
CS 31 Homework 4: x86 64 Arithmetic
Due at 11:59pm, Thursday, October 9, 2025

Full Names:

1. Assume the CPU is executing a program and the state of some of its registers is given
in the table below. Show how the registers would be updated by the sequence of x86 64
instructions also listed below, i.e. fill in the Final Value column. Show your work by
listing the intermediate values of the registers.

Register Initial Value Final Value

%rax 0

%rbx 1

%rcx 2

%rdx 3

Here are the x86 64 instructions:

add $20, %rax

add %rax, %rbx

sub %rcx, %rbx

add $3, %rcx

sub %rdx, %rcx

add %rdx, %rdx

dec %rdx

shr $4, %rbx

and $0xfffffffe, %rdx # this is tricky

xor %rax, %rax # this is tricky

or $0x0, %rcx

think about these next two before answering

not %rbx

add $1, %rbx

2. Assume the CPU is executing a function that has local variables x, y, and z allocated
on the stack, and that x is allocated at the memory address that is -24 bytes from the
address value stored in register %rbp, or -24(%rbp). Assume y is stored at -16(%rbp),
and z is at -8(%rbp).

For the assembly code listed below and the starting register state listed on the next
page:

(a) In the CPU register and memory figures on the next page, show the values that
will be stored in the registers and in memory when execution of these instructions
is complete. If the value is unknown, write “?”.

(b) Write a C code translation of the assembly code sequence. You may assume that
x, y, and z have already been declared as int variables in the C code. You do not
need to write the entire function, just the lines of C that might have generated
the x86 64 instructions. Hint: our solution is 5 lines of C code.

C Code Translation

movq $2, -8(%rbp) -------------------

movq $3, -16(%rbp)

movq -8(%rbp), %rdx

movq -16(%rbp), %rax

addq %rdx, %rax

movq %rax, -24(%rbp)

incq -8(%rbp)

salq $1, -16(%rbp)

Memory Address Final Value

0xffffff38

0xffffff40

0xffffff48

0xffffff50

0xffffff58

0xffffff60

0xffffff68

Register Initial Value Final Value

%rax 4

%rdx 7

%rbp 0xffffff58

