
CS31 Written Homework 5: IA32 loops functions, Name(s):

Due Thurs, Oct 26 in class

Question 1

Convert the following C code fragment to equivalent IA32 assembly code in two steps:
(1) First, translate the loop to its equivalent C goto version
(2) Next, translate your C goto version to IA32, assuming that dog is at r[%ebp] - 4, cat is at r[%ebp] -

8, and goat is at r[%ebp] - 12.
You must show both steps (1) and (2), and to receive partial credit annotate your IA32 code with comments
describing which part of the C code you are implementing.

int dog, cat, goat; (2) IA32 Translation

dog = 12; --------------------

cat = 90;

goat = dog - cat;

while (dog < cat) {

dog *= 2;

goat += dog;

}

(1) C goto version

Question 2

Trace through the following IA32 code. Show the contents of the given memory and registers right before
the instruction at point A is executed. Assume the addl instruction in main that is immediately after the
call instruction is at memory address 0x1234. Hints:

• remember to start execution in main.

• %esp points to the item on the top of the stack, so a push will grow the top of the stack and then move
in the pushed value. A pop will move the value on top of the stack and then shrink the stack.

• The sequence of instructions leave; ret is equivalent to the sequence movl %ebp, %esp; popl %ebp;
popl %eip.

foo:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl %eax, %eax

movl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave # A

ret

main:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl $6, -4(%ebp)

pushl -4(%ebp)

call foo

addl $4, %esp # at addr 0x1234

movl %eax, -4(%ebp)

movl $0, %eax

leave

ret

Register Initial at A

%eax | 2 | |

%edx | 3 | |

%esp | 0x88b0 | |

%ebp | 0x88c0 | |

Memory Address at A value

0x8880

0x8884

0x8888

0x888c

0x8890

0x8894

0x8898

0x889c

0x88a0

0x88a4

0x88a8

0x88ac

0x88b0

0x88b4

0x88b8

0x88bc

0x88c0

