Pointers

* A pointer variable stores the address of a memory location that
stores the type to which it points (“aleve of indirection”)

int *ptr; [/ stores the address of an int,
[/ ptr “points to” an int

char *cptr; // stores the address of a char,
[/ cptr “points to” a char

e Cpt r 'stypeisapointer to achar

It can point to amemory location that stores achar value
through cpt r we can indirectly access a char value

cptr

> ‘Z’
e pt r 'stypeisajpointer to anint
It can point to amemory location that stores an int value

ptr > 123

CS21, TiaNewhall

Initializing Pointer Variables

 Getting a pointer variable to “point to” a storage location
(like any variable, must initialize a pointer before you can use it)
» Assign the pointer variable the value of a memory address that
can store the type to which it points

1. NULL isaspecid init value for pointers, it's not avalid address
char *cptr = NULL; cotr

NULL —]

2. Unary operator & evaluates to the address of its varitabl e argument
ptr

Int x = 33;

int *ptr = NULL, *ptr2 = NULL: addr of x ~r

ptr = &x; /] ptr gets addr of x ptr2 '///'33
[l ptr “points to” X addr of x

ptr2 = ptr; // ptr2 gets value of ptr
/[l ptr and ptr2 point to the sane | ocation

char *cptr = &x; // ERROR! cptr can hold a char address only

CS21, TiaNewhall

Using Pointers

* Once apointer isinitialized to a point to avalid storage location,
you can access the value to which it points using the * operator

* . dereference a pointer variable
(access the storage location to which it points)

ptr = &; [/ ptr gets the address of x “ptr points to x”
*ptr = 10; // store 10 in location that ptr points to
ptr X cptr
addr of x +—1 10 NULL +—]
cptr = NULL;
*cptr = *'b’; [/ CRASH !! cptr doesn’'t point to a valid char

/| storage location, trying to dereference cptr
/[l (a NULL pointer) wll crash the program

| f(cptr '= NULL) { // A better way is to test for NULL first.
*cptr = *'b’; /] Setting pointer to NULL, |lets you test
} [/ for invalid addr. before dereference.

CS21, TiaNewhall

Passing Arrays

When passing an array to afunction, its base address is passed
(the function’s parameter “pointsto” its array argument)

mai n() {
int array[10]; foo:
foo(array, 10);
H_I

Stack

arr

addr of array

n

10

pass base address of array

void foo(int arr[],int n){
arr[2] = 6;

* Assigning avalueto abucket of arr inf oo, modifiesthe
corresponding bucket value of ar r ay
arr[2] isarr+2is2i nt addresses beyond the the address of

main:

array

ar r ay (it isthe address of the 2" bucket of ar r ay)

CS21, TiaNewhall

Pass by Reference to Modify an Argument

mai n() {
Int X, V;
x = 10; y = 20;
foo(&, VY);
} pass the address of x
(X I1s passed by reference)

void foo(int *b, int c){
*b = 8§;
blah(b, c¢);
] Y
the value of b (X’ s address)
(b Is passed by value)

voi d bl ah(int\‘*p, int q){
q = 6;

/\

D

Stack
blah: P| addr of X =
gl 20 6
foo: D| addr of x ——
C| 20

main:

x| 1084

y |20

)

} f 00 and bl ah can modify the value stored in x

CS21, TiaNewhall

Dynamic Memory Allocation

» Can dynamically allocate memory space
as your program needsit (mal | oc) Heap

» Space is alocated in Heap memory 01 s .
» Assign heap space address returned by c
mal | oc to apointer variable </>
* Must free heap space when you are N —

doneusingit (f r ee)

main() {
Int *arr = NULL; Stack

/] allocate heap space for

[/ array of 10 ints:

arr = mal | oc(sizeof (int)*10); arr

| f(arr !'= NULL) {
arr|[2] =5;

addr in heapt——

}

/[l free heap space when done
free(arr);

CS21, TiaNewhall

mai n() { Heap

Int *arl, size=10; 012 9
arl = foo(size); 6 5
"
i f(arl !'= NULL) {
ar 1[1] =6; —
i the value returned fromfoo 100 |y Mo i heank—
i IS addr. of heap space foo malloc’ ed
Int *foo(int size){ Siz€10
I nt *tnp; main
/] allocate heap space.: ' :
t np=nal | oc(si zeof (i nt)*si ze); arL| addrin heapt—
If(tnmp !'= NULL) { .
t mp[2] =5; Siz€| 10
}
/[l return mall oc’ ed heap address Stack
return tnp;

CS21, TiaNewhall

