Trying to do it all in a single course: a surprisingly good idea

Tia Newhall
Swarthmore College

EduHPC-20: Workshop on Education for High Performance Computing
in conjunction with SC20
November 13, 2020
PDC at the undergraduate level

Important to expose students to breadth of PDC:
• 2 huge fields, lots of approaches/solutions/problems
• PDC increasingly touches all of CS
• Prepare students for graduate study and careers

There must be depth:
• Time and multiple opportunities to develop understanding
• problem solving/thinking/analysis/application
PDC all in one Course

Seems like a bad idea:

- Two huge fields!
- Lose developing deep/real understanding of PDC
- Lose developing PD thinking and problem solving

Actually: 1 course can provide large breadth of exposure to PDC while developing deep PDC thinking and problem solving
Why single course?

Constraints of a Small Institution

- Fewer faculty, Smaller number of courses
- Liberal Arts College: most courses outside of major
 fewer total courses in major: 8 course CS major

Constraints led to “Do it all in 1 Course” approach
Curricular Goals

Exposé to Breadth of PDC
• broad range of PDC topics, concepts, thinking, in different contexts (systems, algorithms, language, tools, applications)

Develop Depth in PDC
• Understanding, thinking, analysis, problem solving

Additional department/institution goals:
• Writing-intensive, written & oral presentations
• Research paper reading & discussion
• Independent research project
Student’s Background

Only assume students have had our intro sequence

- CS1, CS2, Intro. to Computer Systems
- Recommend students take 1 UL before this course

Aided by Intro. to Computer Systems pre-req:

- First introduces parallelism, multicore, pthreads
- All enter with some parallel thinking/analysis
- Frees up time to add more advanced PDC topics
Course Structure

Two Parts:

½ Lecture based: lecture and in-class problems
½ Seminar-style: research paper discussion

Also Lab Component:

First half: programming assn. diff lang, tools
 • Pthreads, TCP client/server, Cuda, MPI, OpenMP
 • designing experiments & analysis

Second Half: focus on course project
Lecture

- Broad range of PDC topics:
 - architecture, algorithms, analysis, systems, languages

- Overarching unifying theme of Scalability
 - Ties disparate topics together
 - Depth: apply in different contexts

- In-lecture group problem solving activities
 (Systems Eval, Parallel Soln, Alg. Analysis, Consensus, ...)
 - Students more engaged with problem and solutions
 - Students more comfortable participating in general
Paper Reading & Discussion

• Weekly in-class discussion of papers
 • Papers need to be accessible to undergrads
 • Earlier papers in a field, survey papers

• Assigned Paper Reading Groups
 • Discussion & Writing to prepare for in-class

• Professor leads in-class discussion
 • Goal: understanding of paper details, comparisons
Course Project

• Assigned part way through course
• Topic is Very Open
 • Must have main focus on PDC
 • Structured around research question
• Large written and oral presentation parts
• With more work beyond semester, many have led to publications for students
Student Assessment of Learning Goals

How has the Course affected your ability to:

1. Analyze and critically read CS papers?
2. Formulate research question, design experiments to answer?
3. Write clear & complete research paper?

Universally: students noted large improvements in their abilities of all of these:

“tremendously”
“dramatically”
“significantly” ...
What We See

• Huge improvements in student’s discussion & analyses of papers, in-class problem solving
• Impressive projects, written reports, oral presentations
 • Getting to pick the topic keeps them engaged, excited, invested in their project
• Sparks interest (and confidence) in PDC
 • Graduate school in PDC areas, seek jobs in field
 • Hear from alumni using what learn in this class
• Extremely satisfying & rewarding to teach!
Lessons Learned

1. Can do lot of breadth and keep in depth, and both are important! But can’t do it all: have to cut important & loved

2. Designing around an overarching theme helps tie topics together & provides common depth

3. Need multiple opportunities for depth
 Develop PDC thinking, analysis, problem solving

4. Give Practice in broad range of PDC lang/tools
Conclusions

Our course that covers huge breadth of PDC was born out of constraints of our institution

We think this is the right design for a PDC course at the undergraduate level regardless of institution type/constraints:

- Exposure to breadth of fields & depth
- Sparks interest in PDC
- Prepares students for graduate work & work in the field, regardless of it directly PDC-based or not...ubiquity of PDC!
Thank you

course webpage(s):

www.cs.swarthmore.edu/~newhall/cs87