Nswap: A Network Swapping Module for Linux
Clusters

Tia Newhall, Sean Finney, Kuzman Ganchev, Michael Spiegel

Swarthmore College, Swarthmore, PA 10981, USA

Abstract. Cluster applications that process large amounts of data, such
as parallel scientific or multimedia applications, are likely to cause swap-
ping on individual cluster nodes. These applications will perform better
on clusters with network swapping support. Network swapping allows any
cluster node with over-committed memory to use idle memory of a re-
mote node as its backing store and to “swap” its pages over the network.
As the disparity between network speeds and disk speeds continues to
grow, network swapping will be faster than traditional swapping to local
disk. We present Nswap, a network swapping system for heterogeneous
Linux clusters and networks of Linux machines. Nswap is implemented as
a loadable kernel module for version 2.4 of the Linux kernel. It is a space-
efficient and time-efficient implementation that transparently performs
network swapping. Nswap scales to larger clusters, supports migration of
remotely swapped pages, and supports dynamic growing and shrinking
of Nswap cache (the amount of RAM available to store remote pages)
in response to a node’s local memory needs. Results comparing Nswap
running on an eight node Linux cluster with 100BaseT Ethernet inter-
connect and faster disk show that Nswap is comparable to swapping to
local, faster disk; depending on the workload, Nswap’s performance is up
to 1.7 times faster than disk to between 1.3 and 4.6 times slower than
disk for most workloads. We show that with faster networking technol-
ogy, Nswap will outperform swapping to disk.

1 Introduction

Using remote idle memory as backing store for networked and cluster systems
is motivated by the observation that network speeds are getting faster more
quickly than are disk speeds [9]. In addition, because disk speeds are limited
by mechanical disk arm movements and rotational latencies, this disparity will
likely grow. As a result, swapping to local disk will be slower than using remote
idle memory as a “swap device” and transferring pages over the faster network.
Further motivation for network swapping is supported by several studies [2, 4, 10]
showing that large amounts of idle cluster memory are almost always available
for remote swapping.

We present Nswap, a network swapping system for heterogeneous Linux clus-
ters and networks of Linux machines. Nswap transparently provides network
swapping to cluster applications. Nswap is implemented as a loadable kernel

module that is easily added as a swap device to cluster nodes and runs entirely
in kernel space on an unmodified ! Linux kernel; applications can take advantage
of network swapping without having to re-compile or link with special libraries.
Nswap is designed to scale to large clusters using an approach similar to Mosix’s
design for scalability [1]. In Nswap there is no centralized server that chooses a
remote node to which to swap. In addition, Nswap does not rely on global state,
nor does it rely on complete or completely accurate information about the state
of all cluster nodes to make swapping decisions. Thus, Nswap will scale to larger
clusters because each node independently can make swapping decisions based on
partial and not necessarily accurate information about the state of the cluster.

Nswap supports dynamic growing and shrinking of each node’s Nswap cache
in response to the node’s local memory use, allowing a node to reclaim some of
its Nswap cache space for local paging or file I/O when it needs it, and allowing
Nswap to reclaim some local memory for Nswap cache when the memory is no
longer needed for local processing. Growing and shrinking of the Nswap cache
is done in large chunks of memory pages to better match the bursty behavior of
memory usage on a node [2]. Another feature of Nswap is that it avoids issuing
writes to disk when swapping; it does not write-through to disk on swap-outs, and
it supports migration of remotely swapped pages between the cluster nodes that
cache them in response to changes in a remote node’s local memory use. Only
when there is no available idle memory in the cluster for remote swapping does
Nswap revert to swapping to disk. Because Nswap does not do write-through
to disk, swapping activity on a node does not interfere with simultaneous file
system disk I/O on the node. In addition, as long as there is idle remote memory
in the cluster, Nswap can be used to provide disk-less cluster nodes the ability
to swap.

In section 2 we discuss related work in network swapping. In section 3 we
present the details of Nswap’s implementation, including a presentation of the
swapping protocols. In section 4 we present the results of measurements of Nswap
running on an eight node cluster. Our results show that with 100 BaseT tech-
nology we are comparable to high-end workstation disks, but that with faster
interconnect, Nswap will outperform swapping to disk. In section 5 we discuss
future directions for our work.

2 Related Work

There have been several previous projects that examine using remote idle mem-
ory as backing store for nodes in networks of workstations [3,6,10,8,5,11,7].
For example, Feeley et. al.[6] implement a network cache for swapped pages by
modifying the memory management system of the DEC OSF/1 kernel. Their
system views remote memory as a cache of network swapped pages that also
are written through to disk; remote servers only cache clean pages and can ar-
bitrarily drop a page when their memory resources become scarce. Each node’s

! Currently, we require a re-compile of the 2.4.18 kernel to export two kernel symbols
to our module, but we have not modified Linux kernel code in any way.

memory is partitioned into local space and network cache space. When a page
fault occurs, a node’s local space may grow by one page at the expense of a page
of its network cache space. Our growing and shrinking policies do something
similar, but we grow and shrink in larger units to better match bursty memory
use patterns. In addition, our system does not do a write-through to disk on
every swap-out. Thus, our system will not be slowed down by disk writes and
will not interfere with a node’s local file I/0.

Markatos and Dramitinos [10] describe reliability schemes for a remote mem-
ory pager for the DEC OSF/1 operating system. Their system is implemented
as a client block device driver, and a user-level server for storing pages from re-
mote nodes. Both dirty and clean pages can be stored at remote servers. When
a server is full, or when it needs more memory for local processes, remote pages
are written to the server’s disk, resulting in a significant slow down to a subse-
quent swap-in of the page. Our system avoids writing pages to disk in similar
circumstances by migrating the page to another server. In addition, our system
allows a server’s cache size to change, and it allows nodes to dynamically change
roles between clients and servers based on their local memory use.

Bernard and Hamma’s work [5] focuses on policies for balancing a node’s
resource usage between remote paging servers and local processes in a network
of workstations. Their policy uses local and remote paging activity and local
memory use to determine when to enable or disable remote paging servers on
a node. Our growing and shrinking policies for Nswap cache sizes have to solve
a similar problem. However, on a cluster system, where there is no notion of a
user “owning” an individual cluster node, so we expect that we can keep Nswap
cache space on nodes with under-committed memory but higher cpu loads.

3 Nswap Implementation

Nswap consists of two components running entirely in kernel space (shown in
Figure 1). The first is a multi-threaded client that receives swap-in and swap-out
requests from the kernel. The second is a multi-threaded server that manages
a node’s Nswap cache and handles swap-in and swap-out requests from remote
clients. Each node in the Nswap cluster runs an Nswap client and an Nswap
server. At any given time, a cluster node is acting either as a client or a server,
but typically not as both simultaneously; a node adjusts it role based on its local
memory use. The goals of Nswap’s design are to provide efficient, transparent
network swapping to cluster applications, to dynamically adjust to individual
node’s memory needs, and to scale to large, heterogeneous clusters.

3.1 Nswap Client and Server

The Nswap client is implemented as a block pseudo-device. This abstraction
allows an easy and portable interface to the Linux kernel’s swapping mechanism,
which communicates with Nswap exactly as it would any physical block device.
Idle memory across the cluster is accessed through read and write requests from

Node A Node B

User Space
Nswap Server
Kernel Space swap in pagei swapoutpagejpg | | - - - —----------
% Nswap Cache
Nswap Server Nswap client . . Nswap client
TTTTTTS IPTable r-=="=="="="X-~--~-2%¢"~~---~- | A’spagej A’spagei IPTable F~ 77 |

..ppp

I

I
2:0 : : clientlhreads§ § ? g
. . I
****** ' e e oo A---k-----l oL
Nswap Communication L ayer (O I s it A

I
I
|
|
| [host[amt [sock| + shadow [[B[[[B] | | 1
| 22 [T[]]] | Svap map | !
! 17 [[11 | |
! [T ! |
| : ! :
I

Fig. 1. Nswap System Architecture. Node A shows the details of the client including
the shadow slot map used to store information about which remote servers store A’s
pages. Node B shows the details of the server including the Nswap cache of remotely
swapped pages. In response to the kernel swapping in (out) a page to our Nswap device,
a client thread issues a PUTPAGE (GETPAGE) to write (read) the page from a remote

Server.

the kernel to the Nswap client device. The client uses multiple kernel threads to
simultaneously service several swap-in or swap-out requests.

The Nswap client needs to add additional state to the kernel’s swap map so
it can keep track of the location of its remotely swapped pages. We add a shadow
swap map (Figure 1) that stores the following information (in 16 bits) for each
slot in the kernel’s swap map of our device: the serverID, designating which
remote server stores the page; the hop_count, counting the number of instances
a page has been migrated (used to avoid race-conditions that can occur during
page migration and to limit the number of times a page can be migrated); the
time_stamp, identifying an instance of the slot being used by the kernel (used to
identify ”dead” pages in the system that can be dropped by the server caching
them); and the in_use bit to control conflicting simultaneous operations to the
same swap slot. Additionally, these fields allow for a communication protocol
that does not require the client’s state to be synchronously updated during page
migrations.

The Nswap server is implemented as a kernel-level daemon that makes local
memory available for Nswap clients. When the Nswap module is loaded, the
server starts three kernel threads: a listener thread, a memory thread, and a sta-
tus thread. The listener thread listens for connections from Nswap clients, and
starts new threads to handle the communication. The memory thread monitors
the local load, communicating its load to other hosts, and if necessary, triggering
growing and shrinking its Nswap cache. The status thread accepts UDP broad-
cast messages from memory threads on other servers. These messages contain
changes in a server’s available Nswap cache size. The status thread updates its
[PTable with this information.

The TPTable on each node contains a potentially incomplete list of other
server’s state. Each entry contains an Nswap server’s IP, the amount of Nswap

cache it has available, and a cache of open sockets to the server so that new
connections do not have to be created on every page transfer. The Nswap client
uses information in the IPTable to select a remote server to send its pages, and
to obtain connections to remote servers. The information in the IPTable about
each server’s Nswap cache availability does not have to be accurate, nor does
there need to be an IPTable entry for every node in the cluster, for a client to
choose a remote server on a swap-out. This design will help Nswap scale better
to larger clusters, but at the expense of clients perhaps not making the best
possible server choice. Typically, the information is accurate enough to make a
good server choice. Nswap recovers from a bad server choice by migrating pages
to a better server.

When the client makes a request for a page, it sends page meta-data (c1lientID,
slot_number, hop_count, timestamp) that the server uses to locate the page in
its Nswap cache. Page meta-data is also used to determine when cached pages are
no longer needed. Since the Linux kernel does not inform a swap device when
it no longer needs a page, “dead” pages can accumulate. A garbage collector
thread in the Nswap client periodically runs when the client has not swapped
recently. It finds and cleans dead slots in the swap slot map, sending the server a
message indicating that it can drop the "dead” page from its cache. In addition,
“dead” pages are identified and dropped during page migration, and when a
client re-uses an old slot during a swap-out operation.

A predictive monitoring policy is used to dynamically grow or shrink the size
of Nswap cache. A status thread on each node periodically polls the behavior of
the Linux memory management subsystem. If the machine is showing symptoms
of high memory usage, Nswap cache will shrink, possibly triggering migration of
some of the remote pages it caches to other Nswap servers. When local memory
is underutilized, Nswap cache size is increased.

3.2 Nswap Communication Protocol

The communication protocol between different nodes in an Nswap cluster is
defined by five types of requests: PUTPAGE, GETPAGE, PUNTPAGE, UPDATE and
INVALIDATE. When Nswap is used as a swap device, the kernel writes pages to
it. The client receives a write request and initiates a PUTPAGE to send the page
to a remote server. At some later time the kernel may require the data on the
page and issue a read request to the Nswap device. The client uses the GETPAGE
request to retrieve the page (see Figure 1). If the workload distribution changes,
it may become necessary for a server to reduce its Nswap cache size, using the
PUNTPAGE request to offload the page to another Nswap server. Moving a page
from one server to another involves an UPDATE request to alert the client to the
new location of the page and an INVALIDATE request from the client to the old
server to inform the old server that it can drop its copy of the page (see Figure 2).

GETPAGE and PUTPAGE are designed to be as fast as possible for the client who
is currently swapping. If a client makes a bad server choice for a PUTPAGE, the
Nswap servers handle it through page migration rather than forcing the client
to make a better server choice, which would slow down the client’s swap-outs.

Node A Node B Node A Node B Node C

S 5 =~ =
UPDATE
Node A Node B Node C Nox Node B Node C
S| 3 <J
(1) ‘ ‘ ‘ § PUNTPAGE § (3) ‘ ‘ g ‘ §
| NVALI DATE 4

Fig. 2. Page Migration in Nswap. Node A acts as an Nswap client, and Nodes B and
C act as servers. A PUNTPAGE from server B to server C (1), triggers an UPDATE
from server C to client A (2), which in turn triggers an INVALIDATE from client A
to server C' (3). At this point, B can drop its copy of A’s page.

In addition, the protocol is designed to limit synchronous activities. As a result,
extra state (page meta-data) is passed with requests so that a receiver can detect
out-of-order and old requests and handle them appropriately. The following is
an overview of the communication protocol:

PUTPAGE is used to ask a remote host to store a local page. The client picks a
remote server using its IPTable information, and sends the server a PUTPAGE
command and the page’s meta-data. The server almost always responds with
an OK_PUTPAGE, and then the client sends the page data. Even a server with
a full Nswap cache typically will accept the page from the client. In these
cases, the server starts to remove some of its least recently cached pages by
issuing PUNTPAGEs after completing the PUTPAGE transaction.

GETPAGE is a request to retrieve a page that is stored remotely. The client
sends the GETPAGE command and the page meta-data. The server uses the
meta-data to find the page in its Nswap cache, and sends it to the client.

INVALIDATE is used by a client to inform a server that it may drop a page
from its Nswap cache. An INVALIDATE can result from page migration (see
PUNTPAGE below) or from garbage collection on the client. The client sends
an INVALIDATE command and the page meta-data. The server compares all
the meta-data of the page and frees the page if these match. Otherwise, the
INVALIDATE request is for an old page and is ignored.

PUNTPAGE is used to implement page migration. When a server becomes over-
committed, it attempts to get rid of the least recently cached foreign pages by
punting them to other servers. The over-committed server sends a PUNTPAGE
command and the page data to another remote server. The original server
cannot drop the page until it receives an INVALIDATE from the client as
described above. Once the page has been transferred to the new server,
the new server initiates an UPDATE to the owner of the page. If there is no
available Nswap cache space in the cluster, the server punts the page back
to its owner who writes it to its local disk.

UPDATE is used to inform a client that one of its pages has moved. The new
server sends an UPDATE command to the client with the page meta-data.
The page meta-data is used to detect whether the UPDATE is for an old page,
in which case the client sends an INVALIDATE to the sender of the UPDATE;

otherwise, the client sends an INVALIDATE to the previous server caching the
page so that it can drop its copy of the page.

4 Results

We present results comparing swapping to disk and Nswap for several workloads.
Our experiments were run on a cluster of 8 nodes 2 running version 2.4.18 of
the Linux kernel connected by 100BaseT Ethernet. Four of the nodes have Intel
Pentium II processors, 128 MB of RAM, and Maxtor DiamondMax 4320 disks
with a data rate of up to 176 Mb/sec. The other machines have Pentium III
processors, 512 MB of RAM, and IBM Deskstar disk with a sustained data rate
of 167-326 Mb/sec and a max rate of 494 Mb/sec. In both machine types, disk
transfer rates are faster than network transfer rates, so we expect to be slower
than swapping to disk. However, our results show that for several workloads
swapping across a slower network is faster than swapping to faster local disk. In
addition, we calculate that on 1 and 10 Gbit Ethernet, Nswap will outperform
swapping to disk for almost all workloads.

4.1 Workload Results

Table 1 shows run times of several workloads comparing Nswap with swapping to
disk. On the PIIT’s we ran two versions of Nswap, one using TCP /IP to transfer
pages (column 5), the other using UDP/IP (column 6). We ran one and four
process versions of each workload with one node acting as the client and three
nodes acting as servers. We also disabled Nswap cache growing and shrinking to
reduce the amount of variation between timed runs.

Workload 1 consists of a process that performs a large sequential write to
memory followed by a large sequential read. It is designed to be the best case for
swapping to disk because there will be a minimal amount of disk head movement
when swapping due to the way in which Linux allocates space on the swap
partition. Workload 2 consists of a process that performs random writes followed
by random reads to a large chunk of memory. This workload stresses disk head
movement within the swap partition only. Workload 3 consists of two processes.
The first runs a Workload 1 application and the second is a process that performs
a large sequential write to a file. Workload 3 further stresses disk head movement
when swapping to disk because file I/O and swap I/O are concurrently taking
place in different disk partitions. Workload 4 consists of two processes; the first
runs the Workload 2 application and the second runs the large sequential file
write application. The four process versions of each workload are designed to
represent a more realistic cluster workload. The size of each Workload varied
from platform to platform based on the size of RAM on each machine, and they
varied between the Random and Sequential tests. As a result, for each Workload
(row), only the values in columns 2 and 3 can be compared, and the values in
columns 4, 5, and 6 can be compared.

2 Although our cluster currently consists of only Pentium architectures, Nswap will
run on any architecture supported by Debian Linux.

(Workload)|| DISK NSWAP DISK NSWAP NSWAP
procs || (PII) (PIL, TCP) (PIII)| (PIIL, TCP) (PIII, UDP)
(1), 1 98.0| 450.9 (4.6x slower)|| 13.1| 154.3 (11.7x slow)| 61.3 (4.6x slow)
(1), 4 || 652.9] 630.6 (1.04x fast)]|| 551.4|1429.7 (2.6x slow) | 614.4 (1.1x slow)
(2), 1 874.6| 1937.0 (2.2x slow) || 266.8|1071.8 (4.0x slow) [153.5 (1.7x fast)
(2), 4 || 996.7] 617.0 (1.6x fast) || 68.6] 189.3 (2.8x slow) | 50.3 (1.4x fast)
(3), 1 632.9| 737.7 (1.7x slow) || 770.2|1111.1 (1.4x slow) | 811.0 (1.1x slow)
(3), 4 |[1312.1]1127.2 (1.2x fast) || 727.1|1430.5 (1.9x slow) |619.5 (1.2x fast)
(4), 1 1971.2| 2111.0 (1.07x slow) || 923.9{1529.3 (1.7x slow) |821.7 (1.1x fast)
(4), 4 |[1453.0/1094.6 (1.3x fast) || 502.5| 498.7 (1.01xfast)|429.2 (1.2x fast)

Table 1. Swapping to fast disk vs. TCP Nswap and UDP Nswap on 100BaseT for PII
and PIII nodes. The rows are 1 and 4 process runs of each of the four Workloads. Time
is measured in seconds and the values are the mean of 5 runs of each benchmark. Bold
values indicate runs for which Nswap is faster than disk.

We expect that disk will perform much better than Nswap on the single
process versions of Workload 1 and Workload 2 because the disk arm only moves
within the swap partition when these workloads run, and our results confirm this;
the worst slow downs (4.6 and 11.7) are for the single process runs of Workload
1. The differences between the performance of Workloads 1 and 2 show how
disk head movement within the same disk partition affects the performance of
swapping to disk. For the four process runs of Workloads 1 and 2, Nswap is much
closer in performance to disk, and is faster in some cases; the TCP version on
the PIIIs is 2.6 and 2.8 times slower than disk, the UDP version on the PIIIs is
1.4 times faster for Workload 2, and on the PIIs both workloads are faster than
disk (1.04 and 1.6 times faster). This is due to a slow down in disk swapping
caused by an increase in disk arm movement because multiple processes are
simultaneously swapping to disk. The results from Workloads 3 and 4, where
more than one process is running and where there is concurrent file I/O with
swapping, show further potential advantages of Nswap; Nswap is faster than
disk for the four process version of all Workloads on the PIIs, for three of the
four Workloads under UDP Nswap, and for Workload 4 under TCP Nswap on
the PIIIs. The differences in TCP and UDP Nswap results indicate that TCP
latency is preventing us from getting better network swapping performance.
Nswap performs better for Workloads 3 and 4 because network swapping doesn’t
interfere with file system I/O, and because there is no increase in per-swap
overhead when multiple process are simultaneously swapping.

4.2 Results for Nswap on Faster Networks
Currently we do not have access to faster network technology than 100BaseT

Ethernet, so we are unable to run experiments of Nswap on a cluster with a net-
work that is actually faster than our cluster’s disks. However, based on measure-

|(Workload)|| Disk [10BaseT] 100BaseT | 1Gbit | 10 Gbit |

(1) TCP || 580.10] 5719.00] 1518.34 (speedup 3.8) |1075.00 (5.3) |1034.17 (5.5)
(1) UDP || 12.27] 306.69] 56.80 (speedup 5.4) | 28.90 (10.6)| 26.30 (11.6)
(2) UDP || 226.79] 847.74] 153.54 (speedup 5.5) | 77.30 (10.9)| 70.30 (12.1)
(4) UDP |[6265.39] 9605.91|1733.93 (speedup 5.54)|866.18 (11.1)]786.72 (12.2)

Table 2. Time (and Speedups) for TCP & UDP Nswap on faster networks. All Work-
loads were run on the PIIIs. Bold values indicate cases when Nswap is faster than disk.
The rows show for each workload calculated 1 and 10 Gbit run times (col. 5 & 6) based
on measured speedup values between runs on 10 and 100 BaseT (col. 3 & 4).

ments of our workloads running Nswap with 10BaseT and Nswap with 100BaseT
Ethernet, we estimate run times on faster networks.

The rows of Table 2 show execution times of workloads run on 100BaseT and
10BaseT, and our estimates of their run times on 1 and 10 Gigabit Ethernet.
We use the speedup results from our 10 and 100 BaseT measurements of each
benchmark and apply Amdahl’s Law to get estimates of speedups for 1 and 10
Gigabit Ethernet using the following equation:

TOtalSpeEdup = 1—FractionBandwith-}-FTactioizBandwith/SpeedupBandwidth .

For each Workload, we compute FractionBandwith based on TotalSpeedup
values from measured 10 and 100 BaseT runs. Using this value, we compute
Total Speedup values for 1 and 10 Gbit Ethernet (columns 5 and 6 in Table 2).

The measured speedups between 10 and 100 BaseT of TCP version of Nswap
are lower than we expected (one example is shown in row 1 of Table 2); timed runs
of these workloads when they completely fit into memory compared to when they
don’t, show that over 99% of their total execution time is is due to swapping
overhead. We also measured our GETPAGE and PUTPAGE implementations and
found that over 99% of their time is due to transferring page data and metadata.
However, the UDP version of Nswap results in speedup values closer to what we
expected. In fact, UDP Nswap on Gigabit Ethernet outperforms swapping to disk
for all Workloads except the single process version of Workload 1 on the PIIIs.
Our speedup results further indicate that TCP latency is preventing Nswap from
taking full advantage of improvements in network bandwidth.

5 Conclusions and Future Work

Nswap is a network swapping system for heterogeneous Linux clusters. Because
Nswap is implemented as a loadable kernel module that runs entirely in kernel
space, it efficiently and transparently provides network swapping to cluster ap-
plications. Results from experiments on our initial implementation of Nswap on
an eight node cluster with 100BaseT Ethernet show that Nswap is comparable to
swapping to faster disk. Furthermore, since it is likely that network technology
will continue to get faster more quickly than disk technology, Nswap will be an
even better alternative to disk swapping in the future.

One area of future work involves examining reliability schemes for Nswap.
We are also investigating reliable UDP implementations for the Nswap commu-
nication layer so that we can avoid the latency of TCP to better take advantage
of faster networks, but to still get reliable page transfers over the network. Other
areas for future work involve testing Nswap on faster networks and larger clus-
ters, and further investigating predictive schemes for determining when to grow
or shrink Nswap caches sizes. In addition, we may want to examine implement-
ing an adaptive scheme into Nswap. Based on the results from the single process
version of Workload 1 in Table 1, there may be some workloads for which swap-
ping to disk will be faster. Nswap could be designed to identify these cases, and
switch to disk swapping while the workload favors it.

6 Acknowledgments

We thank Matti Klock, Gabriel Rosenkoetter, and Rafael Hinojosa for their
participation in Nswap’s early development.

References

1. Barak A., La’adan O., and Shiloh A. Scalable cluster computing with MOSIX for
Linux. In Proceedings of Linux Ezxpo ’99, pages 95-100, Raleigh, N.C., May 1999.

2. Anurag Acharya and Sanjeev Setia. Availability and Utility of Idle Memory on
Workstation Clusters. In ACM SIGMETRICS Conference on Measuring and Mod-
eling of Computer Systems, pages 3546, May 1999.

3. T. Anderson, D. E. Culler, D. A. Patterson, and the NOW Team. A case for NOW
(Networks of Workstations). IEEE Micro, Febuary 1999.

4. Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, Lok T. Liu, Thomas E.
Anderson, and David A. Patterson. The Interaction of Parallel and Sequential
Workloads on a Network of Workstations. In ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 267278, 1995.

5. G. Bernard and S. Hamma. Remote Memory Paging in Networks of Workstations.
In SUUG’94 Conference, April 1994.

6. Michael J. Feeley, William E. Morgan, Frederic H. Pighin, Anna R. Karlin,
Henry M. Levy, and Chandramohan A. Thekkath. Implementing Global Memory
Management in a Workstation Cluster. In 15th ACM Symposium on Operating
Systems Principles, December 1995.

7. Michail D. Flouris and Evangelos P. Markatos. Network RAM, in High Perfor-
mance Cluster Computing: Architectures and Systems, Chapt. 16. Prentice Hall,
1999.

8. Liviu Iftode, Karin Petersen, and Kai Li. Memory Servers for Multicomputers. In
IEEE COMPCON’93 Conference, Febuary 1993.

9. John L. Hennessy and David A. Patterson. Computer Architectures A Quantitative
Approach, 3rd Edition. Morgan Kaufman, 2002.

10. Evangelos P. Markatos and George Dramitinos. Implementation of a Reliable
Remote Memory Pager. In USENIX 1996 Annual Technical Conference, 1996.
11. Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht. Incorporating Job Migration
and Network RAM to Share Cluster Memory Resources. In Ninth IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC’00), 2000.

