
Introducing Parallel Computing
in a Second CS Course

Tia Newhall, Kevin C. Webb,
Vasanta Chaganti, Andrew Danner

Computer Science Dept. Swarthmore College
Swarthmore, PA USA

Expose Students to PDC Concepts Early

P&D computing increasingly important

• P&D world (and students know it)

• Prepare work force, gradschool, undergraduate research

Want All CS majors see PDC concepts early and often

• Teach “Parallel Thinking” early

• Natural to think about P&D questions in different contexts later

2

Our Course: Introduction to Computer Systems (CS31)

CS in the Liberal Arts: Fewer Courses & Shallow Prereq Hierarchy

Swarthmore: 8 CS courses in major (+ 2 math)

1 Introductory-level: CS1

2 Intermediate-level: CS2 & Intro to Systems

5 Upper-level:

● Grouped in 3 buckets
● At least 1 in each for breadth
● P&D in all Systems, some other

CS1

CS2 Intro to
Systems

Theory
Algorithms,

Theory, Prob.
Method, Alg

Game Theory

Systems
OS, NW,
DBMS,

Compilers,
P&D, Security

Applications
AI, ML, NLP,
Graphics, PL,

SWE, Bio Infom,
Robotics

prereq

prereq

3

Why PDC in a Second Course?

● Early Curricular Exposure to PDC
○ Provides common background of introduction to systems and PDC topics to

every student in any upper-level course
○ Increased Depth vs. in CS1: Can focus more on PDC and less on basic

algorithmic problem solving & intro programming
○ Increased Breadth at intro level vs. upper-level: introduce many concepts will

see again in different contexts

● Easier Part of our Curriculum to Change to incorporate PDC topics
○ Replaced more traditional Computer Organization course
○ More constraints/goals/opinions about CS1 and CS2 (Data structures & Algs)

4

TCPP Category Intro to Systems Topics

Pervasive concurrency, asynchrony, locality, performance

Architecture multicore, caching, latency, bandwidth, atomicity,
consistency, coherency, pipelining, instruction
execution, memory hierarchy, multithreading,
buses, process ID, interrupts

Programming shared memory parallelization, pthreads, critical
sections, producer-consumer, synchronization,
deadlock, race cond, memory data layout, locality,
signals

Algorithms dependencies, space/memory, speedup, Amdahl’s
law, synchronization, efficiency

CS31 Introduces Many TCPP Topics

(Table 1)
5

Course Goal 1: How a Computer Runs a Program

A vertical slice
through the
computer

from HLL to binary
instructions executed
by HW circuitry

Computer
System

6

Course Goal 2: Systems Costs and Efficiency

It is not all big-O

Recognize & Evaluate systems costs
associated with running a program

● Focus on Memory Hierarchy &
caching

● Also in context of OS and parallel

7

Course Goal 3: Intro to Parallel Computing

Taking advantage of the power of parallel computing

In the context of goals 1 and 2: how programs run & efficiency

○ Focus on Shared Memory parallelism
○ Multicore and pthreads
○ Synchronization

8

Class Structure
Lecture: typically 60 students (large for LACS)

Lecture with active learning: clicker questions, group discussion, reading quiz

Weekly Lab Session (90 minutes per week)
Learn tools for doing lab work: C, gdb, valgrind, logisim, pthreads

Lab Assignments
C, assembly, and pthreads programming, logisim, gdb assembly tracing

Weekly Written Homeworks
Short, reinforce lecture topics, have used assigned HW-groups

Course-Specific Student Mentors (CS Ninjas, SIGCSE’14)
Help in Lab sessions, in-class activities, Run evening help sessions for lab work

9

C Programming: used throughout the course

● 1 week intro to C
○ Students have a CS1

background in Python (or Java)
● New features introduced in context

of other topics
○ Pointers
○ Dynamic memory allocation
○ 2D arrays, structs

C Program

Binary Program

OS

HW

Part of a Vertical Slice
through a Computer
(Goal 1)

10

C Programming: Labs and HWs

● Learning C Labs
○ Intro: 1D static arrays,

searching, sorting
○ 1D dynamic arrays,

searching, sorting
○ 2D dynamic arrays,

GOL w/ASCII & ParaVis
visualization (EduPar’19)

● HW: stack drawing, code tracing, expressions & type
11

Binary Representation

● Usually 1st topic, before intro C
● Topics

○ C types in binary: unsigned and
signed (2’s complement)

○ Binary arithmetic (+, -) signed
unsigned, overflow

○ Bitwise operations

C Program

Binary Program

OS

HW

Part of how program
encoded to run on computer
And how arithmetic on
binary values works
(Goal 1)

12

Binary Representation Labs and HW

● Simple C program to evaluate answers to questions about
binary representation and arithmetic
○ First C program: introduces compilation, basic syntax,

simple functions
● Written part: convert decimal/binary/hex, binary arithmetic

 11111111 (-1) 10101100 0xff → 0b11111111 -> 255
+ 00000001 (1) & 11010111

 —------- —------- 0xff → 0b11111111 -> -1
 1 00000000 (0) 10000100

carry out …

13

Architecture: focus on CPU architecture
○ Von Neumann Architecture
○ ISA
○ Simple circuits from basic gates

(AND, OR, NOT)
○ Arithmetic-logic, Storage, Control
○ ALU, Register File, Clock
○ Instruction Execution, Pipelining
○ Some Modern Architectures

(multicore, multithreaded,ILP)
○ Theme of Abstraction as add

complexity (from gates to CPU)

C Program

Binary Program

OS

HW

How HW is designed to
execute a stream of binary
instructions on binary data
(Goal 1)

14

Architecture Labs and HWs

● Labs using Logisim
○ 4-bit adder from AND, OR,

NOT gates
○ Build CPU for 8 instruction

ISA (ALU, Regs, IR, clock)
w/condition codes

● Truth table to/from circuit
● Circuit Tracing

15

Assembly Programming

● Translating C to/from Assembly
● X86 (ARM-64 in Fall’22)

○ ISA: instruction set, registers
○ Arithmetic/logic
○ Control, Loops
○ Functions, the Stack
○ Pointers
○ Array & Struct layout & access

C Program

Binary Program

OS

HW

Part of how program
encoded to run on computer
(Goal 1)

Tie to C code and to what
know about how CPU
designed to run program
instructions 16

Assembly Programming Labs and HWs

● Translating between C & Assembly
○ simple instructions
○ loops, if-else
○ functions
○ arrays and pointers

● Binary Maze Program
○ gdb to find way out
○ based on Bryant & O’Hallaron’s

Binary Bomb
● Code tracing showing stack &

register contents

17

Memory Hierarchy and Caching

● Memory Hierarchy
○ buses, devices
○ W/R mechanics

● CPU Caching
○ Direct Mapped, Set Associative
○ Locality
○ Data layout, access patterns

● Written HW
○ Address Translation
○ DM & SA Cache effects on sequence of W/R

C Program

Binary Program

OS

HW

How Computer System
Designed to Efficiently Run
programs and Systems
Costs with program
execution (Goal 2)

18

Introduction to Operating Systems

● Role of OS & how works: booting, interrupts,
kernel/user mode

● Two main Abstractions Related to How
Computer Runs Program
1. Processes: state, context switch,

multiprogramming/timesharing, process
hierarchy, fork, exec, wait, exit, signals,
asynchrony, concurrency

2. VM: VAS, VA/PA, paging, replacement,
TLB

C Program

Binary Program

OS

HW

Part of how program is run on
a computer (Goal 1)

Part of how to efficiently run
program on computer and
systems costs assoc with
running program (Goal 2)

19

Operating System Labs & HWs

● Unix shell & parse command
library:
○ foreground, background

(asynch, signals), history
○ starting point for lab in UL OS

● Process HW: tracing code with
fork/exec/wait/, concurrency

● VM: page table translations,
replacement

20

Parallel Computing

● Focus on Shared Memory
○ Already seen Multicore
○ Parallelism vs. Concurrency

● OS’s Thread Abstraction:
○ Follows from Process and VM
○ Thread Scheduling
○ VAS Sharing

Pthreads Program

Binary Program

OS

HW: Multicore

Part of how a parallel
program is run on a
computer (goal 1)

Part of how to efficiently
write program to run on
multicore computer (goal 2)

21

Parallel Computing (cont.)

● Parallel Pthreads Programming
○ Thread create-join
○ Synchronization, mutual exclusion,

critical sections
○ mutex, barrier, condition vars
○ Race condition, deadlock

● Speed-up, Amdahl’s law
○ Parallel Costs/Overheads
○ Embarrassingly Parallel
○ Superlinear (tie to mem hier)

Pthreads Program

Binary Program

OS

HW: Multicore

Part of how a parallel
program is run on a
computer (goal 1)

Part of how to efficiently
write program to run on
multicore computer (goal 2)

22

Parallel Computing Labs and HWs

● Written synchronization,
parallel execution

● Producer/Consumer bounded
buffer

● Pthreads GOL w/ASCII &
ParaVis (EduPar’19)
○ Vary partitioning &

number threads
○ ParaVis helps debug

column/row partitioning
○ Starting point for lab in UL

P&D Computing
23

Issue: finding the right textbook

Problem:

● Needed introductory-level coverage of a broad
set of organization, systems, parallel topics

Solution: write one (Matthews, Newhall, Webb)

● Free, online textbook diveintosystems.org
● Broad set of topics at Intro level
● Useful to a range of courses/uses (30+ institutions)
● SIGCSE’21 early adopter evaluation paper
● New NSF funded effort to add interactive exercises
● Print version out by fall (will always remain free online)

24

CS31 Student Survey Results (~300 students in 5 recent offerings)

● Appreciated Exposure to PDC
○ “Parallelism is great! Also pipelining. Those two concepts are super applicable to life broadly”
○ “exposed to a great deal of new concepts, especially…new ways for managing programs like

threading and forking”

● Gained new Systems Perspective, evaluating trade-offs
○ “I like how we unpacked a lot of what goes on behind the scenes”
○ “really interesting to think about…questions of efficiency in different things we talked about,

and see how those really apply to computer systems that we use every day”
○ “should keep in mind both Big O and what happens in hardware”

● Built Confidence in thinking about systems & parallelism
○ “I can’t wait to take more systems courses!”
○ “learning how to parallelize programs were really interesting, and now I want to take parallel

and distributed computing”

25

Upper-level Student’s
Understanding of PDC
Concepts from CS31

Bloom’s Taxonomy Rantings

● 0: don’t know
● 1: recognize
● 2: can define
● 3: can explain
● 4: can apply

Don’t expect level 4
understanding on all topics
after CS31 (intro level, 1st
introduction)

26

Conclusions

● A second course introducing PDC works well in our curriculum, and we believe
more generally too (10+ years of CS31 at Swarthmore)
○ Students with CS1 background ⇒ can focus more on PDC
○ CS31 prerequisite to upper-level courses ensures all students see PDC early

● Focus on Shared Memory Parallelism
○ Fits naturally with larger course goals, follows naturally from previous course topics
○ Allows for more depth of coverage

● Faculty teaching Upper-level courses with PDC content note w/CS31:
○ Students naturally think in parallel and distributed ways from day one
○ Students start with programming and thinking skills and PDC background that allows

us to spend more time on advanced PDC in upper-level courses (can cover more
PDC and cover more in-depth than before)

27

Thank you.

Questions?

CS31 Webpages with resources: www.cs.swarthmore.edu/~newhall/cs31

Dive into Systems Textbook: diveintosystems.org/

28

