, denote the instructions that perform the rotate operations.

2.8.3 Multiplication and Division

Two signed integers can be multiplied or divided by machine instructions with the same
format as we saw earlier for an Add instruction. The instruction

Multiply Rk, Ri, Rj

performs the operation

Rk ← [Ri] × [Rj]
The product of two n-bit numbers can be as large as 2n bits. Therefore, the answer will
not necessarily fit into register Rk. A number of instruction sets have a Multiply instruction
that computes the low-order n bits of the product and places it in register Rk, as indicated.
This is sufficient if it is known that all products in some particular application task will fit
into n bits. To accommodate the general 2n-bit product case, some processors produce the
product in two registers, usually adjacent registers Rk and R(k + 1), with the high-order
half being placed in register R(k + 1).

An instruction set may also provide a signed integer Divide instruction

Divide Rk, Ri, Rj

which performs the operation

Rk ← [Rj]/[Ri]
placing the quotient in Rk. The remainder may be placed in R(k + 1), or it may be lost.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 46 Page number 72 cyan black

72 C H A P T E R 2 • Instruction Set Architecture

CR3

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 001

(c) Rotate right without carry RotateR R3, R3, #2

(a) Rotate left without carry RotateL R3, R3, #2

C R3

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 10101

C

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 000

(d) Rotate right with carry RotateRC R3, R3, #2

R3

. . .

. . .

(b) Rotate left with carry RotateLC R3, R3, #2

C R3

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

Figure 2.25 Rotate instructions.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 47 Page number 73 cyan black

2.9 Dealing with 32-Bit Immediate Values 73

Computers that do not have Multiply and Divide instructions can perform these and
other arithmetic operations by using sequences of more basic instructions such as Add,
Subtract, Shift, and Rotate. This will become more apparent when we describe the imple-
mentation of arithmetic operations in Chapter 9.

2.9 Dealing with 32-Bit Immediate Values

In the discussion of addressing modes, in Section 2.4.1, we raised the question of how a
32-bit value that represents a constant or a memory address can be loaded into a processor
register. The Immediate and Absolute modes in a RISC-style processor restrict the operand
size to 16 bits. Therefore, a 32-bit value cannot be given explicitly in a single instruction
that must fit in a 32-bit word.

A possible solution is to use two instructions for this purpose. One approach found in
RISC-style processors uses instructions that perform two different logical-OR operations.
The instruction

Or Rdst, Rsrc, #Value

extends the 16-bit immediate operand by placing zeros into the high-order bit positions to
form a 32-bit value, which is then ORed with the contents of register Rsrc. If Rsrc contains
zero, then Rdst will just be loaded with the extended 32-bit value. Another instruction

OrHigh Rdst, Rsrc, #Value

forms a 32-bit value by taking the 16-bit immediate operand as the high-order bits and
appending zeros as the low-order bits. This value is then ORed with the contents of Rsrc.
Using these instructions, and assuming that R0 contains the value 0, we can load the 32-bit
value 0x20004FF0 into register R2 as follows:

OrHigh R2, R0, #0x2000
Or R2, R2, #0x4FF0

To make it easier to write programs, a RISC-style instruction set may include pseu-
doinstructions that indicate an action that requires more than one machine instruction. Such
pseudoinstructions are replaced with the corresponding machine-instruction sequence by
the assembler program. For example, the pseudoinstruction

MoveImmediateAddress R2, LOC

could be used to load a 32-bit address represented by the symbol LOC into register R2. In
the assembled program, it would be replaced with two instructions using 16-bit values as
shown above.

An alternative to using two instructions to load a 32-bit address into a register is to use
more than one word per instruction. In that case, a two-word instruction could give the OP
code and register specification in the first word, and include a 32-bit value in the second
word. This is the approach found in CISC-style processors.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 48 Page number 74 cyan black

74 C H A P T E R 2 • Instruction Set Architecture

Finally, note that in the previous sections we always assumed that single Load and Store
instructions can be used to access memory locations represented by symbolic names. This
makes the example programs simpler and easier to read. The programs will run correctly if
the required memory addresses can be specified in 16 bits. If longer addresses are involved,
then the approach described above to construct 32-bit addresses must be used.

2.10 CISC Instruction Sets

In preceding sections, we introduced the RISC style of instruction sets. Now we will
examine some important characteristics of Complex Instruction Set Computers (CISC).

One key difference is that CISC instruction sets are not constrained to the load/store
architecture, in which arithmetic and logic operations can be performed only on operands
that are in processor registers. Another key difference is that instructions do not necessarily
have to fit into a single word. Some instructions may occupy a single word, but others may
span multiple words.

Instructions in modern CISC processors typically do not use a three-address format.
Most arithmetic and logic instructions use the two-address format

Operation destination, source

An Add instruction of this type is

Add B, A

which performs the operation B ← [A] + [B] on memory operands. When the sum is
calculated, the result is sent to the memory and stored in location B, replacing the original
contents of this location. This means that memory location B is both a source and a
destination.

Consider again the task of adding two numbers

C =A+ B

where all three operands may be in memory locations. Obviously, this cannot be done with
a single two-address instruction. The task can be performed by using another two-address
instruction that copies the contents of one memory location into another. Such an instruction
is

Move C, B

which performs the operation C← [B], leaving the contents of location B unchanged. The
operation C← [A] + [B] can now be performed by the two-instruction sequence

Move C, B
Add C, A

Observe that by using this sequence of instructions the contents of neither A nor B locations
are overwritten.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 49 Page number 75 cyan black

2.10 CISC Instruction Sets 75

In some CISC processors one operand may be in the memory but the other must be in
a register. In this case, the instruction sequence for the required task would be

Move Ri, A
Add Ri, B
Move C, Ri

The general form of the Move instruction is

Move destination, source

where both the source and destination may be either a memory location or a processor
register. The Move instruction includes the functionality of the Load and Store instructions
we used previously in the discussion of RISC-style processors. In the Load instruction,
the source is a memory location and the destination is a processor register. In the Store
instruction, the source is a register and the destination is a memory location. While Load
and Store instructions are restricted to moving operands between memory and processor
registers, the Move instruction has a wider scope. It can be used to move immediate
operands and to transfer operands between two memory locations or between two registers.

2.10.1 Additional Addressing Modes

Most CISC processors have all of the five basic addressing modes—Immediate, Register,
Absolute, Indirect, and Index. Three additional addressing modes are often found in CISC
processors.

Autoincrement and Autodecrement Modes
There are two modes that are particularly convenient for accessing data items in suc-

cessive locations in the memory and for implementation of stacks.

Autoincrement mode—The effective address of the operand is the contents of a register
specified in the instruction. After accessing the operand, the contents of this register
are automatically incremented to point to the next operand in memory.

We denote the Autoincrement mode by putting the specified register in parentheses, to show
that the contents of the register are used as the effective address, followed by a plus sign to
indicate that these contents are to be incremented after the operand is accessed. Thus, the
Autoincrement mode is written as

(Ri)+
To access successive words in a byte-addressable memory with a 32-bit word length, the
increment amount must be 4. Computers that have the Autoincrement mode automatically
increment the contents of the register by a value that corresponds to the size of the accessed
operand. Thus, the increment is 1 for byte-sized operands, 2 for 16-bit operands, and 4 for
32-bit operands. Since the size of the operand is usually specified as part of the operation
code of an instruction, it is sufficient to indicate the Autoincrement mode as (Ri)+.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 50 Page number 76 cyan black

76 C H A P T E R 2 • Instruction Set Architecture

As a companion for theAutoincrement mode, another useful mode accesses the memory
locations in the reverse order:

Autodecrement mode—The contents of a register specified in the instruction are first au-
tomatically decremented and are then used as the effective address of the operand.

We denote the Autodecrement mode by putting the specified register in parentheses, pre-
ceded by a minus sign to indicate that the contents of the register are to be decremented
before being used as the effective address. Thus, we write

−(Ri)

In this mode, operands are accessed in descending address order.
The reader may wonder why the address is decremented before it is used in the Au-

todecrement mode, and incremented after it is used in the Autoincrement mode. The main
reason for this is to make it easy to use these modes together to implement a stack structure.
Instead of needing two instructions

Subtract SP, #4
Move (SP), NEWITEM

to push a new item on the stack, we can use just one instruction

Move −(SP), NEWITEM

Similarly, instead of needing two instructions

Move ITEM, (SP)
Add SP, #4

to pop an item from the stack, we can use just

Move ITEM, (SP)+
Relative Mode
We have defined the Index mode by using general-purpose processor registers. Some

computers have a version of this mode in which the program counter, PC, is used instead
of a general-purpose register. Then, X(PC) can be used to address a memory location that
is X bytes away from the location presently pointed to by the program counter. Since the
addressed location is identified relative to the program counter, which always identifies the
current execution point in a program, the name Relative mode is associated with this type
of addressing.

Relative mode—The effective address is determined by the Index mode using the program
counter in place of the general-purpose register Ri.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 51 Page number 77 cyan black

2.10 CISC Instruction Sets 77

2.10.2 Condition Codes

Operations performed by the processor typically generate results such as numbers that are
positive, negative, or zero. The processor can maintain the information about these results
for use by subsequent conditional branch instructions. This is accomplished by recording
the required information in individual bits, often called condition code flags. These flags are
usually grouped together in a special processor register called the condition code register
or status register. Individual condition code flags are set to 1 or cleared to 0, depending on
the outcome of the operation performed.

Four commonly used flags are

N (negative) Set to 1 if the result is negative; otherwise, cleared to 0
Z (zero) Set to 1 if the result is 0; otherwise, cleared to 0
V (overflow) Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0
C (carry) Set to 1 if a carry-out results from the operation; otherwise,

cleared to 0

The N and Z flags record whether the result of an arithmetic or logic operation is negative
or zero. In some computers, they may also be affected by the value of the operand of a
Move instruction. This makes it possible for a later conditional branch instruction to cause
a branch based on the sign and value of the operand that was moved. Some computers
also provide a special Test instruction that examines a value in a register or in the memory
without modifying it, and sets or clears the N and Z flags accordingly.

The V flag indicates whether overflow has taken place. As explained in Section 1.4,
overflow occurs when the result of an arithmetic operation is outside the range of values
that can be represented by the number of bits available for the operands. The processor sets
the V flag to allow the programmer to test whether overflow has occurred and branch to an
appropriate routine that deals with the problem. Instructions such as Branch_if_overflow
are usually provided for this purpose.

The C flag is set to 1 if a carry occurs from the most-significant bit position during
an arithmetic operation. This flag makes it possible to perform arithmetic operations on
operands that are longer than the word length of the processor. Such operations are used in
multiple-precision arithmetic, which is discussed in Chapter 9.

Consider the Branch instruction in Figure 2.6. If condition codes are used, then the
Subtract instruction would cause both N and Z flags to be cleared to 0 if the contents of
register R2 are still greater than 0. The desired branching could be specified simply as

Branch>0 LOOP

without indicating the register involved in the test. This instruction causes a branch if neither
N nor Z is 1, that is, if the result produced by the Subtract instruction is neither negative
nor equal to zero. Many conditional branch instructions are provided in the instruction set
of a computer to enable a variety of conditions to be tested. The conditions are defined as
logic expressions involving the condition code flags.

To illustrate the use of condition codes, consider again the program in Figure 2.8,
which adds a list of numbers using RISC-style instructions. Using a CISC-style instruction
set, this task can be implemented with fewer instructions, as shown in Figure 2.26. The

December 14, 2010 09:22 ham_338065_ch02 Sheet number 52 Page number 78 cyan black

78 C H A P T E R 2 • Instruction Set Architecture

Move R2, N Load the size of the list.
Clear R3 Initialize sum to 0.
Move R4, #NUM1 Load address of the first number.

LOOP: Add R3, (R4)+ Add the next number to sum.
Subtract R2, #1 Decrement the counter.
Branch>0 LOOP Loop back if not finished.
Move SUM, R3 Store the final sum.

Figure 2.26 A CISC version of the program of Figure 2.8.

Add instruction uses the pointer register (R4) to access successive numbers in the list and
add them to the sum in register R3. After accessing the source operand, the processor
automatically increments the pointer, because the Autoincrement addressing mode is used
to specify the source operand. The Subtract instruction sets the condition codes, which are
then used by the Branch instruction.

2.11 RISC and CISC Styles

RISC and CISC are two different styles of instruction sets. We introduced RISC first be-
cause it is simpler and easier to understand. Having looked at some basic features of both
styles, we should summarize their main characteristics.

RISC style is characterized by:

• Simple addressing modes
• All instructions fitting in a single word
• Fewer instructions in the instruction set, as a consequence of simple addressing modes
• Arithmetic and logic operations that can be performed only on operands in processor

registers
• Load/store architecture that does not allow direct transfers from one memory location

to another; such transfers must take place via a processor register
• Simple instructions that are conducive to fast execution by the processing unit using

techniques such as pipelining which is presented in Chapter 6
• Programs that tend to be larger in size, because more, but simpler instructions are

needed to perform complex tasks

CISC style is characterized by:

• More complex addressing modes
• More complex instructions, where an instruction may span multiple words

December 14, 2010 09:22 ham_338065_ch02 Sheet number 53 Page number 79 cyan black

2.12 Example Programs 79

• Many instructions that implement complex tasks
• Arithmetic and logic operations that can be performed on memory operands as well as

operands in processor registers
• Transfers from one memory location to another by using a single Move instruction
• Programs that tend to be smaller in size, because fewer, but more complex instructions

are needed to perform complex tasks

Before the 1970s, all computers were of CISC type. An important objective was to
simplify the development of software by making the hardware capable of performing fairly
complex tasks, that is, to move the complexity from the software level to the hardware
level. This is conducive to making programs simpler and shorter, which was important
when computer memory was smaller and more expensive to provide. Today, memory is
inexpensive and most computers have large amounts of it.

RISC-style designs emerged as an attempt to achieve very high performance by making
the hardware very simple, so that instructions can be executed very quickly in pipelined
fashion as will be discussed in Chapter 6. This results in moving complexity from the
hardware level to the software level. Sophisticated compilers were developed to optimize
the code consisting of simple instructions. The size of the code became less important as
memory capacities increased.

While the RISC and CISC styles seem to define two significantly different approaches,
today’s processors often exhibit what may seem to be a compromise between these ap-
proaches. For example, it is attractive to add some non-RISC instructions to a RISC
processor in order to reduce the number of instructions executed, as long as the execution
of these new instructions is fast. We will deal with the performance issues in detail in
Chapter 6 where we discuss the concept of pipelining.

2.12 Example Programs

In this section we present two examples that further illustrate the use of machine instructions.
The examples are representative of numeric and nonnumeric applications.

2.12.1 Vector Dot Product Program

The first example is a numerical application that is an extension of previous programs for
adding numbers. In calculations that involve vectors and matrices, it is often necessary to
compute the dot product of two vectors. Let A and B be two vectors of length n. Their dot
product is defined as

Dot Product =∑n−1
i=0 A(i) × B(i)

Figures 2.27 and 2.28 show RISC- and CISC-style programs for computing the dot product
and storing it in memory location DOTPROD. The first elements of each vector, A(0) and

December 14, 2010 09:22 ham_338065_ch02 Sheet number 54 Page number 80 cyan black

80 C H A P T E R 2 • Instruction Set Architecture

Move R2, #AVEC R2 points to vector A.
Move R3, #BVEC R3 points to vector B.
Load R4, N R4 serves as a counter.
Clear R5 R5 accumulates the dot product.

LOOP: Load R6, (R2) Get next element of vector A.
Load R7, (R3) Get next element of vector B.
Multiply R8, R6, R7 Compute the product of next pair.
Add R5, R5, R8 Add to previous sum.
Add R2, R2, #4 Increment pointer to vector A.
Add R3, R3, #4 Increment pointer to vector B.
Subtract R4, R4, #1 Decrement the counter.
Branch_if_[R4]>0 LOOP Loop again if not done.
Store R5, DOTPROD Store dot product in memory.

Figure 2.27 A RISC-style program for computing the dot product of two vectors.

Move R2, #AVEC R2 points to vector A.
Move R3, #BVEC R3 points to vector B.
Move R4, N R4 serves as a counter.
Clear R5 R5 accumulates the dot product.

LOOP: Move R6, (R2)+ Compute the product of
Multiply R6, (R3)+ next components.
Add R5, R6 Add to previous sum.
Subtract R4, #1 Decrement the counter.
Branch>0 LOOP Loop again if not done.
Move DOTPROD, R5 Store dot product in memory.

Figure 2.28 A CISC-style program for computing the dot product of two vectors.

B(0), are stored at memory locations AVEC and BVEC, with the remaining elements in the
following word locations.

The task of accumulating a sum of products occurs in many signal-processing appli-
cations. In this case, one of the vectors consists of the most recent n signal samples in a
continuing time sequence of inputs to a signal-processing unit. The other vector is a set of n
weights. The n signal samples are multiplied by the weights, and the sum of these products
constitutes an output signal sample.

Some computer instruction sets combine the operations of the Multiply and Add in-
structions used in the programs in Figures 2.27 and 2.28 into a single MultiplyAccumulate
instruction. This is done in the ARM processor presented in Appendix D.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 55 Page number 81 cyan black

2.12 Example Programs 81

2.12.2 String Search Program

As an example of a non-numerical application, let us consider the problem of string search.
Given two strings ofASCII-encoded characters, a long string T and a short string P, we want
to determine if the pattern P is contained in the target T . Since P may be found in T in several
places, we will simplify our task by being interested only in the first occurrence of P in T
when T is searched from left to right. Let T and P consist of n and m characters, respectively,
where n > m. The characters are stored in memory in consecutive byte locations. Assume
that the required data are located as follows:

• T is the address of T (0), which is the first character in string T .
• N is the address of a 32-bit word that contains the value n.
• P is the address of P(0), which is the first character in string P.
• M is the address of a 32-bit word that contains the value m.
• RESULT is the address of a word in which the result of the search is to be stored. If

the substring P is found in T , then the address of the corresponding location in T will
be stored in RESULT; otherwise, the value −1 will be stored.

String search is an important and well-researched problem. Many algorithms have been
developed. Since our main purpose is to illustrate the use of assembly-language instructions,
we will use the simplest algorithm which is known as the brute-force algorithm. It is given
in Figure 2.29.

In a RISC-style computer, the algorithm can be implemented as shown in Figure 2.30.
The comments explain the use of various processor registers. Note that in the case of a
failed search, the immediate value −1 will cause the contents of R8 to become equal to
0xFFFFFFFF, which represents −1 in 2’s complement.

Figure 2.31 shows how the algorithm may be implemented in a CISC-style computer.
Observe that the first instruction in LOOP2 loads a character from string T into register R8,
which is followed by an instruction that compares this character with a character in string
P. The reader may wonder why is it not possible to use a single instruction

CompareByte (R6)+, (R7)+
to achieve the same effect. While CISC-style instruction sets allow operations that involve
memory operands, they typically require that if one operand is in the memory, the other

for i 0 to n 	 m do
j 0
while j < m and P[j] = T [i + j] do

j j + 1
if j = m return i

return –1

Figure 2.29 A brute-force string search algorithm.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 56 Page number 82 cyan black

82 C H A P T E R 2 • Instruction Set Architecture

Move R2, #T R2 points to string T .
Move R3, #P R3 points to string P .
Load R4, N Get the value n.
Load R5, M Get the value m.
Subtract R4, R4, R5 Compute n 	 m.
Add R4, R2, R4 The address of T (n 	 m).
Add R5, R3, R5 The address of P(m).

LOOP1: Move R6, R2 Use R6 to scan through string T .
Move R7, R3 Use R7 to scan through string P .

LOOP2: LoadByte R8, (R6) Compare a pair of
LoadByte R9, (R7) characters in
Branch_if_[R8]=[R9] NOMATCH strings T and P .
Add R6, R6, #1 Point to next character in T .
Add R7, R7, #1 Point to next character in P .
Branch_if_[R5]>[R7] LOOP2 Loop again if not done.
Store R2, RESULT Store the address of T (i).
Branch DONE

NOMATCH: Add R2, R2, #1 Point to next character in T .
Branch_if_[R4]≥[R2] LOOP1 Loop again if not done.
Move R8, # –1 Write –1 to indicate that
Store R8, RESULT no match was found.

DONE: next instruction

Figure 2.30 A RISC-style program for string search.

operand must be in a processor register. A common exception is the Move instruction,
which may involve two memory operands. This provides a simple way of moving data
between different memory locations.

2.13 Encoding of Machine Instructions

In this chapter, we have introduced a variety of useful instructions and addressing modes.
We have used a generic form of assembly language to emphasize basic concepts without
relying on processor-specific acronyms or mnemonics. Assembly-language instructions
symbolically express the actions that must be performed by the processor circuitry. To be
executed in a processor, assembly-language instructions must be converted by the assembler
program, as described in Section 2.5, into machine instructions that are encoded in a compact
binary pattern.

Let us now examine how machine instructions may be formed. The Add instruction

Add Rdst, Rsrc1, Rsrc2

December 14, 2010 09:22 ham_338065_ch02 Sheet number 57 Page number 83 cyan black

2.13 Encoding of Machine Instructions 83

Move R2, #T R2 points to string T .
Move R3, #P R3 points to string P .
Move R4, N Get the value n.
Move R5, M Get the value m.
Subtract R4, R5 Compute n 	 m.
Add R4, R2 The address of T (n 	 m).
Add R5, R3 The address of P(m).

LOOP1: Move R6, R2 Use R6 to scan through string T .
Move R7, R3 Use R7 to scan through string P .

LOOP2: MoveByte R8, (R6)+ Compare a pair of
CompareByte R8, (R7)+ characters in
Branch
=0 NOMATCH strings T and P .
Compare R5, R7 Check if at P(m).
Branch>0 LOOP2 Loop again if not done.
Move RESULT, R2 Store the address of T (i).
Branch DONE

NOMATCH: Add R2, #1 Point to next character in T .
Compare R4, R2 Check if at T (n 	 m).
Branch≥0 LOOP1 Loop again if not done.
Move RESULT, # –1 No match was found.

DONE: next instruction

Figure 2.31 A CISC-style program for string search.

is representative of a class of three-operand instructions that use operands in processor
registers. Registers Rdst, Rsrc1, and Rsrc2 hold the destination and two source operands.
If a processor has 32 registers, then it is necessary to use five bits to specify each of the
three registers in such instructions. If each instruction is implemented in a 32-bit word,
the remaining 17 bits can be used to specify the OP code that indicates the operation to be
performed. A possible format is shown in Figure 2.32a.

Now consider instructions in which one operand is given using the Immediate address-
ing mode, such as

Add Rdst, Rsrc, #Value

Of the 32 bits available, ten bits are needed to specify the two registers. The remaining 22
bits must give the OP code and the value of the immediate operand. The most useful sizes
of immediate operands are 32, 16, and 8 bits. Since 32 bits are not available, a good choice
is to allocate 16 bits for the immediate operand. This leaves six bits for specifying the OP
code. A possible format is presented in Figure 2.32b. This format can also be used for Load
and Store instructions, where the Index addressing mode uses the 16-bit field to specify the
offset that is added to the contents of the index register.

The format in Figure 2.32b can also be used to encode the Branch instructions. Consider
the program in Figure 2.12. The Branch-greater-than instruction at memory address 128

December 14, 2010 09:22 ham_338065_ch02 Sheet number 58 Page number 84 cyan black

84 C H A P T E R 2 • Instruction Set Architecture

0562122262731

OP codeImmediate operandRdstRsrc

02122262731

OP codeRsrc2Rsrc1

(b) Immediate-operand format

(a) Register-operand format

1617

Rdst

05631

OP codeImmediate value

(c) Call format

Figure 2.32 Possible instruction formats.

could be written in a specific assembly language as

BGT R2, R0, LOOP

if the contents of register R0 are zero. The registers R2 and R0 can be specified in the
two register fields in Figure 2.32b. The six-bit OP code has to identify the BGT operation.
The 16-bit immediate field can be used to provide the information needed to determine the
branch target address, which is the location of the instruction with the label LOOP. The target
address generally comprises 32 bits. Since there is no space for 32 bits, the BGT instruction
makes use of the immediate field to give an offset from the location of this instruction in the
program to the required branch target. At the time the BGT instruction is being executed,
the program counter, PC, has been incremented to point to the next instruction, which is
the Store instruction at address 132. Therefore, the branch offset is 132− 112 = 20. Since
the processor computes the target address by adding the current contents of the PC and the
branch offset, the required offset in this example is negative, namely −20.

Finally, we should consider the Call instruction, which is used to call a subroutine. It
only needs to specify the OP code and an immediate value that is used to determine the
address of the first instruction in the subroutine. If six bits are used for the OP code, then
the remaining 26 bits can be used to denote the immediate value. This gives the format
shown in Figure 2.32c.

In this section, we introduced the basic concept of encoding the machine instructions.
Different commercial processors have instruction sets that vary in the details of implemen-
tation. Appendices B to E present the instruction sets of four processors that we have chosen
as examples.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 59 Page number 85 cyan black

2.15 Solved Problems 85

2.14 Concluding Remarks

This chapter introduced the representation and execution of instructions and programs at
the assembly and machine level as seen by the programmer. The discussion emphasized the
basic principles of addressing techniques and instruction sequencing. The programming
examples illustrated the basic types of operations implemented by the instruction set of any
modern computer. Commonly used addressing modes were introduced. The subroutine
concept and the instructions needed to implement it were discussed. In the discussion in
this chapter, we provided the contrast between two different approaches to the design of
machine instruction sets—the RISC and CISC approaches.

2.15 Solved Problems

This section presents some examples of the types of problems that a student may be asked
to solve, and shows how such problems can be solved.

Example 2.1Problem: Assume that there is a string of ASCII-encoded characters stored in memory
starting at address STRING. The string ends with the Carriage Return (CR) character.
Write a RISC-style program to determine the length of the string and store it in location
LENGTH.

Solution: Figure 2.33 presents a possible program. The characters in the string are com-
pared to CR (ASCII code 0x0D), and a counter is incremented until the end of the string is
reached.

Move R2, #STRING R2 points to the start of the string.
Clear R3 R3 is a counter that is cleared to 0.
Move R4, #0x0D ASCII code for Carriage Return.

LOOP: LoadByte R5, (R2) Get the next character.
Branch_if_[R5]=[R4] DONE Finished if character is CR.
Add R2, R2, #1 Increment the string pointer.
Add R3, R3, #1 Increment the counter.
Branch LOOP Not finished, loop back.

DONE: Store R3, LENGTH Store the count in location LENGTH.

Figure 2.33 Program for Example 2.1.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 60 Page number 86 cyan black

86 C H A P T E R 2 • Instruction Set Architecture

LIST EQU 1000 Starting address of the list.

ORIGIN 400
Move R2, #LIST R2 points to the start of the list.
Load R3, 4(R2) R3 is a counter, initialize it with n.
Add R4, R2, #8 R4 points to the first number.
Load R5, (R4) R5 holds the smallest number found so far.

LOOP: Subtract R3, R3, #1 Decrement the counter.
Branch_if_[R3]=0 DONE Finished if R3 is equal to 0.
Add R4, R4, #4 Increment the list pointer.
Load R6, (R4) Get the next number.
Branch_if_[R5]≤[R6] LOOP Check if smaller number found.
Move R5, R6 Update the smallest number found.
Branch LOOP

DONE: Store R5, (R2) Store the smallest number into SMALL.

ORIGIN 1000
SMALL: RESERVE 4 Space for the smallest number found.
N: DATAWORD 7 Number of entries in the list.
ENTRIES: DATAWORD 4,5,3,6,1,8,2 Entries in the list.

END

Figure 2.34 Program for Example 2.2.

Example 2.2 Problem: We want to find the smallest number in a list of 32-bit positive integers. The
word at address 1000 is to hold the value of the smallest number after it has been found.
The next word contains the number of entries, n, in the list. The following n words contain
the numbers in the list. The program is to start at address 400. Write a RISC-style program
to find the smallest number and include the assembler directives needed to organize the
program and data as specified. While the program has to be able to handle lists of different
lengths, include in your code a small list of sample data comprising seven integers.

Solution: The program in Figure 2.34 accomplishes the required task. Comments in the
program explain how this task is performed.

Example 2.3 Problem: Write a RISC-style program that converts an n-digit decimal integer into a binary
number. The decimal number is given as n ASCII-encoded characters, as would be the case
if the number is entered by typing it on a keyboard. Memory location N contains n, the
ASCII string starts at DECIMAL, and the converted number is stored at BINARY.

Solution: Consider a four-digit decimal number, D = d3d2d1d0. The value of this number
is ((d3 × 10+ d2)× 10+ d1)× 10+ d0. This representation of the number is the basis for
the conversion technique used in the program in Figure 2.35. Note that eachASCII-encoded

December 14, 2010 09:22 ham_338065_ch02 Sheet number 61 Page number 87 cyan black

2.15 Solved Problems 87

Load R2, N Initialize counter R2 with n.
Move R3, #DECIMAL R3 points to the ASCII digits.
Clear R4 R4 will hold the binary number.

LOOP: LoadByte R5, (R3) Get the next ASCII digit.
And R5, R5, #0x0F Form the BCD digit.
Add R4, R4, R5 Add to the intermediate result.
Add R3, R3, #1 Increment the digit pointer.
Subtract R2, R2, #1 Decrement the counter.
Branch_if_[R2]=0 DONE
Multiply R4, R4, #10 Multiply by 10.
Branch LOOP Loop back if not done.

DONE: Store R4, BINARY Store result in location BINARY.

Figure 2.35 Program for Example 2.3.

character is converted into a Binary Coded Decimal (BCD) digit before it is used in the com-
putation. It is assumed that the converted value can be represented in no more than 32 bits.

Example 2.4Problem: Consider an array of numbers A(i,j), where i = 0 through n− 1 is the row index,
and j = 0 through m− 1 is the column index. The array is stored in the memory of a
computer one row after another, with elements of each row occupying m successive word
locations. Assume that the memory is byte-addressable and that the word length is 32
bits. Write a RISC-style subroutine for adding column x to column y, element by element,
leaving the sum elements in column y. The indices x and y are passed to the subroutine in
registers R2 and R3. The parameters n and m are passed to the subroutine in registers R4
and R5, and the address of element A(0,0) is passed in register R6.

Solution: A possible program is given in Figure 2.36. We have assumed that the values x,
y, n, and m are stored in memory locations X, Y, N, and M. Also, the elements of the array
are stored in successive words that begin at location ARRAY, which is the address of the
element A(0,0). Comments in the program indicate the purpose of individual instructions.

Example 2.5Problem: We want to sort a list of characters stored in memory. The list consists of n
bytes, not necessarily distinct, and each byte contains the ASCII code for a character from
the set of letters A through Z. In the ASCII code, presented in Chapter 1, the letters A,
B, . . . , Z, are represented by 7-bit patterns that have increasing values when interpreted as
binary numbers. When an ASCII character is stored in a byte location, it is customary to
set the most-significant bit position to 0. Using this code, we can sort a list of characters
alphabetically by sorting their codes in increasing numerical order, considering them as
positive numbers.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 62 Page number 88 cyan black

88 C H A P T E R 2 • Instruction Set Architecture

Load R2, X Load the value x .
Load R3, Y Load the value y.
Load R4, N Load the value n.
Load R5, M Load the value m.
Move R6, #ARRAY Load the address of A(0,0).
Call SUB
next instruction
::

SUB: Subtract SP, SP, #4
Store R7, (SP) Save register R7.
LShiftL R5, R5, #2 Determine the distance in bytes

between successive elements
in a column.

Subtract R3, R3, R2 Form y 	 x .
LShiftL R3, R3, #2 Form 4(y 	 x).
LShiftL R2, R2, #2 Form 4x .
Add R6, R6, R2 R6 points to A(0,x).
Add R7, R6, R3 R7 points to A(0,y).

LOOP: Load R2, (R6) Get the next number in column x .
Load R3, (R7) Get the next number in column y.
Add R2, R2, R3 Add the numbers and
Store R2, (R7) store the sum.
Add R6, R6, R5 Increment pointer to column x .
Add R7, R7, R5 Increment pointer to column y.
Subtract R4, R4, #1 Decrement the row counter.
Branch_if_[R4]>0 LOOP Loop back if not done.
Load R7, (SP) Restore R7.
Add SP, SP, #4
Return Return to the calling program.

Figure 2.36 Program for Example 2.4.

Let the list be stored in memory locations LIST through LIST + n − 1, and let n be a
32-bit value stored at address N. The sorting is to be done in place, that is, the sorted list is
to occupy the same memory locations as the original list.

We can sort the list using a straight-selection sort algorithm. First, the largest number
is found and placed at the end of the list in location LIST+ n− 1. Then the largest number
in the remaining sublist of n− 1 numbers is placed at the end of the sublist in location LIST
+ n − 2. The procedure is repeated until the list is sorted. A C-language program for this
sorting algorithm is shown in Figure 2.37, where the list is treated as a one-dimensional
array LIST(0) through LIST(n− 1). For each sublist LIST(j) through LIST(0), the number
in LIST(j) is compared with each of the other numbers in the sublist. Whenever a larger
number is found in the sublist, it is interchanged with the number in LIST(j).

December 14, 2010 09:22 ham_338065_ch02 Sheet number 63 Page number 89 cyan black

2.15 Solved Problems 89

for (j = n−1; j > 0; j = j 	 1)
{ for (k = j−1; k >= 0; k = k 	 1)
{ if (LIST[k] > LIST[j])

{ TEMP = LIST[k];
LIST[k]= LIST[j];
LIST[j]= TEMP;

}
}

}

Figure 2.37 C-language program for sorting.

Move R2, #LIST Load LIST into base register R2.
Move R3, N Initialize outer loop index
Subtract R3, #1 register R3 to j = n 	 1.

OUTER: Move R4, R3 Initialize inner loop index
Subtract R4, #1 register R4 to k = j 	 1.
MoveByte R5, (R2,R3) Load LIST(j) into R5, which holds

current maximum in sublist.
INNER: CompareByte (R2,R4), R5 If LIST(k) ≤ [R5],

Branch ≤ 0 NEXT do not exchange.
MoveByte R6, (R2,R4) Otherwise, exchange LIST(k)
MoveByte (R2,R4), R5 with LIST(j) and load
MoveByte (R2,R3), R6 new maximum into R5.
MoveByte R5, R6 Register R6 serves as TEMP.

NEXT: Decrement R4 Decrement index registers R4 and
Branch ≥ 0 INNER R3, which also serve as
Decrement R3 loop counters, and branch
Branch >0 OUTER back if loops not finished.

Figure 2.38 A byte-sorting program.

Note that the C-language program traverses the list backwards. This order of traversal
simplifies loop termination when a machine language program is written, because the loop
is exited when an index is decremented to 0.

Write a CISC-style program that implements this sorting task.

Solution: A possible program is given in Figure 2.38.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 64 Page number 90 cyan black

90 C H A P T E R 2 • Instruction Set Architecture

Problems

2.1 [E] Given a binary pattern in some memory location, is it possible to tell whether this
pattern represents a machine instruction or a number?

2.2 [E] Consider a computer that has a byte-addressable memory organized in 32-bit words ac-
cording to the big-endian scheme. A program reads ASCII characters entered at a keyboard
and stores them in successive byte locations, starting at location 1000. Show the contents
of the two memory words at locations 1000 and 1004 after the word “Computer” has been
entered.

2.3 [E] Repeat Problem 2.2 for the little-endian scheme.

2.4 [E] Registers R4 and R5 contain the decimal numbers 2000 and 3000 before each of the
following addressing modes is used to access a memory operand. What is the effective
address (EA) in each case?

(a) 12(R4)

(b) (R4,R5)

(c) 28(R4,R5)

(d) (R4)+
(e) −(R4)

2.5 [E] Write a RISC-style program that computes the expression SUM = 580+ 68400+
80000.

2.6 [E] Write a CISC-style program for the task in Problem 2.5.

2.7 [E] Write a RISC-style program that computes the expression ANSWER = A × B +
C × D.

2.8 [E] Write a CISC-style program for the task in Problem 2.7.

2.9 [M] Rewrite the addition loop in Figure 2.8 so that the numbers in the list are accessed in
the reverse order; that is, the first number accessed is the last one in the list, and the last
number accessed is at memory location NUM1. Try to achieve the most efficient way to
determine loop termination. Would your loop execute faster than the loop in Figure 2.8?

2.10 [M] The list of student marks shown in Figure 2.10 is changed to contain j test scores for
each student. Assume that there are n students. Write a RISC-style program for computing
the sums of the scores on each test and store these sums in the memory word locations at
addresses SUM, SUM + 4, SUM + 8, The number of tests, j, is larger than the number
of registers in the processor, so the type of program shown in Figure 2.11 for the 3-test case
cannot be used. Use two nested loops. The inner loop should accumulate the sum for a
particular test, and the outer loop should run over the number of tests, j. Assume that the
memory area used to store the sums has been cleared to zero initially.

2.11 [M] Write a RISC-style program that finds the number of negative integers in a list of n 32-bit
integers and stores the count in location NEGNUM. The value n is stored in memory location
N, and the first integer in the list is stored in location NUMBERS. Include the necessary
assembler directives and a sample list that contains six numbers, some of which are negative.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 65 Page number 91 cyan black

Problems 91

2.12 [E] Both of the following statement segments cause the value 300 to be stored in location
1000, but at different times.

ORIGIN 1000
DATAWORD 300

and

Move R2, #1000
Move R3, #300
Store R3, (R2)

Explain the difference.

2.13 [E] Write an assembly-language program in the style of Figure 2.13 for the program in
Figure 2.11. Assume the data layout of Figure 2.10.

2.14 [E] Write a CISC-style program for the task in Example 2.1. At most one operand of an
instruction can be in the memory.

2.15 [E] Write a CISC-style program for the task in Example 2.2. At most one operand of an
instruction can be in the memory.

2.16 [M] Write a CISC-style program for the task in Example 2.3. At most one operand of an
instruction can be in the memory.

2.17 [M] Write a CISC-style program for the task in Example 2.4. At most one operand of an
instruction can be in the memory.

2.18 [M] Write a RISC-style program for the task in Example 2.5.

2.19 [E] Register R5 is used in a program to point to the top of a stack containing 32-bit num-
bers. Write a sequence of instructions using the Index, Autoincrement, and Autodecrement
addressing modes to perform each of the following tasks:

(a) Pop the top two items off the stack, add them, then push the result onto the stack.

(b) Copy the fifth item from the top into register R3.

(c) Remove the top ten items from the stack.

For each case, assume that the stack contains ten or more elements.

2.20 [M] Show the processor stack contents and the contents of the stack pointer, SP, immediately
after each of the following instructions in the program in Figure 2.18 is executed. Assume
that [SP] = 1000 at Level 1, before execution of the calling program begins.

(a) The second Store instruction in the subroutine

(b) The last Load instruction in the subroutine

(c) The last Store instruction in the calling program

2.21 [M] Consider the following possibilities for saving the return address of a subroutine:

(a) In a processor register

(b) In a memory location associated with the call, so that a different location is used when
the subroutine is called from different places

(c) On a stack

December 14, 2010 09:22 ham_338065_ch02 Sheet number 66 Page number 92 cyan black

92 C H A P T E R 2 • Instruction Set Architecture

Which of these possibilities supports subroutine nesting and which supports subroutine
recursion (that is, a subroutine that calls itself)?

2.22 [M] In addition to the processor stack, it may be convenient to use another stack in some
programs. The second stack is usually allocated a fixed amount of space in the memory.
In this case, it is important to avoid pushing an item onto the stack when the stack has
reached its maximum size. Also, it is important to avoid attempting to pop an item off an
empty stack, which could result from a programming error. Write two short RISC-style
routines, called SAFEPUSH and SAFEPOP, for pushing onto and popping off this stack
structure, while guarding against these two possible errors. Assume that the element to be
pushed/popped is located in register R2, and that register R5 serves as the stack pointer for
this user stack. The stack is full if its topmost element is stored in location TOP, and it is
empty if the last element popped was stored in location BOTTOM. The routines should
branch to FULLERROR and EMPTYERROR, respectively, if errors occur. All elements
are of word size, and the stack grows toward lower-numbered address locations.

2.23 [M] Repeat Problem 2.22 for CISC-style routines that can use Autoincrement and Au-
todecrement addressing modes.

2.24 [D] Another useful data structure that is similar to the stack is called a queue. Data are
stored in and retrieved from a queue on a first-in–first-out (FIFO) basis. Thus, if we assume
that the queue grows in the direction of increasing addresses in the memory, which is a
common practice, new data are added at the back (high-address end) and retrieved from the
front (low-address end) of the queue.

There are two important differences between how a stack and a queue are implemented.
One end of the stack is fixed (the bottom), while the other end rises and falls as data are
pushed and popped. A single pointer is needed to point to the top of the stack at any given
time. On the other hand, both ends of a queue move to higher addresses as data are added
at the back and removed from the front. So two pointers are needed to keep track of the
two ends of the queue.

A FIFO queue of bytes is to be implemented in the memory, occupying a fixed region of k
bytes. The necessary pointers are an IN pointer and an OUT pointer. The IN pointer keeps
track of the location where the next byte is to be appended to the back of the queue, and the
OUT pointer keeps track of the location containing the next byte to be removed from the
front of the queue.

(a) As data items are added to the queue, they are added at successively higher addresses
until the end of the memory region is reached. What happens next, when a new item is to
be added to the queue?

(b) Choose a suitable definition for the IN and OUT pointers, indicating what they point to
in the data structure. Use a simple diagram to illustrate your answer.

(c) Show that if the state of the queue is described only by the two pointers, the situations
when the queue is completely full and completely empty are indistinguishable.

(d) What condition would you add to solve the problem in part (c)?

(e) Propose a procedure for manipulating the two pointers IN and OUT to append and
remove items from the queue.

December 14, 2010 09:22 ham_338065_ch02 Sheet number 67 Page number 93 cyan black

Problems 93

2.25 [M] Consider the queue structure described in Problem 2.24. Write APPEND and RE-
MOVE routines that transfer data between a processor register and the queue. Be careful to
inspect and update the state of the queue and the pointers each time an operation is attempted
and performed.

2.26 [M] The dot-product computation is discussed in Section 2.12.1. This type of computa-
tion can be used in the following signal-processing task. An input signal time sequence
IN(0), IN(1), IN(2), IN(3), . . . , is processed by a 3-element weight vector (WT(0), WT(1),
WT(2)) = (1/8, 1/4, 1/2) to produce an output signal time sequence OUT(0), OUT(1),
OUT(2), OUT(3), . . . , as follows:

OUT(0) = WT(0) × IN(0) + WT(1) × IN(1) + WT(2) × IN(2)
OUT(1) = WT(0) × IN(1) + WT(1) × IN(2) + WT(2) × IN(3)
OUT(2) = WT(0) × IN(2) + WT(1) × IN(3) + WT(2) × IN(4)
OUT(3) = WT(0) × IN(3) + WT(1) × IN(4) + WT(2) × IN(5)

...

All signal and weight values are 32-bit signed numbers. The weights, inputs, and outputs,
are stored in the memory starting at locations WT, IN, and OUT, respectively. Write a
RISC-style program to calculate and store the output values for the first n outputs, where n
is stored at location N.

Hint: Arithmetic right shifts can be used to do the multiplications.

2.27 [M] Write a subroutine MEMCPY for copying a sequence of bytes from one area in the
main memory to another area. The subroutine should accept three input parameters in
registers representing the from address, the to address, and the length of the sequence to
be copied. The two areas may overlap. In all but one case, the subroutine should copy the
bytes in the order of increasing addresses. However, in the case where the to address falls
within the sequence of bytes to be copied, i.e., when the to address is between from and
from+length−1, the subroutine must copy the bytes in the order of decreasing addresses
by starting at the end of the sequence of bytes to be copied in order to avoid overwriting
bytes that have not yet been copied.

2.28 [M] Write a subroutine MEMCMP for performing a byte-by-byte comparison of two
sequences of bytes in the main memory. The subroutine should accept three input parameters
in registers representing the first address, the second address, and the length of the sequences
to be compared. It should use a register to return the count of the number of comparisons
that do not match.

2.29 [M] Write a subroutine called EXCLAIM that accepts a single parameter in a register rep-
resenting the starting address STRNG in the main memory for a string of ASCII characters
in successive bytes representing an arbitrary collection of sentences, with the NUL control
character (value 0) at the end of the string. The subroutine should scan the string beginning
at address STRNG and replace every occurrence of a period (‘.’) with an exclamation mark
(‘!’).

December 14, 2010 09:22 ham_338065_ch02 Sheet number 68 Page number 94 cyan black

94 C H A P T E R 2 • Instruction Set Architecture

2.30 [M] Write a subroutine called ALLCAPS that accepts a parameter in a register represent-
ing the starting address STRNG in the main memory for a string of ASCII characters in
successive bytes, with the NUL control character (value 0) at the end of the string. The sub-
routine should scan the string beginning at address STRNG and replace every occurrence
of a lower-case letter (‘a’−‘z’) with the corresponding upper-case letter (‘A’−‘Z’).

2.31 [M] Write a subroutine called WORDS that accepts a parameter in a register representing the
starting address STRNG in the main memory for a string of ASCII characters in successive
bytes, with the NUL control character (value 0) at the end of the string. The string represents
English text with the space character between words. The subroutine has to determine the
number of words in the string (excluding the punctation characters). It must return the
result to the calling program in a register.

2.32 [D] Write a subroutine called INSERT that places a number in the correct ordered posi-
tion within a list of positive numbers that are stored in increasing order of value. Three
input parameters should be passed to the subroutine in processor registers, representing the
starting address of the ordered list of numbers, the length of the list, and the new value to
be inserted into the list. The subroutine should locate the appropriate position for the new
value in the list, then shift all of the larger numbers up by one position to create space for
storing the new value in the list.

2.33 [D] Write a subroutine called INSERTSORT that repeatedly uses the INSERT subroutine
in Problem 2.32 to take an unordered list of numbers and create a new list with the same
numbers in increasing order. The subroutine should accept three input parameters in regis-
ters representing the starting address OLDLIST for the unordered sequence of numbers, the
length of the list, and the starting address NEWLIST for the ordered sequence of numbers.

