
PARALLELIZING NEURAL NETWORK TRAINING FOR CLUSTER
SYSTEMS

George Dahl
Computer Science Department

Swarthmore College
Swarthmore, PA 19081

email: gdahl@cs.swarthmore.edu

Alan McAvinney
Computer Science Department

Swarthmore College
Swarthmore, PA 19081

Tia Newhall
Computer Science Department

Swarthmore College
Swarthmore, PA 19081

email: newhall@cs.swarthmore.edu

ABSTRACT
We present a technique for parallelizing the training of neu-
ral networks. Our technique is designed for paralleliza-
tion on a cluster of workstations. To take advantage of
parallelization on clusters, a solution must account for the
higher network latencies and lower bandwidths of clusters
as compared to custom parallel architectures. Paralleliza-
tion approaches that may work well on special purpose par-
allel hardware, such as distributing the neurons of the neu-
ral network across processors, are not likely to work well
on cluster systems because communication costs to process
a single training pattern are too prohibitive. Our solution,
Pattern Parallel Training, duplicates the full neural network
at each cluster node. Each cooperating process in the clus-
ter trains the neural network on a subset of the training set
each epoch. We demonstrate the effectiveness of our ap-
proach by implementing and testing an MPI version of Pat-
tern Parallel Training for the eight bit parity problem. Our
results show a significant speed-up in training time as com-
pared to sequential training. In addition, we analyze the
communication costs of our technique and discuss which
types of common neural network problems would benefit
most from our approach.

KEY WORDS
Parallel Neural Network Training, Cluster

1 Introduction

Artificial neural networks (ANNs) are tools for non-linear
statistical data modeling. They can be used to solve a wide
variety of problems while being robust to error in training
data. ANNs have been successfully applied to hosts of pat-
tern recognition and classification tasks, time series predic-
tion, data mining, function approximation, data clustering
and filtering, and data compression.

ANNs are trained on a collection of{input, desired
output} pairs called training patterns. The set of training
patterns is typically quite large. Backpropagation [7] is one
of the most widely used training algorithms for ANNs. It
can take a very long time to train an ANN using backprop-
agation, even on a moderately sized training set. Our work
addresses the long training times of sequential ANN train-
ing by parallelizing the training in a way that is optimized

for cluster computing.
Parallelization of the training task is a natural re-

sponse to the issue of long training times. One way to par-
allelize neural network training is to use a technique called
Network Parallel Training (NPT). In this approach the neu-
rons of the ANN are divided across machines in the cluster,
so that each machine holds a portion of the neural network.
Each training pattern is processed by the cluster machines
in parallel. To process a single training pattern, commu-
nication is required between any cluster nodes containing
neurons that are connected by an edge (see Figure 1).

Network Parallel Training attacks the training time
problem by improving the time to process a single train-
ing pattern. It has the potential to work well when imple-
mented on special-purpose parallel hardware, however, it
is much less likely to work well on a cluster of worksta-
tions connected by a LAN. In order to benefit from being
split up across multiple machines, the neural network must
be large enough to prevent the cost of communication be-
tween neurons on different cluster nodes from overwhelm-
ing the potential speedup from parallelizing the computa-
tion. The network latency and bandwidth on most cluster
systems will significantly limit the degree of parallelism
possible for training even large sized ANNs. When the
original ANN is of small or medium size, there is even less
benefit from an NPT approach as there will be little local
computation between communication points.

Our approach, called Pattern Parallel Training (PPT)
is more appropriate for cluster systems. In PPT the full
ANN is duplicated at every cluster node and each node lo-
cally processes a randomly selected subset of patterns from
the full training set. After a round of local processing of a
subset of training patterns, a node exchanges its weight up-
dates with other nodes. Each node then applies the weight
updates to its copy of the ANN and determines if training
is complete or if another round of local training is neces-
sary (see Figure 2). By having each node apply the weight
updates from every other node, we ensure that all copies of
the ANN are identical. PPT uses parallelism to speed-up
the processing of the entire set of training data by having
each cluster node locally process a fraction of the the full
set of training patterns. By having each node deal only
with a subset of the training set each round, Pattern Par-
allel Training results in a decrease in the time to process



. . . 

. . . 

. . . 

node 1 node 2 node n

Training Pattern

Figure 1. Network Parallel Training.The neurons of the Ar-
tificial Neural Network are distributed across cluster nodes. The
nodes work in parallel to process each pattern of the training set.
Inter-node communication is required for all edges that span two
cluster nodes.

. . . 

. . . 

. . . 

training patterns

. . . 

. . . 

. . . 

training patterns

. . . 

node nnode 1

Figure 2. Pattern Parallel Training.The ANN is fully dupli-
cated at each node, and each node in parallel locally processes
a subset of the patterns from the full training set. At the endof
each local round of processing, each node broadcasts its weight
updates to other nodes.

the entire training set while incurring no communication
costs within a round of training (unlike NPT that requires
communication on each pattern). On cluster systems, PPT
reduces the amount of communication necessary to process
the set of training patterns, and as a result will allow for a
higher degree of parallelism than NPT.

Pattern Parallel Training on a cluster of workstations
can be an effective solution to all the causes of long train-
ing times in sequential ANN training; PPT should pro-
vide speedups when the neural network is very large, when
the training set is very large, and when a large number of
epochs (passes through the entire training set) are required
to complete training. In addition, PPT will work well even
when the number of neurons in the ANN is small (one case
in which NPT does not work well).

The remainder of the paper is organized as follows.
In Section 2 we present related work in parallelizing neu-
ral network training. In Section 3 we briefly present back-
ground information on sequential neural network training.

In Section 4 we present the details of our solution and we
present an implementation of our solution. In Section 5 we
present results of applying our PPT approach to the eight
bit parity problem. Finally, in Section 6 we present future
directions for our work.

2 Related Work

Most of the previous work in parallelizing neural network
training has focused on creating special purpose neural net-
work hardware [2, 4] and using an approach similar to what
we call Network Parallel Training where the neurons of the
ANN are parallelized. The obvious problem with special-
purpose hardware is that it is very expensive to acquire and
time consuming to build.

There is some work on parallelizing ANN training on
cluster systems. Omer et. al. [6] uses genetic algorithms
to parallelize ANN training on a cluster of workstations.
They use a hybrid approach that combines genetic algo-
rithms and backpropagation. They create a diverse popu-
lation of ANNs that are distributed across the nodes. Each
node, in parallel, performs an independent full sequential
training of its ANN. At the end of a parallel training round,
a single master node collects results and chooses good can-
didates for generating a new population of ANNs to inde-
pendently train in the next round. They use parallelism to
sequentially train multiple, different ANNs in parallel and
choose the best result. We use parallelization to speed up
training of a single ANN.

The work most similar to ours, Suri et. al. [8], uses
parallel ANN training to learn a pattern classification prob-
lem. They use a parallelization technique similar to our
Pattern Parallel Training. However, our system differs in
several ways. First, they use a central coordinator to which
worker nodes send weight updates and receive new weight
values. Our system is completely decentralized, thus re-
ducing the potential bottleneck of a centralized approach.
Second, they deterministically partition patterns from the
training set across nodes. Our approach uses a random
sampling on each node of the full training set each round
of local training. By randomly selecting from the full train-
ing set, our solution will not suffer from anomalies that
can occur when less than the full set of training data is
processed each round. Finally, they parallelize the learn-
ing task by taking advantage of the parallel structure of the
Levenberg-Marquardt training algorithm. In our work, we
use the backpropagation training algorithm, which results
in a different approach to parallelizing ANN training.

3 Sequential Training of Artificial Neural
Networks

An Artificial Neural Network is a computer model for
learning that is inspired by the brain. An ANN consists
of a set of neurons, each neuron has a number of weighted
input edges and a number of weighted output edges. A neu-



ron computes its “activation” based on an activation func-
tion (generally the logistic sigmoid) applied to the weighted
sum of its inputs. Its activation value is then sent along the
outgoing edges where it serves as input to other neurons.

Backpropagation is the most widely used model for
ANNs. Generally, backpropagation is applied to simple
feed-forward networks which are composed of layers of
neurons. The neurons in one layer are fully connected to
the neurons in the layers before and after it. Typically,
there are three or more layers: an input layer of neurons
that take a training pattern as its input; multiple hidden lay-
ers in the middle; and an output layer that computes the re-
sult of the ANN. The ANN learns by adjusting its weights
after processing training patterns. An epoch is a single pre-
sentation of the entire set of training patterns ({input, out-
put} pairs). Throughout an epoch, error values on each
pattern are summed to obtain the error on the training set.
At the end of each epoch, this error value is used to com-
pute the changes to the weights and to determine if another
round of training is necessary. Typically, the ANN takes
many epochs before it has learned the problem to within
an exceptable error. Sometimes learning is not successful
due to a particular random initialization of the connection
weights. In these cases learning is stopped after some max
number of epochs, and new random weights are computed
for another try.

There are a variety of factors that work together to
cause very long training times for backpropagation. The
primary cause is due to the large number of tunable param-
eters (the connection weights), which can be in the hun-
dreds or thousands. Backpropagation performs a gradient
descent on the error surface generated by evaluating the
mean squared error of the neural network on the training
set. Gradient descent can be fooled by local minima of the
error surface and can take a very large number of epochs to
converge to an acceptable minimum. It is not uncommon
for more difficult problems to take hundreds of thousands
or even millions of epochs. Additionally, training can take
a long time due to a large training set size. Also, just pro-
cessing a single training pattern can take a long time on
large ANNs.

4 Pattern Parallel Training

Pattern Parallel Training is a technique for parallelizing
the training of artificial neural networks that is designed
to work well on cluster computers. In PPT the full ANN
and the full set of training data is duplicated at each node.
Each node then trains its local copy of the ANN on a ran-
domly selected subset of the training data. When the local
computation is complete, nodes broadcast their final weight
updates to other nodes. In our system, an epoch consists of
the local computation of the weight updates on a subset
of the patterns and the broadcast of these weight updates.
At the end of each epoch, every node applies the weight
updates from the other nodes to its ANN and determines
if the training is complete or if another training epoch is

needed based on the error condition. The speed-up in train-
ing is achieved by shortening the time of performing a sin-
gle epoch; in parallel each node evaluates just a subset of
the full training data each epoch. By communicating only
at the end of each epoch, the communication costs of Pat-
tern Parallel Training are minimized.

4.1 Neural Network Issues

In designing our solution, we needed to address several is-
sues related to parallelizing the ANN. These include calcu-
lating weight updates and error when the the training is dis-
tributed, determining the stopping condition, ensuring that
the duplicated ANNs are identical, and determining how
many training patterns should be presented each epoch.

In a training epoch in backpropagation, the gradient
of the error on the training data with respect to the con-
nection weights is used to compute the new weights. The
weight updates are defined as the difference between the
new weights and the old weights. For each pattern in a
batch of data, the incremental weight updates for that pat-
tern are added to a running total of weight updates. The
total weight updates are applied only once at the end of the
epoch. This means that when the batch is split across mul-
tiple processes, the weight updates from each process can
be summed to produce a single final set of weight updates.

In our system, the neural network being trained is
replicated across processes, so each process must commu-
nicate with every other process once every epoch to ensure
that all processes get the same final set of weight updates.

The stopping condition for training is triggered by ei-
ther the max number of epochs being reached (an unsuc-
cessful training attempt), or by the error being below some
threshold. When an ANN is trained serially, keeping track
of error on the training set is trivial because the mean train-
ing set error must be computed to find the correct weight
updates anyway.

Estimating error in Pattern Parallel Training is more
complicated than in sequential training because each pro-
cess is working with a randomly selected subset of the
training set. All processes must agree to stop at the same
time, and the union of the subsets that each process works
with in one epoch does not necessarily equal the full train-
ing set.

Our solution is to have each process maintains an av-
erage mean squared error over the lastkn/p training pat-
terns that it has processed where n is the training set size, k
is a small arbitrary constant (between 1 and 10, for exam-
ple), and p is the number of processes. The purpose of k is
to make sure the error history is large enough to have a high
probability of including almost all of the training set. Each
process piggybacks its mean squared error estimate onto
the broadcast of its weight updates. The error estimates
from all the processes are averaged to create an estimate of
the error on the training set. When the global error esti-
mate gets below the stopping threshold, each process tests
the neural network on a test set of patterns to verify that the



stopping condition has been met.
Another issue that we need to address has to do with

when weight updates should be performed. In serial neural
network training, on some problems networks learn faster
when weights are updated after each training pattern (in-
cremental training), and others learn faster when weights
are updated after the entire training set has been presented
(batch training). It has been argued in [1] that suitably
designed on-line (incremental) learning algorithms will
asymptotically outperform batch learning as the amount of
training data grows without bound. However, there exist
many learning tasks for which batch learning is superior.

To take advantage of parallelism, our approach re-
quires that the number of pattern each node processes per
epoch be some fraction of the total training set size. If
the number of patterns is close to 1, we approximate in-
cremental learning, but at the expense of more communi-
cation overhead because the weight updates are communi-
cated more frequently. If the number of patterns is close
to the full size of the training set, then the time to process
a single epoch approaches the per epoch processing time
of serial batch training. By tuning the number of the train-
ing patterns to the particular problem, our approach has the
potential to work well for problems that perform well with
incremental training and problems that perform well with
batch training.

Another issue is how a node chooses a subset of train-
ing patterns from the training set each epoch. In serial
batch learning, sequentially sampling the data from the
training set is slightly more effective than randomly sam-
pling because it ensures that each training pattern will be
seen the same number of times. However, in incremental
serial training it is essential to sample the data randomly
to avoid learning an artifact caused by the ordering of the
data. Because our approach is somewhere between these
two extremes, we choose random sampling of the full test
set to avoid problems with learning artifacts that could be
caused by either a static partitioning of the training set
across nodes or by having each node process patterns in
some pre-defined order.

Finally, we wanted to have support for adding a mo-
mentum term to the weight updates. Adding a momen-
tum term to the weight update formula is a common way
of improving the performance of backpropagation. In se-
rial training with momentum, weights are changed in the
normal way except that the weight changes from the pre-
vious time step multiplied by some decay factor (the mo-
mentum) are added to the weight changes computed for the
current time step. In Pattern Parallel Training because all
processes apply all the weight changes at once, each node
simply stores the previous weight changes to apply the mo-
mentum factor (just as it would be done in serial training).

4.2 Parallelization Issues

In applying Pattern Parallel Training to an ANN, we must
consider how to partition the problem in such a way that we

balance the use of network and CPU resources to achieve
maximum speedup. In our system the amount of data that
each node needs to communicate at the end of each epoch
is fixed for a given problem (it is its set of weight updates
and error values for the ANN), but the length of each epoch
and the total number of epochs necessary to learn can vary.
Based on the particular problem and the on the particu-
lar cluster system, optimal epoch size and degree of par-
allelism will vary.

Generally, increasing the number of patterns trained
each epoch decreases the time per pattern presentation
because less time spent on communication between pro-
cesses. However, increasing the the number of patterns
trained each epoch can increase the number of epochs re-
quired for the network to learn the problem successfully
and at the extreme approaches serial training. The exact
relationship between the time per training pattern presen-
tation and the number of patterns trained each epoch de-
pends on cluster specific parameters, primarily the ratio of
processor performance to network performance.

How fast the ANN training converges to an acceptable
solution and how consistently it does so are important met-
rics for evaluating performance, and the number of training
patterns per epoch will effect both of these. Unfortunately,
the optimal number of training patterns per epoch is highly
variable and impossible to absolutely determine at runtime
since it requires one to have already solved the problem the
neural network is trying to solve. Our current solution is to
make it a user-adjustable parameter. However, for a given
system and a given ANN, we expect that our PPT system
can automatically generate good guesses for the degree of
parallelism and the patterns per epoch. We plan to investi-
gate this further as part of our future work.

Another issue related to parallelization of training has
to do with maintaining consistent copies of the ANN across
nodes. It is essential to keep the copies of the neural net-
work consistent at each node, otherwise it is unlikely that
learning will terminate. In order to maintain consistency,
all nodes must communicate with all other processes at the
end of each epoch, and no node can start its next epoch un-
til it has applied the weight updates from all other nodes.
This can be a costly synchronization point, however, we
can take advantage of multicast mechanisms to improve the
performance of communicating weight updates. In our im-
plementation we use MPI routine Allgather that makes use
of Ethernet multicasting and avoid using a more expensive
point-to-point solution for communicating weight updates.

The Allgather routine is a synchronous broadcast,
which allows us to keep the neural networks completely
consistent. However, the speed of execution of the entire
system is limited by the slowest node. On a dedicated ho-
mogeneous cluster, these limitations should not be much
of an issue. However, on heterogeneous or non-dedicated
clusters this may be a problem. In such systems a load bal-
ancing scheme can be used to determine the initial degree
of parallelism and process placement in the system. Also,
periodic profiling and re-balancing could be performed to



improve performance after the application begins.

4.3 Implementation

Currently, our system is implemented as an MPI [3] appli-
cation that uses the FANN [5] open source neural network
training library. We use the FANN library to perform the
local training of the ANN on each node. Our system han-
dles the initial replication of the full neural network and
training data across all processes. It also determines the
local set of training patterns for each local epoch by ran-
domly selecting them from the full set. In addition, it han-
dles broadcasting the weight updates at the end of each lo-
cal epoch, applying the weight updates from other nodes
to the local ANN, and computing the error to determine if
another epoch of learning is necessary. We use MPI All-
gather to synchronize epochs across cluster nodes. To im-
plement our system, we needed to modify FANN to export
some of its internal structures so that we could communi-
cate weight values at the end of each epoch. Our plan is
to eventually implement a Pattern Parallel Training Library
as an extension to FANN. ANN programmers could then
use our library to parallelize the training of their ANN on
clusters.

5 Results

We present results using Pattern Parallel Training to train
an ANN for the eight bit parity problem. Our experiments
were run on an eight node cluster with 1 Gigabit Ether-
net switch1. We compare total time to learn on different
numbers of nodes, and we evaluate the effects of different
numbers of patterns per epoch on training.

We chose the eight bit parity problem because while it
is very simple to specify, it also takes many training epochs
to learn. Thus, it is a good candidate for our parallelization
technique. Additionally, eight bit parity is commonly used
as a benchmarking problem for neural networks. We ran
all of our final experiments with a three layer ANN con-
taining one hundred nodes in the hidden layer. The hidden
layer is probably larger than required for this problem and
it may allow the neural network to memorize all the train-
ing examples it sees instead of generalizing. However, we
feel that this is not a major issue for our purposes because
we are attempting to test the advantages of parallelization,
not the capabilities of neural network generalization. The
learning rate was set to ten percent and the momentum fac-
tor was set to thirty percent.

Table 1 shows the total execution time to train the
ANN for different numbers of nodes. The results are shown
for the best number of patterns per epoch for each number
of nodes (i.e. in the 8 node case the best average training
times occurred with the local epoch size is 32, and in the 2
node case they occurred when the local epoch size is 128).

1Each node has a Pentium4 processor, 80GB Seagate Barracuda7200
IDE disk drive, and 512MB of RAM.

Number of Nodes Total Time Local Epoch Size
1 689 NA
2 190 128
4 177 64
8 65 32

Table 1. Total Execution time (in seconds) for Pattern Par-
allel Training to learn the 8 bit parity problem.Each row
shows the average execution time (column 2) when run on a dif-
ferent number of nodes (column 1). The 1 node case is the time to
perform a sequential batch training of the ANN. Time values are
the average time for 10 successful runs, for the best local epoch
size (given in column 3) for each number of nodes.

The one node version is the serial batch training version
of the problem. The results show a steady improvement
as the number of nodes increases. PPT results in signifi-
cant speed-ups over sequential version. The best speed-up
of 10.6 was achieved by the eight node version of PPT (65
seconds vs. 689). The speed-up of almost 11 on eight nodes
was due in large part to the parallel training, but also due to
our version requiring fewer total epochs than the sequen-
tial batch version. Unfortunately, we do not have access to
more nodes, so we are unable to test 16 and 32 node ver-
sions. If we had done so, we would expect that the speed-
up gains would level off at some number of nodes as the
communication costs start to out way the benefits of higher
degrees of parallelism.

Table 2 shows results evaluating the local epoch size
for the eight node version of the 8-bit parity problem. We
show the number of epochs, the total training time, and the
percent of the total time due to communication for different
local epoch sizes. The results show that for smaller local
epoch sizes (number of patterns each node processes per
round), the benefit of parallelism is greater. For example,
for a local epic size of 32, we get the fastest training time
of 64.7 seconds. However, as expected, as the local epoch
size decreases the communication cost increases (80.6% of
the total time for a local epoch size of 32 vs. 42% of the to-
tal time for a local epoch size of 256). For a given problem,
there likely will be a point where decreasing the local epoch
size will result in little benefit to further parallelization be-
cause communication costs will dominate. However, for
the 8 bit parity problem, we are still seeing a good speed-
up with a relatively small epoch size of 32 even though a
significant amount of time is due to communication. These
results support our approach to parallelizing training.

5.1 The Types of Problems for which PPT will do well

Our results show that Pattern Parallel Training is a promis-
ing approach to speeding up the training time of ANNs.
In general, we expect PPT to work well for problems that
require a fair amount of computation time between com-
munications. Batch training problems with large training



Local Epoch Size Num Epochs to Train Total Training Time Percent Time Communicating

32 19,891.2 64.7 80.6%
64 44,441.6 86.0 71.7%

128 104,448.0 133.1 57.5%
256 109,568.0 91.9 42.6%

Table 2. Training Results for different Local Epoch Sizes on8 nodes.Each row lists the total number of epochs to train (column 2),
the total time to train in seconds (column 3) and the percent of the total training time spent communicating weight updates (column 4) for
different local epoch sizes (column 1). Local epoch size is the number of training patterns each node processes per round. Results are the
average of 10 runs.

sets, or problems that require a large amount of computa-
tion to process each pattern from the training set are likely
to perform well under PPT as each ANN no longer has to
process the entire training set each epoch.

Even though we expect PPT to perform well for these
types of applications, our results show that even when PPT
resulted in over 80% of the total time due to weight update
communication, we are still seeing a significant improve-
ment in total training time. As a result, PPT may do well
for problems with much less local computation time than
we originally had thought.

6 Conclusions and Future Work

We have shown that our Pattern Parallel Training technique
can be used to significantly speed-up training of Artificial
Neural Networks. Our results for the 8 bit parity problem
show up to a factor of 11 speed-up in training time. Be-
cause backpropagation is such a widely used training algo-
rithm, we expect that Pattern Parallel Training can be used
to improve training time of a large number of ANN learn-
ing problems.

Some areas of future work include trying PPT on a
larger set of ANN problems. We would like to examine
problems with much larger training set sizes than the eight
bit parity problem. This will allow us to further analyze
our approach at randomly selecting patterns from the train-
ing set at each epoch and it will allow us to perform better
tests on choosing epoch size. We also want to examine
how well PPT works on problems that perform well using
incremental serial training. This is a set of problems for
which we are less confident our approach will always work
well. Our goal is to more completely characterize the types
of ANN problems for which PPT works particularly well.
We would also like to examine using PPT on training al-
gorithms other than backpropagation. Quickprop, Rprop
and its variants, and Cascade Correlation would be obvious
choices.

In addition to examining the types of ANN problems
for which PPT works well, we plan to further develop our
software. This will involve fully integrating PPT into the
FANN library to provide a full library interface to PPT that
an application developer could easily use to parallelize the

training of their ANN. We also want to examine having our
system automatically generate some of the parameters that
are currently supplied by the user. We expect that by using
cluster system performance data and information about the
particular ANN, our system could automatically generate
good values for epoch size and degree of parallelism.

A final area of future work involves examining com-
bining Network Parallel Training with Pattern Parallel
Training to try to take advantage of the strengths of both
approaches.

References

[1] Leon Bottou and Yann LeCun. Large-scale on-line learning.
In In Advances in Neural Information Processing Systems 15.
MIT Press, 2004.

[2] Philipp Faerber and Krste Asanovi. Parallel neural network
training on multi-spert. InIEEE 3rd International Confer-
ence on Algorithms and Architectures for Parallel Process-
ing, 1997.

[3] Ewing Lusk. Programming with MPI on clusters. In
3rd IEEE International Conference on Cluster Computing
(CLUSTER’01), October 2001.

[4] Niels Mache and Paul Levi. Parallel neural network training
and cross validation on a cray t3e system and application to
splice site prediction in human dna, 1995.

[5] Steffen Nissen. Implementation of a fast artificial neural net-
work library (FANN), 2003.

[6] Bernhard Omer. Genetic algorithms for neural network train-
ing on transputers, 1995.

[7] D. Rumelhart, G. Hinton, and R. Williams. Learning internal
representations by error propagation. InParallel Distributed
Processing, MIT Press, volume 1, 1986.

[8] N. N. R. Ranga Suri, Dipti Deodhare, and P. Nagabhushan.
Parallel levenberg-marquardt-based neural network training
on linux clusters - a case study. The Third Indian Conference
on Computer Vision, Graphics, and Image Processing, 2002.


