
Processes

CS31, Week 10
Prof. Jason Waterman
November 15, 2012

Jason Waterman, Swarthmore College 2

Topics for today

•The UNIX process abstraction
•Process lifecycle

•Creating processes: forking
•Running new programs within a process
•Terminating and reaping processes

•Signaling processes

Jason Waterman, Swarthmore College 3

What is a process?

Jason Waterman, Swarthmore College 3

What is a process?

•A process is the OS's abstraction for execution
•A process is an instance of a program in execution.
•i.e., each process is running a program; there may be

many processes running the same program

Jason Waterman, Swarthmore College 3

What is a process?

•A process is the OS's abstraction for execution
•A process is an instance of a program in execution.
•i.e., each process is running a program; there may be

many processes running the same program

•A process provides
•Private address space
• Through the mechanism of virtual memory!

•Illusion of exclusive use of processor

Jason Waterman, Swarthmore College

Process context

4

Jason Waterman, Swarthmore College

Process context

•Process context is the state that the operating system
needs to run a process

4

Jason Waterman, Swarthmore College

Process context

•Process context is the state that the operating system
needs to run a process
•1) Address space
• The memory that the process can access

• Consists of various pieces: the program code, global/static variables, heap,
stack, etc.

4

Jason Waterman, Swarthmore College

Process context

•Process context is the state that the operating system
needs to run a process
•1) Address space
• The memory that the process can access

• Consists of various pieces: the program code, global/static variables, heap,
stack, etc.

•2) Processor state
• The CPU registers associated with the running process

• Includes general purpose registers, program counter, stack pointer, etc.

4

Jason Waterman, Swarthmore College

Process context

•Process context is the state that the operating system
needs to run a process
•1) Address space
• The memory that the process can access

• Consists of various pieces: the program code, global/static variables, heap,
stack, etc.

•2) Processor state
• The CPU registers associated with the running process

• Includes general purpose registers, program counter, stack pointer, etc.

•3) OS resources
• Various OS state associated with the process

• Examples: page table, file table, network sockets, etc.

4

Jason Waterman, Swarthmore College 5

Context switches

Jason Waterman, Swarthmore College 5

Context switches

• Multiple processes can run simultaneously.
• On a single CPU system, only one process is running on the CPU at a time.

• But can have concurrent execution of processes

• On a multi-CPU (or multi-core) system, multiple processes can run in parallel.

• The OS will timeshare each CPU/core, rapidly switching processes across them all.

Jason Waterman, Swarthmore College 5

Context switches

• Multiple processes can run simultaneously.
• On a single CPU system, only one process is running on the CPU at a time.

• But can have concurrent execution of processes

• On a multi-CPU (or multi-core) system, multiple processes can run in parallel.

• The OS will timeshare each CPU/core, rapidly switching processes across them all.

• Switching a CPU from running one process to another is called a
context switch.
• (1) Save the context of the currently running process,

• (2) Restore the context of some previously preempted process

• (3) Resume execution of the newly restored process

Jason Waterman, Swarthmore College 5

Context switches

• Multiple processes can run simultaneously.
• On a single CPU system, only one process is running on the CPU at a time.

• But can have concurrent execution of processes

• On a multi-CPU (or multi-core) system, multiple processes can run in parallel.

• The OS will timeshare each CPU/core, rapidly switching processes across them all.

• Switching a CPU from running one process to another is called a
context switch.
• (1) Save the context of the currently running process,

• (2) Restore the context of some previously preempted process

• (3) Resume execution of the newly restored process

• Deciding when to preempt current process and restart previously
preempted process is known as scheduling
• Performed by part of the OS called a scheduler

Jason Waterman, Swarthmore College

Process IDs

•Each process has a unique positive process ID
(PID)

•getpid returns current process’s PID

•getppid returns PID of parent of current process

6

pid_t getpid(void);
pid_t getppid(void);

Jason Waterman, Swarthmore College 7

Process states

• At any moment, a process is in one of several states:
• Ready:

• Process is waiting to be executed

• Running:

• Process is executing on a CPU

• Stopped:

• Process is suspended (due to receiving a certain signal) and will not be scheduled

• More on signals soon...

• Waiting (or sleeping or blocked):

• Process is waiting for an event to occur, such as completion of I/O, timer, etc.

• Why is this different than “ready” ?

• Terminated:

• Process is stopped permanently, e.g., by returning from main, or by calling exit

• As the process executes, it moves between these states
• What state is the process in most of the time?

Jason Waterman, Swarthmore College

Process lifecycle

8

Ready

Stopped

Blocked

Terminated

Running

Jason Waterman, Swarthmore College

Process lifecycle

8

new process

Ready

Stopped

Blocked

Terminated

Running

Jason Waterman, Swarthmore College

Process lifecycle

8

new process

Ready

Stopped

Blocked

Terminated

Running

Jason Waterman, Swarthmore College

Process lifecycle

8

new process

Waitin
g for event

e.g., I/
O, tim

er, ..
.Ready

Stopped

Blocked

Terminated

Running

Jason Waterman, Swarthmore College

Process lifecycle

8

new process Event occurs

Waitin
g for event

e.g., I/
O, tim

er, ..
.Ready

Stopped

Blocked

Terminated

Running

Jason Waterman, Swarthmore College

Process lifecycle

8

new process Event occurs

SIGSTOP signal

Waitin
g for event

e.g., I/
O, tim

er, ..
.Ready

Stopped

Blocked

Terminated

Running

Jason Waterman, Swarthmore College

Process lifecycle

8

new process Event occurs

SIGSTOP signal

Waitin
g for event

e.g., I/
O, tim

er, ..
.

SIGCONT signal

Ready

Stopped

Blocked

Terminated

Running

Jason Waterman, Swarthmore College

Process lifecycle

8

new process

Terminate

Event occurs

SIGSTOP signal

Waitin
g for event

e.g., I/
O, tim

er, ..
.

SIGCONT signal

Terminate

Terminate

Ready

Stopped

Blocked

Terminated

Running

Jason Waterman, Swarthmore College 9

Topics for today

•The UNIX process abstraction
•Process lifecycle

•Creating processes: forking
•Running new programs within a process
•Terminating and reaping processes

•Signaling processes

Jason Waterman, Swarthmore College 10

How are processes created?

Jason Waterman, Swarthmore College 10

How are processes created?

• Typically, new process is created when user runs a program
• E.g., Double-click an application, or type a command at the shell

Jason Waterman, Swarthmore College 10

How are processes created?

• Typically, new process is created when user runs a program
• E.g., Double-click an application, or type a command at the shell

• In UNIX, starting a new program is done by some other process
• The shell is a process itself!

• So are the Dock and Finder in MacOS (a variant of UNIX)

Jason Waterman, Swarthmore College 10

How are processes created?

• Typically, new process is created when user runs a program
• E.g., Double-click an application, or type a command at the shell

• In UNIX, starting a new program is done by some other process
• The shell is a process itself!

• So are the Dock and Finder in MacOS (a variant of UNIX)

• One process (e.g., the shell) is creating another process (the
command you want to run)
• This is called forking

• Every process has a parent process

Jason Waterman, Swarthmore College 10

How are processes created?

• Typically, new process is created when user runs a program
• E.g., Double-click an application, or type a command at the shell

• In UNIX, starting a new program is done by some other process
• The shell is a process itself!

• So are the Dock and Finder in MacOS (a variant of UNIX)

• One process (e.g., the shell) is creating another process (the
command you want to run)
• This is called forking

• Every process has a parent process

• Chicken-and-egg problem: How does first process get created?

Jason Waterman, Swarthmore College 10

How are processes created?

• Typically, new process is created when user runs a program
• E.g., Double-click an application, or type a command at the shell

• In UNIX, starting a new program is done by some other process
• The shell is a process itself!

• So are the Dock and Finder in MacOS (a variant of UNIX)

• One process (e.g., the shell) is creating another process (the
command you want to run)
• This is called forking

• Every process has a parent process

• Chicken-and-egg problem: How does first process get created?
• At boot time, the OS creates the first process, called init, which is

responsible for starting up many other processes

Jason Waterman, Swarthmore College 11

fork: Creating New Processes

Jason Waterman, Swarthmore College 11

fork: Creating New Processes

•int fork(void)
•creates a new process (child process) that is identical to the

calling process (parent process)

Jason Waterman, Swarthmore College 11

fork: Creating New Processes

•int fork(void)
•creates a new process (child process) that is identical to the

calling process (parent process)

•returns 0 to the child process

•returns child’s process ID (pid) to the parent process

if (fork() == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Jason Waterman, Swarthmore College 11

fork: Creating New Processes

•int fork(void)
•creates a new process (child process) that is identical to the

calling process (parent process)

•returns 0 to the child process

•returns child’s process ID (pid) to the parent process

•Fork is interesting (and often confusing) because it is called
once but returns twice

if (fork() == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

• Parent and child process both run the same program.
• Only difference is the return value from fork()

• Child’s address space starts as an exact copy of parent’s
• They do not share the memory – instead they each have a private copy.

• Also have the same open files with the same offsets into the files.

• Includes stdin, stdout, and stderr

Jason Waterman, Swarthmore College 12

Fork Example #1

• Parent and child process both run the same program.
• Only difference is the return value from fork()

• Child’s address space starts as an exact copy of parent’s
• They do not share the memory – instead they each have a private copy.

• Also have the same open files with the same offsets into the files.

• Includes stdin, stdout, and stderr

Jason Waterman, Swarthmore College 12

Fork Example #1

void fork1()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {
 printf("Child has x = %d\n", ++x);
 } else {
 printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

• Parent and child process both run the same program.
• Only difference is the return value from fork()

• Child’s address space starts as an exact copy of parent’s
• They do not share the memory – instead they each have a private copy.

• Also have the same open files with the same offsets into the files.

• Includes stdin, stdout, and stderr

Jason Waterman, Swarthmore College 12

Fork Example #1

void fork1()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {
 printf("Child has x = %d\n", ++x);
 } else {
 printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

Parent has x = 0
Bye from process 9991 with x = 0
Child has x = 2
Bye from process 9992 with x = 2

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 13

Fork Example #2

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 13

Fork Example #2

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} L0

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 13

Fork Example #2

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} L0 L1

L1

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 13

Fork Example #2

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} L0 L1

L1

Bye
Bye

Bye
Bye

Jason Waterman, Swarthmore College 14

Fork Example #3

•Key Points
•Both parent and child can continue forking

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

Jason Waterman, Swarthmore College 14

Fork Example #3

•Key Points
•Both parent and child can continue forking

L0

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

Jason Waterman, Swarthmore College 14

Fork Example #3

•Key Points
•Both parent and child can continue forking

L0

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

L1

L1

Jason Waterman, Swarthmore College 14

Fork Example #3

•Key Points
•Both parent and child can continue forking

L0

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

L2

L2

L2

L2

L1

L1

Jason Waterman, Swarthmore College 14

Fork Example #3

•Key Points
•Both parent and child can continue forking

L0

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

L2

L2

L2

L2

Bye
Bye

Bye
Bye
Bye
Bye

Bye
Bye

L1

L1

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 15

Fork Example #4

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 15

Fork Example #4

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 15

Fork Example #4

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0 L1

Bye

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 15

Fork Example #4

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0 L1

Bye

L2

Bye

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 15

Fork Example #4

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0 L1

Bye

L2

Bye

Bye
Bye

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 16

Fork Example #5

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 16

Fork Example #5

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 16

Fork Example #5

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0 Bye

L1

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 16

Fork Example #5

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0 Bye

L1 Bye

L2

•Key Points
•Both parent and child can continue forking

Jason Waterman, Swarthmore College 16

Fork Example #5

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0 Bye

L1

Bye

Bye

Bye

L2

Jason Waterman, Swarthmore College 17

Starting new programs

Jason Waterman, Swarthmore College 17

Starting new programs

•How do we start a new program, instead of copying the
parent?

Jason Waterman, Swarthmore College 17

Starting new programs

•How do we start a new program, instead of copying the
parent?

•Use the UNIX execve() system call

Jason Waterman, Swarthmore College 17

Starting new programs

•How do we start a new program, instead of copying the
parent?

•Use the UNIX execve() system call

•int execve(const char *filename,
 char *const argv [],
 char *const envp[]);
•filename: name of executable file to run

•argv: Command line arguments

•envp: environment variable settings (e.g., $PATH, $HOME, etc.)

Jason Waterman, Swarthmore College 18

Starting new programs

•execve() does not fork a new process!
•Rather, it replaces the address space and CPU state of

the current process
•Loads the new address space from the executable file

and starts it from main()
•So, to start a new program, use fork() followed by
execve()

Jason Waterman, Swarthmore College 19

Using fork and exec

int main(int argc, char **argv) {
 if (fork() == 0) { /* Child process */
 char *newargs[3];
 printf(“Hello, I am the child process.\n”);
 newargs[0] = “/bin/echo”; /* Convention! Not required!! */
 newargs[1] = “some random string”;
 newargs[2] = NULL; /* Indicate end of args array */
 if (execv(“/bin/echo”, newargs)) {
 printf(“warning: execv returned an error.\n”);
 exit(-1);
 }
 printf(“Child process should never get here\n”);
 exit(42);
 }
}

Stephen Chong, Harvard University

Intermission

20

Stephen Chong, Harvard University

Intermission

You are a prisoner sentenced to death. The
Emperor offers you a chance to live by playing a simple

game. He gives you 50 black marbles, 50 white marbles and 2
empty bowls. He says, "Divide these 100 marbles into these 2 bowls,

any way you like so long as you use all the marbles. Then I will blindfold
you and mix the bowls around. You then can choose one bowl and remove

ONE marble. If the marble is WHITE you will live, but if the marble is
BLACK... you will die."

How do you divide the marbles up so that you have the
greatest probability of choosing a WHITE

marble?

http://www.braingle.com/

20

Jason Waterman, Swarthmore College 21

Topics for today

•The UNIX process abstraction
•Process lifecycle

•Creating processes: forking
•Running new programs within a process
•Terminating and reaping processes

•Signaling processes

Jason Waterman, Swarthmore College

Terminating a process

•A process terminates for one of 3 reasons:
•(1) return from the main() procedure

•(2) call to the exit() function

•(3) receive a signal whose default action is to terminate

22

Jason Waterman, Swarthmore College 23

exit: Destroying Process

Jason Waterman, Swarthmore College 23

exit: Destroying Process

• void exit(int exit_status)

Jason Waterman, Swarthmore College 23

exit: Destroying Process

• void exit(int exit_status)
•Exits a process with specified exit status.

Jason Waterman, Swarthmore College 23

exit: Destroying Process

• void exit(int exit_status)
•Exits a process with specified exit status.

•By convention, status of 0 is a “normal” exit, non-zero
indicates an error of some kind.

Jason Waterman, Swarthmore College 23

exit: Destroying Process

• void exit(int exit_status)
•Exits a process with specified exit status.

•By convention, status of 0 is a “normal” exit, non-zero
indicates an error of some kind.

•atexit() registers functions to be executed upon exit.
void cleanup(void) {
 printf("cleaning up\n");
}

void fork6() {
 atexit(cleanup);
 fork();
 exit(0);
}

Jason Waterman, Swarthmore College

Zombies

24

•When a process terminates (for whatever reason) OS does
not remove it from system immediately

Jason Waterman, Swarthmore College

Zombies

24

•When a process terminates (for whatever reason) OS does
not remove it from system immediately

•Process stays until it is reaped by parent

Jason Waterman, Swarthmore College

Zombies

24

•When a process terminates (for whatever reason) OS does
not remove it from system immediately

•Process stays until it is reaped by parent
•When parent reaps a child process, OS gives the parent the exit

status of child, and cleans up child

Jason Waterman, Swarthmore College

Zombies

24

•When a process terminates (for whatever reason) OS does
not remove it from system immediately

•Process stays until it is reaped by parent
•When parent reaps a child process, OS gives the parent the exit

status of child, and cleans up child

•A terminated process that has not
been reaped is called a zombie process

•How do you reap a child process?

Jason Waterman, Swarthmore College

Zombies

24

Jason Waterman, Swarthmore College 25

wait: Synchronizing with Children

Jason Waterman, Swarthmore College 25

wait: Synchronizing with Children

• int wait(int *child_status)
• Suspends parent process until one of its children terminates

• Return value is the pid of the child process that terminated

• if child_status != NULL, it will point to the child's return status

Jason Waterman, Swarthmore College 25

wait: Synchronizing with Children

• int wait(int *child_status)
• Suspends parent process until one of its children terminates

• Return value is the pid of the child process that terminated

• if child_status != NULL, it will point to the child's return status

• child_status can be accessed using several macros:
• WIFEXITED(child_status) == 1 if child exited due to call to exit()
• WEXITSTATUS(child_status) gives the return code passed to exit()
• WCOREDUMP(child_status) == 1 if child dumped core.

• And others (see “man 2 wait”)

Jason Waterman, Swarthmore College 26

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

Jason Waterman, Swarthmore College 26

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

Jason Waterman, Swarthmore College 26

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC

Jason Waterman, Swarthmore College 26

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

Jason Waterman, Swarthmore College 26

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

Jason Waterman, Swarthmore College 26

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

CT

Jason Waterman, Swarthmore College 26

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

CT Bye

• wait() returns status of exited children in arbitrary order.

Jason Waterman, Swarthmore College 27

What if multiple child processes exit?

• wait() returns status of exited children in arbitrary order.
#define N 10

void fork10()
{
 pid_t pid[N];
 int i, child_status;
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
}

Jason Waterman, Swarthmore College 27

What if multiple child processes exit?

• wait() returns status of exited children in arbitrary order.
#define N 10

void fork10()
{
 pid_t pid[N];
 int i, child_status;
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
}

Jason Waterman, Swarthmore College 27

What if multiple child processes exit?

linux> ./fork10
Child 2625 terminated with exit status 195
Child 2627 terminated with exit status 197
Child 2626 terminated with exit status 196
Child 2624 terminated with exit status 194
Child 2623 terminated with exit status 193
Child 2622 terminated with exit status 192
Child 2621 terminated with exit status 191
Child 2620 terminated with exit status 190
...

Jason Waterman, Swarthmore College 28

waitpid(): Waiting for a specific process

Jason Waterman, Swarthmore College 28

waitpid(): Waiting for a specific process

•pid_t waitpid(pid_t child_pid,
 int *status,
 int options)
• Causes parent to wait for a specific child process to exit.

Jason Waterman, Swarthmore College 28

waitpid(): Waiting for a specific process

•pid_t waitpid(pid_t child_pid,
 int *status,
 int options)
• Causes parent to wait for a specific child process to exit.

• Most general form of wait
•child_pid > 0: wait for specific child to exit

•child_pid = -1: wait for any child to exit

Jason Waterman, Swarthmore College 28

waitpid(): Waiting for a specific process

•pid_t waitpid(pid_t child_pid,
 int *status,
 int options)
• Causes parent to wait for a specific child process to exit.

• Most general form of wait
•child_pid > 0: wait for specific child to exit

•child_pid = -1: wait for any child to exit

• return value is PID of child process

Jason Waterman, Swarthmore College 28

waitpid(): Waiting for a specific process

•pid_t waitpid(pid_t child_pid,
 int *status,
 int options)
• Causes parent to wait for a specific child process to exit.

• Most general form of wait
•child_pid > 0: wait for specific child to exit

•child_pid = -1: wait for any child to exit

• return value is PID of child process

•options can be used to specify if call should return immediately (with
return value of 0) if no terminated children, and also whether we are
interested in stopped processes

Jason Waterman, Swarthmore College 28

waitpid(): Waiting for a specific process

•pid_t waitpid(pid_t child_pid,
 int *status,
 int options)
• Causes parent to wait for a specific child process to exit.

• Most general form of wait
•child_pid > 0: wait for specific child to exit

•child_pid = -1: wait for any child to exit

• return value is PID of child process

•options can be used to specify if call should return immediately (with
return value of 0) if no terminated children, and also whether we are
interested in stopped processes

•status encodes information about how child exited (or was stopped)

Jason Waterman, Swarthmore College 29

waitpid(): Waiting for a specific process

•pid_t waitpid(pid_t child_pid,
 int *status,
 int options)

Jason Waterman, Swarthmore College 29

waitpid(): Waiting for a specific process

•pid_t waitpid(pid_t child_pid,
 int *status,
 int options)

void fork11()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = 0; i < N; i++) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }

Jason Waterman, Swarthmore College 29

waitpid(): Waiting for a specific process

•pid_t waitpid(pid_t child_pid,
 int *status,
 int options)

void fork11()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = 0; i < N; i++) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }

linux> ./fork11
Child 3064 terminated with exit status 100
Child 3065 terminated with exit status 101
Child 3066 terminated with exit status 102
Child 3067 terminated with exit status 103
Child 3068 terminated with exit status 104
Child 3069 terminated with exit status 105
Child 3070 terminated with exit status 106
...

Jason Waterman, Swarthmore College 30

Back to the zombies...

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

•Zombie example

Jason Waterman, Swarthmore College 30

Back to the zombies...

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

•Zombie example

Jason Waterman, Swarthmore College 30

Back to the zombies...

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

linux> ./zombie &

•Zombie example

Jason Waterman, Swarthmore College 30

Back to the zombies...

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

linux> ./zombie &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640

•Zombie example

Jason Waterman, Swarthmore College 30

Back to the zombies...

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

linux> ./zombie &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 zombie
 6640 ttyp9 00:00:00 zombie <defunct>
 6641 ttyp9 00:00:00 ps
linux>

•Zombie example

•ps shows child process as “defunct”

Jason Waterman, Swarthmore College 30

Back to the zombies...

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

linux> ./zombie &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 zombie
 6640 ttyp9 00:00:00 zombie <defunct>
 6641 ttyp9 00:00:00 ps
linux>

Jason Waterman, Swarthmore College 31

Orphans

Jason Waterman, Swarthmore College 31

Orphans

•So bad things happen if the parent does not wait for the
child...

Jason Waterman, Swarthmore College 31

Orphans

•So bad things happen if the parent does not wait for the
child...

•If the child exits first, child becomes a zombie

Jason Waterman, Swarthmore College 31

Orphans

•So bad things happen if the parent does not wait for the
child...

•If the child exits first, child becomes a zombie

•If the parent exits first, the child becomes an orphan.

Jason Waterman, Swarthmore College 31

Orphans

•So bad things happen if the parent does not wait for the
child...

•If the child exits first, child becomes a zombie

•If the parent exits first, the child becomes an orphan.
•Problem: All processes (except for init) need a parent process.

Jason Waterman, Swarthmore College 31

Orphans

•So bad things happen if the parent does not wait for the
child...

•If the child exits first, child becomes a zombie

•If the parent exits first, the child becomes an orphan.
•Problem: All processes (except for init) need a parent process.

•Orphan processes “adopted” by init (PID 1 on most UNIX
systems)

Jason Waterman, Swarthmore College 31

Orphans

•So bad things happen if the parent does not wait for the
child...

•If the child exits first, child becomes a zombie

•If the parent exits first, the child becomes an orphan.
•Problem: All processes (except for init) need a parent process.

•Orphan processes “adopted” by init (PID 1 on most UNIX
systems)

•If child subsequently terminates, it will be reaped by init
• init reaps zombie orphans...

Jason Waterman, Swarthmore College 32

Nonterminating Child Example

•Child process still active even though parent has
terminated

•Must kill explicitly, or else will keep running indefinitely

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
}

Jason Waterman, Swarthmore College 32

linux> ./fork8
Terminating Parent, PID = 6675
Running Child, PID = 6676

Nonterminating Child Example

•Child process still active even though parent has
terminated

•Must kill explicitly, or else will keep running indefinitely

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
}

Jason Waterman, Swarthmore College 32

linux> ./fork8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 fork8
 6677 ttyp9 00:00:00 ps

Nonterminating Child Example

•Child process still active even though parent has
terminated

•Must kill explicitly, or else will keep running indefinitely

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
}

Jason Waterman, Swarthmore College 32

linux> ./fork8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 fork8
 6677 ttyp9 00:00:00 ps
linux> kill 6676

Nonterminating Child Example

•Child process still active even though parent has
terminated

•Must kill explicitly, or else will keep running indefinitely

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
}

Jason Waterman, Swarthmore College 32

linux> ./fork8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 fork8
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Nonterminating Child Example

•Child process still active even though parent has
terminated

•Must kill explicitly, or else will keep running indefinitely

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
}

Jason Waterman, Swarthmore College 33

Zombie orphan

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

•Zombie example

Jason Waterman, Swarthmore College 33

Zombie orphan

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

•Zombie example

Jason Waterman, Swarthmore College 33

linux> ./zombie &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640

Zombie orphan

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

•Zombie example

Jason Waterman, Swarthmore College 33

linux> ./zombie &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 zombie
 6640 ttyp9 00:00:00 zombie <defunct>
 6641 ttyp9 00:00:00 ps

Zombie orphan

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

•Zombie example

•ps shows child process as “defunct”

Jason Waterman, Swarthmore College 33

linux> ./zombie &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 zombie
 6640 ttyp9 00:00:00 zombie <defunct>
 6641 ttyp9 00:00:00 ps

Zombie orphan

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

•Zombie example

•ps shows child process as “defunct”
•Killing parent allows child to be reaped

Jason Waterman, Swarthmore College 33

linux> ./zombie &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 zombie
 6640 ttyp9 00:00:00 zombie <defunct>
 6641 ttyp9 00:00:00 ps

Zombie orphan

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

•Zombie example

•ps shows child process as “defunct”
•Killing parent allows child to be reaped

Jason Waterman, Swarthmore College 33

linux> ./zombie &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 zombie
 6640 ttyp9 00:00:00 zombie <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated

Zombie orphan

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

•Zombie example

•ps shows child process as “defunct”
•Killing parent allows child to be reaped

Jason Waterman, Swarthmore College 33

linux> ./zombie &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 zombie
 6640 ttyp9 00:00:00 zombie <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

Zombie orphan

void zombie()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

Jason Waterman, Swarthmore College 34

Topics for today

•The UNIX process abstraction
•Process lifecycle

•Creating processes: forking
•Running new programs within a process
•Terminating and reaping processes

•Signaling processes

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

19 SIGSTOP Stops process Process asked to stop

18 SIGCONT Continue process Process asked to continue

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

19 SIGSTOP Stops process Process asked to stop

18 SIGCONT Continue process Process asked to continue

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

19 SIGSTOP Stops process Process asked to stop

18 SIGCONT Continue process Process asked to continue

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

19 SIGSTOP Stops process Process asked to stop

18 SIGCONT Continue process Process asked to continue

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

19 SIGSTOP Stops process Process asked to stop

18 SIGCONT Continue process Process asked to continue

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

19 SIGSTOP Stops process Process asked to stop

18 SIGCONT Continue process Process asked to continue

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

19 SIGSTOP Stops process Process asked to stop

18 SIGCONT Continue process Process asked to continue

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

19 SIGSTOP Stops process Process asked to stop

18 SIGCONT Continue process Process asked to continue

Jason Waterman, Swarthmore College

Signals

• Unix provides a mechanism to allow processes and OS to interrupt
other processes

• A signal is small message to notify a process of some system event
• These messages not normally visible to the program

• e.g.,

35

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

19 SIGSTOP Stops process Process asked to stop

18 SIGCONT Continue process Process asked to continue

Constant values may
vary between platforms!

Jason Waterman, Swarthmore College

Signal concepts

36

Jason Waterman, Swarthmore College

Signal concepts

•Two distinct steps to transfer a signal:

36

Jason Waterman, Swarthmore College

Signal concepts

•Two distinct steps to transfer a signal:
•(1) OS sends (delivers) signal to destination process

36

Jason Waterman, Swarthmore College

Signal concepts

•Two distinct steps to transfer a signal:
•(1) OS sends (delivers) signal to destination process
• either because of some system event, or because explicitly
requested via kill function

36

Jason Waterman, Swarthmore College

Signal concepts

•Two distinct steps to transfer a signal:
•(1) OS sends (delivers) signal to destination process
• either because of some system event, or because explicitly
requested via kill function

•(2) Process receives signal (i.e., forced by OS to react
to signal in some way)

36

Jason Waterman, Swarthmore College

Signal concepts

•Two distinct steps to transfer a signal:
•(1) OS sends (delivers) signal to destination process
• either because of some system event, or because explicitly
requested via kill function

•(2) Process receives signal (i.e., forced by OS to react
to signal in some way)
• Process can react in one of three ways:

36

Jason Waterman, Swarthmore College

Signal concepts

•Two distinct steps to transfer a signal:
•(1) OS sends (delivers) signal to destination process
• either because of some system event, or because explicitly
requested via kill function

•(2) Process receives signal (i.e., forced by OS to react
to signal in some way)
• Process can react in one of three ways:
‣ignore signal (i.e., do nothing)

36

Jason Waterman, Swarthmore College

Signal concepts

•Two distinct steps to transfer a signal:
•(1) OS sends (delivers) signal to destination process
• either because of some system event, or because explicitly
requested via kill function

•(2) Process receives signal (i.e., forced by OS to react
to signal in some way)
• Process can react in one of three ways:
‣ignore signal (i.e., do nothing)
‣terminate (maybe dumping core)

36

Jason Waterman, Swarthmore College

Signal concepts

•Two distinct steps to transfer a signal:
•(1) OS sends (delivers) signal to destination process
• either because of some system event, or because explicitly
requested via kill function

•(2) Process receives signal (i.e., forced by OS to react
to signal in some way)
• Process can react in one of three ways:
‣ignore signal (i.e., do nothing)
‣terminate (maybe dumping core)
‣catch a signal with a signal handler function

36

Jason Waterman, Swarthmore College

Signal concepts

37

Jason Waterman, Swarthmore College

Signal concepts

•Signal sent but not yet received is pending
•At most one signal of each type is pending
•Signals are not queued!
• If process has pending signal of type k, then subsequent
signals of type k are discarded

37

Jason Waterman, Swarthmore College

Signal concepts

•Signal sent but not yet received is pending
•At most one signal of each type is pending
•Signals are not queued!
• If process has pending signal of type k, then subsequent
signals of type k are discarded

•Process can block receipt of certain signals.
•Blocked signals will be pending until process unblocks

37

Jason Waterman, Swarthmore College

Signal concepts

•Signal sent but not yet received is pending
•At most one signal of each type is pending
•Signals are not queued!
• If process has pending signal of type k, then subsequent
signals of type k are discarded

•Process can block receipt of certain signals.
•Blocked signals will be pending until process unblocks

•Any signal received at most once

37

Jason Waterman, Swarthmore College

Pending and blocking signals

38

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process

38

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

38

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

38

0 0 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pending:

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

38

0 0 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pending: 1

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

38

0 0 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pending: 1 1

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

• blocked represents set of signals process has blocked

• Can be set and cleared using sigprocmask function

38

0 0 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pending: 1 1

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

• blocked represents set of signals process has blocked

• Can be set and cleared using sigprocmask function

38

0 0 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pending: 1

0 0 0 0 0 ...blocked:

1

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

• blocked represents set of signals process has blocked

• Can be set and cleared using sigprocmask function

38

0 0 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pending: 1

0 0 0 0 0 ...blocked: 0 0 10 1

1

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

• blocked represents set of signals process has blocked

• Can be set and cleared using sigprocmask function

• For a process, OS computes pnb = pending & ~blocked

38

0 0 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pending: 1

0 0 0 0 0 ...blocked: 0 0 10 1

1

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

• blocked represents set of signals process has blocked

• Can be set and cleared using sigprocmask function

• For a process, OS computes pnb = pending & ~blocked

38

0 0 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pending: 1

0 0 0 0 0 ...blocked: 0 0 10 1

1

0 1 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pnb:

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

• blocked represents set of signals process has blocked

• Can be set and cleared using sigprocmask function

• For a process, OS computes pnb = pending & ~blocked

• If pnb == 0 then no signals to be received

38

0 0 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pending: 1

0 0 0 0 0 ...blocked: 0 0 10 1

1

0 1 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pnb:

Jason Waterman, Swarthmore College

Pending and blocking signals

• OS maintains pending and blocked bit vectors for each process
• pending represents set of pending signals

• OS sets bit k of pending when signal of type k is delivered

• OS clears bit k of pending when signal of type k is received

• blocked represents set of signals process has blocked

• Can be set and cleared using sigprocmask function

• For a process, OS computes pnb = pending & ~blocked

• If pnb == 0 then no signals to be received

• If pnb != 0 then OS chooses a signal to be received, and triggers some action by process

38

0 0 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pending: 1

0 0 0 0 0 ...blocked: 0 0 10 1

1

0 1 0 0 0

SI
G

A
B

RT

SI
G

A
LR

M

SI
G

B
Y

S

SI
G

C
A

N
C

EL

SI
G

C
H

LD

...pnb:

Jason Waterman, Swarthmore College

Sending signals with kill

•kill programs sends an arbitrary signal to a process

•E.g., kill -9 24818 sends SIGKILL to process 24818

•Also a function: kill(pid_t p, int signal)

•Can send a signal to a specific process, or all processes in
a process group
•Every process belongs to a process group

•Read textbook for more info

39

Jason Waterman, Swarthmore College

Default actions

•Each signal type has a predefined default action
•One of

•The process terminates
•The process terminates and dumps core
•The process stops (until restarted by a SIGCONT

signal)
•The process ignores the action

40

Jason Waterman, Swarthmore College

Signal handlers

•signal(int signum, handler_t *handler)
•Overrides default action for signals of kind signum

•Different values for handler
•SIG_IGN: ignore signals of type signum
•SIG_DFL: revert to the default action for signals of type signum
•Otherwise, it is a function pointer for a signal handler
• Function will be called on receipt of signal of type signum
• Referred to as installing handler

• Handler execution is called handling or catching signal

• When handler returns, control flow of interrupted process continues

41

Jason Waterman, Swarthmore College

Signal handler example

42

void int_handler(int sig) {
 printf("Process %d received signal %d\n",
 getpid(), sig);
}

int main() {
 signal(SIGINT, int_handler);
 while (1)
 ;
}

Jason Waterman, Swarthmore College

Signal handler example

42

$./signaleg

void int_handler(int sig) {
 printf("Process %d received signal %d\n",
 getpid(), sig);
}

int main() {
 signal(SIGINT, int_handler);
 while (1)
 ;
}

Jason Waterman, Swarthmore College

Signal handler example

42

$./signaleg
^C

void int_handler(int sig) {
 printf("Process %d received signal %d\n",
 getpid(), sig);
}

int main() {
 signal(SIGINT, int_handler);
 while (1)
 ;
}

Jason Waterman, Swarthmore College

Signal handler example

42

$./signaleg
^C
Process 319 received signal 2

void int_handler(int sig) {
 printf("Process %d received signal %d\n",
 getpid(), sig);
}

int main() {
 signal(SIGINT, int_handler);
 while (1)
 ;
}

Jason Waterman, Swarthmore College

Signal handler example

42

$./signaleg
^C
Process 319 received signal 2
^C

void int_handler(int sig) {
 printf("Process %d received signal %d\n",
 getpid(), sig);
}

int main() {
 signal(SIGINT, int_handler);
 while (1)
 ;
}

Jason Waterman, Swarthmore College

Signal handler example

42

$./signaleg
^C
Process 319 received signal 2
^C
Process 319 received signal 2

void int_handler(int sig) {
 printf("Process %d received signal %d\n",
 getpid(), sig);
}

int main() {
 signal(SIGINT, int_handler);
 while (1)
 ;
}

Jason Waterman, Swarthmore College

Signal handler example

42

$./signaleg
^C
Process 319 received signal 2
^C
Process 319 received signal 2
^C

void int_handler(int sig) {
 printf("Process %d received signal %d\n",
 getpid(), sig);
}

int main() {
 signal(SIGINT, int_handler);
 while (1)
 ;
}

Jason Waterman, Swarthmore College

Signal handler example

42

$./signaleg
^C
Process 319 received signal 2
^C
Process 319 received signal 2
^C
Process 319 received signal 2

void int_handler(int sig) {
 printf("Process %d received signal %d\n",
 getpid(), sig);
}

int main() {
 signal(SIGINT, int_handler);
 while (1)
 ;
}

Jason Waterman, Swarthmore College

Signal handler example

42

$./signaleg
^C
Process 319 received signal 2
^C
Process 319 received signal 2
^C
Process 319 received signal 2

void int_handler(int sig) {
 printf("Process %d received signal %d\n",
 getpid(), sig);
}

int main() {
 signal(SIGINT, int_handler);
 while (1)
 ;
}

$ kill -9 319

Jason Waterman, Swarthmore College

Signal handler example

42

$./signaleg
^C
Process 319 received signal 2
^C
Process 319 received signal 2
^C
Process 319 received signal 2
Killed

void int_handler(int sig) {
 printf("Process %d received signal %d\n",
 getpid(), sig);
}

int main() {
 signal(SIGINT, int_handler);
 while (1)
 ;
}

$ kill -9 319

Jason Waterman, Swarthmore College

Signal handlers as concurrent flows

•Signal handlers run concurrently with main program
•Signal handler is not a separate process

•Concurrent here means “non-sequential”, as opposed to “parallel”

43

(2) Control passes !
to signal handler !

(3) Signal
handler runs!

(4) Signal handler!
returns to !

next instruction!

Icurr!
Inext!

(1) Signal received
by process !

