
F E A T U R E A R T I C L E

46 1070-9924/98/$10.00 © 1998 IEEE IEEE COMPUTATIONAL SCIENCE & ENGINEERING

Application developers have long recognized
that scalable hardware and software are nec-
essary for parallel scalability in application
performance. Both have existed for some time

in their lowest common denominator form, and scalable
hardware—as physically distributed memories connected
through a scalable interconnection network (as a multi-
stage interconnect, k-ary n-cube, or fat tree)—has been
commercially available since the 1980s. When develop-
ers build such systems without any provision for cache
coherence, the systems are essentially “zeroth order”
scalable architectures. They provide only a scalable in-
terconnection network, and the burden of scalability falls
on the software. As a result, scalable software for such
systems exists, at some level, only in a message-passing
model. Message passing is the native model for these ar-
chitectures, and developers can only build higher-level
models on top of it.

Unfortunately, many in the high-performance com-
puting world implicitly assume that the only way to
achieve scalability in parallel software is with a message-
passing programming model. This is not necessarily true.
A class of multiprocessor architectures is now emerging
that offers scalable hardware support for cache coher-

ence. These are generally called scalable shared memory
multiprocessor architectures.1 For SSMP systems, the na-
tive programming model is shared memory, and message
passing is built on top of the shared-memory model. On
such systems, software scalability is straightforward to
achieve with a shared-memory programming model.

In a shared-memory system, every processor has di-
rect access to the memory of every other processor,
meaning it can directly load or store any shared address.
The programmer also can declare certain pieces of mem-
ory as private to the processor, which provides a simple
yet powerful model for expressing and managing paral-
lelism in an application.

Despite its simplicity and scalability, many parallel ap-
plications developers have resisted adopting a shared-
memory programming model for one reason: portabil-
ity. Shared-memory system vendors have created their
own proprietary extensions to Fortran or C for paral-
lel-software development. However, the absence of
portability has forced many developers to adopt a
portable message-passing model such as the Message
Passing Interface (MPI) or Parallel Virtual Machine
(PVM). This article presents a portable alternative to
message passing: OpenMP.

OpenMP: An Industry-
Standard API for Shared-
Memory Programming

LEONARDO DAGUM AND RAMESH MENON
SILICON GRAPHICS INC.

♦ ♦ ♦

OpenMP, the portable alternative to message passing, offers a
powerful new way to achieve scalability in software. This article
compares OpenMP to existing parallel-programming models.

♦

.

JANUARY–MARCH 1998 47

OpenMP was designed to exploit certain char-
acteristics of shared-memory architectures. The
ability to directly access memory throughout the
system (with minimum latency and no explicit
address mapping), combined with fast shared-
memory locks, makes shared-memory architec-
tures best suited for supporting OpenMP.

Why a new standard?
The closest approximation to a standard shared-
memory programming model is the now-
dormant ANSI X3H5 standards effort.2 X3H5
was never formally adopted as a standard largely
because interest waned as distributed-memory
message-passing systems (MPPs) came into
vogue. However, even though hardware vendors
support it to varying degrees, X3H5 has limita-
tions that make it unsuitable for anything other
than loop-level parallelism. Consequently, ap-
plications adopting this model are often limited
in their parallel scalability.

MPI has effectively standardized the message-
passing programming model. It is a portable,
widely available, and accepted standard for writ-
ing message-passing programs. Unfortunately,
message passing is generally a difficult way to
program. It requires that the program’s data
structures be explicitly partitioned, so the entire
application must be parallelized to work with
the partitioned data structures. There is no in-
cremental path to parallelize an application.
Furthermore, modern multiprocessor architec-
tures increasingly provide hardware support for
cache coherence; therefore, message passing is
becoming unnecessary and overly restrictive for
these systems.

Pthreads is an accepted standard for shared
memory in low-end systems. However, it is not
targeted at the technical, HPC space. There is
little Fortran support for pthreads, and it is not
a scalable approach. Even for C applications, the
pthreads model is awkward, because it is lower-
level than necessary for most scientific applica-
tions and is targeted more at providing task par-
allelism, not data parallelism. Also, portability
to unsupported platforms requires a stub library
or equivalent workaround.

Researchers have defined many new languages
for parallel computing, but these have not found
mainstream acceptance. High-Performance For-
tran (HPF) is the most popular multiprocessing
derivative of Fortran, but it is mostly geared to-
ward distributed-memory systems.

Independent software developers of scientific

applications, as well as government laboratories,
have a large volume of Fortran 77 code that
needs to get parallelized in a portable fashion.
The rapid and widespread acceptance of shared-
memory multiprocessor architectures—from
the desktop to “glass houses”—has created a
pressing demand for a portable way to program
these systems. Developers need to parallelize ex-
isting code without completely rewriting it, but
this is not possible with most existing parallel-
language standards. Only OpenMP and X3H5
allow incremental parallelization of existing
code, of which only OpenMP is scalable (see
Table 1). OpenMP is targeted at developers who
need to quickly parallelize existing scientific
code, but it remains flexible enough to support a
much broader application set. OpenMP pro-
vides an incremental path for parallel conver-
sion of any existing software. It also provides
scalability and performance for a complete re-
write or entirely new development.

What is OpenMP?
At its most elemental level, OpenMP is a set of
compiler directives and callable runtime library
routines that extend Fortran (and separately, C
and C++) to express shared-memory parallelism.
It leaves the base language unspecified, and ven-
dors can implement OpenMP in any Fortran
compiler. Naturally, to support pointers and al-
locatables, Fortan 90 and Fortran 95 require the
OpenMP implementation to include additional
semantics over Fortran 77.

Table 1: Comparing standard parallel-programming models.
X3H5 MPI Pthreads HPF OpenMP

Scalable no yes sometimes yes yes

Incremental yes no no no yes
parallelization

Portable yes yes yes yes yes

Fortran binding yes yes no yes yes

High level yes no no yes yes

Supports data yes no no yes yes
parallelism

Performance no yes no tries yes
oriented

.

48 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

OpenMP leverages many of the X3H5 con-
cepts while extending them to support coarse-
grain parallelism. Table 2 compares OpenMP
with the directive bindings specified by X3H5
and the MIPS Pro Doacross model,3 and it sum-
marizes the language extensions into one of
three categories: control structure, data envi-
ronment, or synchronization. The standard also
includes a callable runtime library with accom-
panying environment variables.

Several vendors have prod-
ucts—including compilers, de-
velopment tools, and perfor-
mance-analysis tools—that are
OpenMP aware. Typically, these
tools understand the semantics
of OpenMP constructs and
hence aid the process of writing
programs. The OpenMP Archi-
tecture Review Board includes
representatives from Digital,
Hewlett-Packard, Intel, IBM,
Kuck and Associates, and Sili-
con Graphics.

All of these companies are
actively developing compilers
and tools for OpenMP. Open
MP products are available to-
day from Silicon Graphics and
other vendors. In addition, a
number of independent soft-
ware vendors plan to use Open-
MP in future products. (For
information on individual pro-
ducts, see www.openmp.org.)

A simple example
Figure 1 presents a simple ex-
ample of computing p using
OpenMP.4 This example il-
lustrates how to parallelize a
simple loop in a shared-mem-
ory programming model. The
code would look similar with
either the Doacross or the X3-
H5 set of directives (except
that X3H5 does not have a
reduction attribute, so you
would have to code it yourself).

Program execution begins as
a single process. This initial
process executes serially, and
we can set up our problem in a
standard sequential manner,

reading and writing stdout as necessary.
When we first encounter a parallel con-
struct, in this case a parallel do, the runtime
forms a team of one or more processes and cre-
ates the data environment for each team mem-
ber. The data environment consists of one pri-
vate variable, x, one reduction variable,
sum, and one shared variable, w. All references
to x and sum inside the parallel region address
private, nonshared copies. The reduction at-

Table 2: Comparing X3H5 directives, OpenMP, and MIPS Pro Doacross functionality.
X3H5 OpenMP MIPS Pro

Overview
Orphan scope None, lexical Yes, binding Yes, through

scope only rules specified callable runtime
Query functions None Standard Yes
Runtime functions None Standard Yes
Environment variables None Standard Yes
Nested parallelism Allowed Allowed Serialized
Throughput mode Not defined Yes Yes
Conditional compilation None _OPENMP,!$ C$
Sentinel C$PAR !$OMP C$

C$PAR& !$OMP& C$&

Control structure
Parallel region Parallel Parallel Doacross
Iterative Pdo Do Doacross
Noniterative Psection Section User coded
Single process Psingle Single, User coded

Master
Early completion Pdone User coded User coded
Sequential Ordering Ordered PDO Ordered None

Data environment
Autoscope None Default(private) shared default

Default(shared)
Global objects Instance Parallel Threadprivate Linker: -Xlocal

(p + 1 instances) (p instances) (p instances)
Reduction attribute None Reduction Reduction
Private initialization None Firstprivate None

Copyin Copyin
Private persistence None Lastprivate Lastlocal

Synchronization
Barrier Barrier Barrier mp_barrier
Synchronize Synchronize Flush synchronize
Critical section Critical Section Critical mp_setlock

mp_unsetlock
Atomic update None Atomic None
Locks None Full mp_setlock

functionality mp_unsetlock

.

JANUARY–MARCH 1998 49

tribute takes an operator, such that at the end of
the parallel region it reduces the private copies
to the master copy using the specified operator.
All references to w in the parallel region address
the single master copy. The loop index variable,
i, is private by default. The compiler takes
care of assigning the appropriate iterations to
the individual team members, so in parallelizing
this loop the user need not even on know how
many processors it runs.

There might be additional control and syn-
chronization constructs within the parallel re-
gion, but not in this example. The parallel re-
gion terminates with the end do, which has an
implied barrier. On exit from the parallel region,
the initial process resumes execution using its
updated data environment. In this case, the only
change to the master’s data environment is the
reduced value of sum.

This model of execution is referred to as the
fork/join model. Throughout the course of a pro-
gram, the initial process can fork and join many
times. The fork/join execution model makes it
easy to get loop-level parallelism out of a se-
quential program. Unlike in message passing,
where the program must be completely decom-
posed for parallel execution, the shared-mem-
ory model makes it possible to parallelize just at
the loop level without decomposing the data
structures. Given a working sequential program,

it becomes fairly straightforward to parallelize
individual loops incrementally and thereby im-
mediately realize the performance advantages of
a multiprocessor system.

For comparison with message passing, Figure
2 presents the same example using MPI. Clearly,
there is additional complexity just in setting up
the problem, because we must begin with a team
of parallel processes. Consequently, we need to
isolate a root process to read and write stdout.
Because there is no globally shared data, we
must explicitly broadcast the input parameters
(in this case, the number of intervals for the in-
tegration) to all the processors. Furthermore, we
must explicitly manage the loop bounds. This re-
quires identifying each processor (myid) and
knowing how many processors will be used to ex-

program compute_pi

integer n, i

double precision w, x, sum, pi, f, a

c function to integrate

f(a) = 4.d0 / (1.d0 + a*a)

print *, ‘Enter number of intervals: ‘

read *,n

c calculate the interval size

w = 1.0d0/n

sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(x), SHARED(w)

!$OMP& REDUCTION(+: sum)

do i = 1, n

x = w * (i - 0.5d0)

sum = sum + f(x)

enddo

pi = w * sum

print *, ‘computed pi = ‘, pi

stop

end

Figure 1. Computing p in parallel using OpenMP.

program compute_pi

include ‘mpif.h’

double precision mypi, pi, w, sum, x, f, a

integer n, myid, numprocs, i, rc

c function to integrate

f(a) = 4.d0 / (1.d0 + a*a)

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

if (myid .eq. 0) then

print *, ‘Enter number of intervals:‘

read *, n

endif

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

c calculate the interval size

w = 1.0d0/n

sum = 0.0d0

do i = myid+1, n, numprocs

x = w * (i - 0.5d0)

sum = sum + f(x)

enddo

mypi = w * sum

c collect all the partial sums

call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,

$ MPI_COMM_WORLD,ierr)

c node 0 prints the answer.

if (myid .eq. 0) then

print *, ‘computed pi = ‘, pi

endif

call MPI_FINALIZE(rc)

stop

end

Figure 2. Computing p in parallel using MPI.

.

50 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

ecute the loop (numprocs).
When we finally get to the

loop, we can only sum into our
private value for mypi. To re-
duce across processors we use
the MPI_Reduce routine and
sum into pi. The storage for
pi is replicated across all pro-
cessors, even though only the
root process needs it. As a gen-
eral rule, message-passing pro-
grams waste more storage than
shared-memory programs.5

Finally, we can print the result,
again making sure to isolate
just one process for this step to
avoid printing numprocs

messages.
It is also interesting to see

how this example looks using
pthreads (see Figure 3). Natu-
rally, it’s written in C, but we
can still compare functionality
with the Fortran examples giv-
en in Figures 1 and 2.

The pthreads version is more
complex than either the Open-
MP or the MPI versions:

• First, pthreads is aimed at
providing task parallelism,
whereas the example is one
of data parallelism—paral-
lelizing a loop. The exam-
ple shows why pthreads
has not been widely used
for scientific applications.

• Second, pthreads is some-
what lower-level than we
need, even in a task- or
threads-based model. This
becomes clearer as we go
through the example.

As with the MPI version, we
need to know how many threads
will execute the loop and we
must determine their IDs so we
can manage the loop bounds.
We get the thread number as a
command-line argument and
use it to allocate an array of
thread IDs. At this time, we
also initialize a lock, reduc-
tion_mutex, which we’ll

#include <pthread.h>

#include <stdio.h>

pthread_mutex_t reduction_mutex;

pthread_t *tid;

int n, num_threads;

double pi, w;

double f(a)

double a;

{

return (4.0 / (1.0 + a*a));

}

void *PIworker(void *arg)

{

int i, myid;

double sum, mypi, x;

/* set individual id to start at 0 */

myid = pthread_self()-tid[0];

/* integrate function */

sum = 0.0;

for (i=myid+1; i<=n; i+=num_threads) {

x = w*((double)i - 0.5);

sum += f(x);

}

mypi = w*sum;

/* reduce value */

pthread_mutex_lock(&reduction_mutex);

pi += mypi;

pthread_mutex_unlock(&reduction_mutex);

return(0);

}

void main(argc,argv)

int argc;

char *argv[];

{

int i;

/* check command line */

if (argc != 3) {

printf(“Usage: %s Num-intervals Num-threads\n”, argv[0]);

exit(0);

}

/* get num intervals and num threads from command line */

n = atoi(argv[1]);

num_threads = atoi(argv[2]);

w = 1.0 / (double) n;

pi = 0.0;

tid = (pthread_t *) calloc(num_threads, sizeof(pthread_t));

/* initialize lock */

if (pthread_mutex_init(&reduction_mutex, NULL))

fprintf(stderr, “Cannot init lock\n”), exit(1);

/* create the threads */

for (i=0; i<num_threads; i++)

if(pthread_create(&tid[i], NULL, PIworker, NULL))

fprintf(stderr,”Cannot create thread %d\n”,i), exit(1);

/* join threads */

for (i=0; i<num_threads; i++)

pthread_join(tid[i], NULL);

printf(“computed pi = %.16f\n”, pi);

}

Figure 3. Computing p in parallel using pthreads.

.

JANUARY–MARCH 1998 51

need for reducing our partial sums into a global
sum for p. Our basic approach is to start a
worker thread, PIworker, for every processor
we want to work on the loop. In PIworker,
we first compute a zero-based thread ID and use
this to map the loop iterations. The loop then
computes the partial sums into mypi. We add
these into the global result pi, making sure to
protect against a race condition by locking. Fi-
nally, we need to explicitly join all our threads
before we can print out the result of the inte-
gration.

All the data scoping is implicit; that is, global
variables are shared and automatic variables are
private. There is no simple mechanism in p-
threads for making global variables private. Also,
implicit scoping is more awkward in Fortran be-
cause the language is not as strongly scoped as
C.

In terms of performance, all three models are
comparable for this simple example. Table 3
presents the elapsed time in seconds for each
program when run on a Silicon Graphics Ori-
gin2000 server, using 109 intervals for each in-
tegration. All three models are exhibiting excel-
lent scalability on a per node basis (there are two
CPUs per node in the Origin2000), as expected
for this embarrassingly parallel algorithm.

Scalability
Although simple and effective, loop-level par-
allelism is usually limited in its scalability, be-
cause it leaves some constant fraction of se-
quential work in the program that by Amdahl’s
law can quickly overtake the gains from parallel
execution. It is important, however, to distin-
guish between the type of parallelism (for ex-
ample, loop-level versus coarse-grained) and
the programming model. The type of paral-
lelism exposed in a program depends on the al-
gorithm and data structures employed and not
on the programming model (to the extent that
those algorithms and data structures can be rea-
sonably expressed within a given model).
Therefore, given a parallel algorithm and a scal-
able shared-memory architecture, a shared-
memory implementation scales as well as a mes-
sage-passing implementation.

OpenMP introduces the powerful concept of
orphan directives that simplify the task of imple-
menting coarse-grain parallel algorithms. Or-
phan directives are directives encountered out-
side the lexical extent of the parallel region.
Coarse-grain parallel algorithms typically con-

sist of only a few parallel regions, with most of
the execution taking place within those regions.

In implementing a coarse-grained parallel al-
gorithm, it becomes desirable, and often neces-
sary, to be able to specify control or synchro-
nization from anywhere inside the parallel
region, not just from the lexically contained por-
tion. OpenMP provides this functionality by
specifying binding rules for all directives and al-
lowing them to be encountered dynamically in
the call chain originating from the parallel re-
gion. In contrast, X3H5 does not allow direc-
tives to be orphaned, so all the control and syn-
chronization for the program must be lexically
visible in the parallel construct. This limitation
restricts the programmer and makes any non-
trivial coarse-grained parallel application virtu-
ally impossible to write.

A coarse-grain example
To highlight additional features in the standard,
Figure 4 presents a slightly more complicated
example, computing the energy spectrum for a
field. This is essentially a histogramming prob-
lem with a slight twist—it also generates the se-
quence in parallel. We could easily parallelize
the histogramming loop and the sequence gen-
eration as in the previous example, but in the in-
terest of performance we would like to his-
togram as we compute in order to preserve
locality.

The program goes immediately into a parallel
region with a parallel directive, declaring
the variables field and ispectrum as
shared, and making everything else private
with a default clause. The default clause
does not affect common blocks, so setup re-
mains a shared data structure.

Within the parallel region, we call initial-
ize_field() to initialize the field and is-
pectrum arrays. Here we have an example of

Table 3: Time (in seconds) to compute πusing 109 intervals
with three standard parallel-programming models.

CPUs OpenMP MPI Pthreads

1 107.7 121.4 115.4

2 53.9 60.7 62.5

4 27.0 30.3 32.4

6 17.9 20.4 22.0
8 13.5 15.2 16.7

.

52 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

orphaning the do directive. With the X3H5 di-
rectives, we would have to move these loops into
the main program so that they could be lexically
visible within the parallel directive. Clearly,
that restriction makes it difficult to write good
modular parallel programs. We use the nowait
clause on the end do directives to eliminate the

implicit barrier. Finally, we use the single di-
rective when we initialize a single internal field
point. The end single directive also can take
a nowait clause, but to guarantee correctness
we need to synchronize here.

The field gets computed in compute_field.
This could be any parallel Laplacian solver, but
in the interest of brevity we don’t include it here.
With the field computed, we are ready to com-
pute the spectrum, so we histogram the field val-
ues using the atomic directive to eliminate race
conditions in the updates to ispectrum. The
end do here has a nowait because the parallel
region ends after compute spectrum() and
there is an implied barrier when the threads join.

OpenMP design objective
OpenMP was designed to be a flexible standard,
easily implemented across different platforms.
As we discussed, the standard compriss four dis-
tinct parts:

• control structure,
• the data environment,
• synchronization, and
• the runtime library.

Control structure
OpenMP strives for a minimalist set of con-

trol structures. Experience has indicated that
only a few control structures are necessary for
writing most parallel applications. For example,
in the Doacross model, the only control struc-
ture is the doacross directive, yet this is ar-
guably the most widely used shared-memory
programming model for scientific computing.
Many of the control structures provided by
X3H5 can be trivially programmed in OpenMP
with no performance penalty. OpenMP includes
control structures only in those instances where
a compiler can provide both functionality and
performance over what a user could reasonably
program.

Our examples used only three control struc-
tures: parallel, do, and single. Clearly, the
compiler adds functionality in parallel and
do directives. For single, the compiler adds
performance by allowing the first thread reach-
ing the single directive to execute the code.
This is nontrivial for a user to program.

Data environment
Associated with each process is a unique data

environment providing a context for execution.

parameter(N = 512, NZ = 16)

common /setup/ npoints, nzone

dimension field(N), ispectrum(NZ)

data npoints, nzone / N, NZ /

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(field, ispectrum)

call initialize_field(field, ispectrum)

call compute_field(field, ispectrum)

call compute_spectrum(field, ispectrum)

!$OMP END PARALLEL

call display(ispectrum)

stop

end

subroutine initialize_field(field, ispectrum)

common /setup/ npoints, nzone

dimension field(npoints), ispectrum(nzone)

!$OMP DO

do i=1, nzone

ispectrum(i) = 0.0

enddo

!$OMP END DO NOWAIT

!$OMP DO

do i=1, npoints

field(i) = 0.0

enddo

!$OMP END DO NOWAIT

!$OMP SINGLE

field(npoints/4) = 1.0

!$OMP END SINGLE

return

end

subroutine compute_spectrum(field, ispectrum)

common /setup/ npoints, nzone

dimension field(npoints), ispectrum(nzone)

!$OMP DO

do i= 1, npoints

index = field(i)*nzone + 1

!$OMP ATOMIC

ispectrum(index) = ispectrum(index) + i

enddo

!$OMP END DO NOWAIT

return

end

Figure 4. A coarse-grained example.

.

JANUARY–MARCH 1998 53

The initial process at program start-up has an
initial data environment that exists for the du-
ration of the program. It contructs new data
environments only for new processes created
during program execution. The objects consti-
tuting a data environment might have one of
three basic attributes: shared, private, or
reduction.

The concept of reduction as an attribute is
generalized in OpenMP. It allows the compiler
to efficiently implement reduction opera-
tions. This is especially important on cache-
based systems where the compiler can eliminate
any false sharing. On large-scale SSMP archi-
tectures, the compiler also might choose to im-
plement tree-based reductions for even better
performance.

OpenMP has a rich data environment. In ad-
dition to the reduction attribute, it allows
private initialization with firstprivate
and copyin, and private persistence with
lastprivate. None of these features exist in

X3H5, but experience has indicated a real need
for them.

Global objects can be made private with
the threadprivate directive. In the interest
of performance, OpenMP implements a “p-
copy” model for privatizing global objects:
threadprivate will create p copies of the
global object, one for each of the p members in
the team executing the parallel region. Often,
however, it is desirable either from memory
constraints or for algorithmic reasons to priva-
tize only certain elements because of a com-
pound global object. OpenMP allows individ-
ual elements of a compound global object to
appear in a private list.

Synchronization
There are two types of synchronization: im-

plicit and explicit. Implicit synchronization
points exist at the beginning and end of parallel
constructs and at the end of control constructs
(for example, do and single). In the case of

Engineering of Complex Distributed Systems track
Presenting requirements for complex distributed systems, recent research results, and
technological developments apt to be transferred into mature applications and
products.

Actors & Agents
Representing a cross sectin of current work involving actors and agents—autonomy,
identity, interaction, communication, coordination, mobility, persistence, protocols,
distribution, and parallelism.

Object-Oriented Systems track
Showcasing traditional and innovative uses of object-oriented languages, systems, and
technologies.

Also, regular columns on mobile computing, distributed multimedia applications,
distributed databases, and high-performance computing trends from around the world.
IEEE Concurrency chronicles the latest advances in high-performance computing,
distributed systems, parallel processing, mobile computing, embedded systems,
multimedia applications, and the Internet.

Check us out at http://computer.org/concurrencyCheck us out at http://computer.org/concurrency

® ®
IEEE COMPUTER SOCIETY

Like Comparing
Alligators to Armadillos

Distributed databases: rethinking integrity
Parallel computing trends in European industry
Application-centric parallel multimedia software
Distributed programming tools

Distributed databases: rethinking integrity
Parallel computing trends in European industry
Application-centric parallel multimedia software
Distributed programming tools

ConcurrencyConcurrencyIEEE

PARALL E L , D I S TR IBUTED & MOB I L E COMPUT ING / OCTOBER–DECEMBER 1997

AlsoAlso

Coming in 1998Coming in 1998
ConcurrencyIEEE

.

54 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

do sections, and single, the implicit syn-
chronization can be removed with the nowait
clause.

The user specifies explicit synchronization to
manage order or data dependencies. Synchro-
nization is a form of interprocess communication
and, as such, can greatly affect program perfor-
mance. In general, minimizing a program’s syn-
chronization requirements (explicit and implicit)
achieves the best performance. For this reason,
OpenMP provides a rich set of synchronization
features so developers can best tune the synchro-
nization in an application.

We saw an example using the Atomic direc-
tive. This directive allows the compiler to take
advantage of available hardware for implement-
ing atomic updates to a variable. OpenMP also
provides a Flush directive for creating more
complex synchronization constructs such as
point-to-point synchronization. For ultimate
performance, point-to-point synchronization
can eliminate the implicit barriers in the energy-
spectrum example. All the OpenMP synchro-
nization directives can be orphaned. As discussed
earlier, this is critically important for imple-
menting coarse-grained parallel algorithms.

Runtime library and environment variables
In addition to the directive set described,

OpenMP provides a callable runtime library
and accompanying environment variables. The
runtime library includes query and lock func-
tions. The runtime functions allow an applica-
tion to specify the mode in which it should run.
An application developer might wish to maxi-
mize the system’s throughput performance,
rather than time to completion. In such cases,
the developer can tell the system to dynamically
set the number of processes used to execute
parallel regions. This can have a dramatic effect
on the system’s throughput performance with
only a minimal impact on the program’s time to
completion.

The runtime functions also allow a developer
to specify when to enable nested parallelism,
which allows the system to act accordingly
when it encounters a nested parallel construct.
On the other hand, by disabling it, a developer
can write a parallel library that will perform in
an easily predictable fashion whether encoun-
tered dynamically from within or outside a par-
allel region.

OpenMP also provides a conditional compi-
lation facility both through the C language pre-
processor (CPP) and with a Fortran comment

sentinel. This allows calls to the runtime library
to be protected as compiler directives, so Open-
MP code can be compiled on non-OpenMP sys-
tems without linking in a stub library or using
some other awkward workaround.

OpenMP provides standard environment
variables to accompany the runtime library
functions where it makes sense and to simplify
the start-up scripts for portable applications.
This helps application developers who, in addi-
tion to creating portable applications, need a
portable runtime environment.

OpenMP is supported by a number of
hardware and software vendors, and
we expect support to grow. OpenMP
has been designed to be extensible

and evolve with user requirements. The
OpenMP Architecture Review Board was created
to provide long-term support and enhancements
of the OpenMP specifications. The OARB char-
ter includes interpreting OpenMP specifications,
developing future OpenMP standards, address-
ing issues of validation of OpenMP implementa-
tions, and promoting OpenMP as a de facto stan-
dard.

Possible extensions for Fortran include greater
support for nested parallelism and support for
shaped arrays. Nested parallelism is the ability
to create a new team of processes from within an
existing team. It can be useful in problems
exhibiting both task and data parallelism. For ex-
ample, a natural application for nested paral-
lelism would be parallelizing a task queue where-
in the tasks involve large matrix multiplies.

Shaped arrays refers to the ability to explicitly
assign the storage for arrays to specific memory
nodes. This ability is useful for improving per-
formance on Non-Uniform Memory architec-
tures (NUMAs) by reducing the number of
non-local memory references made by a proces-
sor.

The OARB is currently developing the spec-
ification of C and C++ bindings and is also de-
veloping validation suites for tesing OpenMP
implementations. ♦

References
1. D.E. Lenoski and W.D. Weber, Scalable Shared-

Memory Multiprocessing, Morgan Kaufmann, San
Francisco, 1995.

.

JANUARY–MARCH 1998 55

2. B. Leasure, ed., Parallel Processing Model for High-
Level Programming Languages, proposed draft,
American National Standard for Information Pro-
cessing Systems, Apr. 5, 1994.

3. MIPSpro Fortran77 Programmer’s Guide, Silicon
Graphics, Mountain View, Calif., 1996; http://
techpubs.sgi.com/library/dynaweb_bin/0640/bi/
nph-dynaweb.cgi/dynaweb/SGI_Developer/
MproF77_PG/.

4. S. Ragsdale, ed., Parallel Programming Primer, Intel
Scientific Computers, Santa Clara, Calif., March
1990.

5. J. Brown, T. Elken, and J. Taft, Silicon Graphics
Technical Servers in the High Throughput Environ-
ment, Silicon Graphics Inc., 1995; http://www.
sgi.com/tech/challenge.html.

Leonardo Dagum works for Silicon Graphics in the
System Performance group, where he helped define
the OpenMP Fortran API. His research interests include
parallel algorithms and performance modelling for

parallel systems. He is the author of over 30 refereed
publications relating to these subjects. He received his
MS and PhD in aeronautics and astronautics from
Stanford. Contact him at M/S 580, 2011 N. Shoreline
Blvd., Mountain View, CA 94043-1389; dagum@
sgi.com.

Ramesh Menon is Silicon Graphics’ representative to
the OpenMP Architicture Review Board and served as
the board’s first chairman. He managed the writing of
the OpenMP Fortran API. His research interests include
parallel-programming models, performance charac-
terization, and computational mechanics. He received
an MS in mechanical engineering from Duke Univer-
sity and a PhD in aerospace engineering from Texas
A&M. He was awarded a National Science Foundation
Fellowship and was a principal contributor to the NSF
Grand Challenge Coupled Fields project at the Uni-
veristy of Colorado, Boulder. Contact him at
menon@sgi.com.

Coming Next Issue
Feature Transformation and Subset Selection

As computer and database technologies have advanced, humans are relying more heavily on
computers to accumulate, process, and make use of data. Machine learning, knowledge discovery,
and data mining are some of the AI tools that help us accomplish those tasks. To use those tools
effectively, however, data must be preprocessed before it can be presented to any learning, dis-
covering, or visualizing algorithm. As this issue will show, feature transformation and subset selec-
tion are two vital data-preprocessing tools for making effective use of data.

Also Coming in 1998
• Self-Adaptive Software
• Autonomous Space Systems
• Knowlege Representation: Ontologies
• Intelligent Agents: The Crossroads between AI and Information Technology
• Intelligent Vehicles
• Intelligent Information Retrieval

IEEE Intelligent Systems (formerly IEEE Expert) covers the full range of intelligent system develop-
ments for the AI practitioner, researcher, educator, and user.

IEEE Intelligent Systems
IEEE

...AND MORE!

AI IN HEALTH CARE
INTELLIGENT AGENTSSELF-ADAPTIVE SOFTWAREDATA-MINING TOOLSINTELLIGENT VEHICLES

AUTONOMOUS SPACE SYSTEMS

& the i r app l i cat ions

IEEE

.

