Consider the following type definition and variable declarations:

```
struct personT {
    struct personT p1;
    char name[32];
    int age;
    struct personT people[40];
    float heart_rate;
};
```

(1) What type is each of the following expressions?

- `p1`
- `p1.name`
- `people`
- `people[0]`
- `people[0].name`
- `people[0].name[3]`

(2) Show the C statements to set the 3rd person’s age to 18, heart rate to 66, and name to “Ralph”

```c
void mystery(int x[], int y) {
    int i;
    for(i = 0; i < y; i++) {
        if((x[i] % 2) == 0) {
            x[i] = x[i] + 1;
        }
    }
    return;
}
```

You can view binary file contents `xxd` (or `hexdump -C`) to view binary file values:

```
xxd a.out  # a binary executable
```

Address: value of the next 16 bytes in memory

```
00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000
00000020: 0200 3e00 0100 0000 3007 4000 0000 0000
00000030: 4000 0000 0000 0000 084d 0000 0000 0000
```

(These weird numbers (f,c,e, …), are hexadecimal digits)

```
xxd myprog.c  # binary ascii encoding of C source:
```

```
00000000: 2369 6e63 6c75 6465 3c73 7464 696f 2e68
```

How a computer runs a program

<table>
<thead>
<tr>
<th>Program</th>
<th>Operating System</th>
<th>Computer Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>foo.c --> gcc --> a.out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.out:</td>
<td>binary executable: all 0’s and 1’s</td>
<td></td>
</tr>
<tr>
<td>Instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information so</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computer Hardware

Operating System

1. Loads a.out from Disk into RAM
2. Creates a Process: running program w/own address space:
 (like an array of addressable contents: data, instructions)
3. Initializes the CPU to start running 1st instruction

You can view binary file contents `xxd` (or `hexdump -C`) to view binary file values:

```
xxd a.out  # a binary executable
```

Address: value of the next 16 bytes in memory

```
00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000
00000020: 0200 3e00 0100 0000 3007 4000 0000 0000
00000030: 4000 0000 0000 0000 084d 0000 0000 0000
```

(These weird numbers (f,c,e, …), are hexadecimal digits)

```
xxd myprog.c  # binary ascii encoding of C source:
```

```
00000000: 2369 6e63 6c75 6465 3c73 7464 696f 2e68
```

How a computer runs a program

<table>
<thead>
<tr>
<th>Program</th>
<th>Operating System</th>
<th>Computer Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>foo.c --> gcc --> a.out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.out:</td>
<td>binary executable: all 0’s and 1’s</td>
<td></td>
</tr>
<tr>
<td>Instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information so</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computer Hardware

Operating System

1. Loads a.out from Disk into RAM
2. Creates a Process: running program w/own address space:
 (like an array of addressable contents: data, instructions)
3. Initializes the CPU to start running 1st instruction

You can view binary file contents `xxd` (or `hexdump -C`) to view binary file values:

```
xxd a.out  # a binary executable
```

Address: value of the next 16 bytes in memory

```
00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000
00000020: 0200 3e00 0100 0000 3007 4000 0000 0000
00000030: 4000 0000 0000 0000 084d 0000 0000 0000
```

(These weird numbers (f,c,e, …), are hexadecimal digits)

```
xxd myprog.c  # binary ascii encoding of C source:
```

```
00000000: 2369 6e63 6c75 6465 3c73 7464 696f 2e68
```

How a computer runs a program

<table>
<thead>
<tr>
<th>Program</th>
<th>Operating System</th>
<th>Computer Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>foo.c --> gcc --> a.out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.out:</td>
<td>binary executable: all 0’s and 1’s</td>
<td></td>
</tr>
<tr>
<td>Instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information so</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computer Hardware

Operating System

1. Loads a.out from Disk into RAM
2. Creates a Process: running program w/own address space:
 (like an array of addressable contents: data, instructions)
3. Initializes the CPU to start running 1st instruction

You can view binary file contents `xxd` (or `hexdump -C`) to view binary file values:

```
xxd a.out  # a binary executable
```

Address: value of the next 16 bytes in memory

```
00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000
00000020: 0200 3e00 0100 0000 3007 4000 0000 0000
00000030: 4000 0000 0000 0000 084d 0000 0000 0000
```

(These weird numbers (f,c,e, …), are hexadecimal digits)

```
xxd myprog.c  # binary ascii encoding of C source:
```

```
00000000: 2369 6e63 6c75 6465 3c73 7464 696f 2e68
```

How a computer runs a program

<table>
<thead>
<tr>
<th>Program</th>
<th>Operating System</th>
<th>Computer Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>foo.c --> gcc --> a.out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.out:</td>
<td>binary executable: all 0’s and 1’s</td>
<td></td>
</tr>
<tr>
<td>Instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information so</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computer Hardware

Operating System

1. Loads a.out from Disk into RAM
2. Creates a Process: running program w/own address space:
 (like an array of addressable contents: data, instructions)
3. Initializes the CPU to start running 1st instruction

You can view binary file contents `xxd` (or `hexdump -C`) to view binary file values:

```
xxd a.out  # a binary executable
```

Address: value of the next 16 bytes in memory

```
00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000
00000020: 0200 3e00 0100 0000 3007 4000 0000 0000
00000030: 4000 0000 0000 0000 084d 0000 0000 0000
```

(These weird numbers (f,c,e, …), are hexadecimal digits)

```
xxd myprog.c  # binary ascii encoding of C source:
```

```
00000000: 2369 6e63 6c75 6465 3c73 7464 696f 2e68
```

How a computer runs a program

<table>
<thead>
<tr>
<th>Program</th>
<th>Operating System</th>
<th>Computer Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>foo.c --> gcc --> a.out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.out:</td>
<td>binary executable: all 0’s and 1’s</td>
<td></td>
</tr>
<tr>
<td>Instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information so</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This Week:

- Binary Representation of different data types:

 6, -4.6, ’a’

 bit, byte, word

 signed and unsigned

- How operations on binary data work

 $6 + 12, 15 - 5, -9 + 12, ...$

- Operations on bits

Logical vs. bit-wise operators

How many values?

- The number of bits determines the range of values

- 2 values with 1 bit

- 4 values with 2 bits

- 8 values with 3 bits

- 16 values with 4 bits ... 2^n values with n bits

<table>
<thead>
<tr>
<th>1 bit:</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3:</td>
<td>000</td>
<td>001</td>
</tr>
<tr>
<td></td>
<td>\</td>
<td>\</td>
</tr>
<tr>
<td></td>
<td>0000 0010 0011 0100 0101 0110 0111 1000 1001 ...</td>
<td></td>
</tr>
</tbody>
</table>

C types and their sizes

- 1 byte: char, unsigned char

- 2 bytes: short, unsigned short

- 4 bytes: int, unsigned int, float

- 8 bytes: long long, unsigned long long, double

- 4 or 8 bytes: long, unsigned long

```
unsigned long v1;
short s2;
unsigned int u1;
long long ll;
double d1;
```

Binary: base 2 numbers

- Decimal, base 10, digits $0, 1, 2, ..., 9$:

 $1703: 1 \times 10^3 + 7 \times 10^2 + 0 \times 10^1 + 3 \times 10^0$

 $= 1000 + 700 + 0 + 3 = 1703$

- Binary, base 2, digits $0, 1$:

 $10101: 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

 $= 16 + 0 + 4 + 0 + 1 = 21$

Converting binary to decimal: just follow this pattern

Unsigned numbers

- With N bits, can represent values: 0 to $2^N - 1$

 4 bits: 0000 0

 0001 1 = 1×2^0

 0010 2 = 1×2^1

 0011 3 = $1 \times 2^1 + 1 \times 2^0 = 2 + 1$

 0100 4 = 1×2^2

 ...$

 1111 15 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

 $= 8 + 4 + 2 + 1$

Converting binary to decimal:

 low order, 0^i bit, counts the number of 2^i (0 or 1)

 1^n bit is number of 2^n (0 or 1)

 2^n bit is number of 2^n's ...
Try
unsigned char ch = 'm';
in binary, ch's value is: 01101101
• Convert to decimal (leave as expression):

• ch+1 (add in binary, then convert to decimal):

Adding Binary Values
• Add Corresponding digits to get either 0 or 1 with a possible carry bit to next place

• Example adding two 4-bit values (result is 4-bits):

 \[
 \begin{array}{cccc}
 & 0110 & 6 & 1100 & 12 \\
 + & 0100 & + & 4 & + & 1010 & + & 10 \\
 = & 1010 & 10 & 0110 & 6 \\
 \end{array}
 \]
 ^carry out bit
 Unsigned overflow: result requires more bits than have

Representing Signed Integers
int, short, char, long, long long
• Use 2's complement encoding
 • High-order bit is sign bit (0:positive, 1:negative)
 1xxxxxxx : some negative value
 0xxxxxxx: some positive value
 • Positive 2's compliment encodings are same as their unsigned encodings
 • 0000 is zero signed and unsigned
 • 0110 is six signed and unsigned
 • With N bits, can represent: \(-2^{N-1}\) to \(2^{N-1}-1\)
 4 bit value can represent: \(-8, -7, \ldots, -1, 0, 1, \ldots, 7\)

2’s Complement
2’s complement of N bit value x is: \(2^N - x\)
4-bit value: 0010 (2)
it’s 2’s complement is: \(2^4 - 2\)
 \[
 \begin{array}{cccc}
 & \text{10 borrow bit} \\
 10000 & 0110 & 0110 & 0110 \\
 \end{array}
 \]
 ✔️
 (borrow minus 1:10-1=1)
 (there is a much easier way to negate and to subtract)

2’s Complement to Decimal
High order bit is the sign bit, otherwise just like unsigned conversion. 4-bit examples:

0110: \(0 \times -2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0\)
 \(0 + 4 + 2 + 0 = 6\)
1110: \(1 \times -2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0\)
 \(-8 + 4 + 2 + 0 = -2\)

Try: 1010

1111

2’s Complement Negation
Flip the bits and then add 1 (\(~x + 1\)):

6: 0110: 1001
-3: 1101: 0010
 \[
 + & 0001 \\
 = & 1010 & 0011 \\
 = -8+2 = -6 & = 2+1 = 3
 \]

Try: negate 1 negate 7
2’s Complement Subtraction

Negate and add: much easier than borrowing

\[6 - 3 = 6 + \neg 3 + 1 \]

\[
\begin{array}{c}
6 & 0110 & 0110 \\
-3 & 0011 & 1100 \\
+ 0001 & & \\
1 & 0011 & = 2 + 1 = 3
\end{array}
\]

^ what about carry out bit?

It looks like overflow, but the result works out fine if we ignore the carry-out bit (0011 is the correct result)

**we can also do unsigned subtraction in this way

Arithmetic Operation Overflow

Overflow: running out of enough bits to store result

Signed addition (and subtraction):

\[
\begin{array}{cccccccc}
2+1=3 & 2-1=-1 & 2+4=6 & 2-4=-2 & 2+7=9 & 2-7=-5 \\
0010 & 0010 & 0010 & 0010 & 0010 & 0010 & 0010 \\
\neg 1111 & \neg 1111
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 0001 & 1 & 0000 & 1110 & 1001 & 1 0111
\end{array}
\]

0 1 2 3 4 5 6 7 8 -8 -7 ... -2 -1
0000 0001 0010 ... 0111 1000 1001 ... 1110 1111

+ overflow when operation crosses here

Add pos -------> add neg

0 1 2 3 4 5 6 7 -8 -7 ... -1
0000 0001 0010 ... 0111 1000 1001 ... 1111

Arithmetic Operation Overflow

Overflow: running out of enough bits to store result

Unsigned addition (and subtraction):

\[
\begin{array}{cccc}
2+3=5 & 2-3=0 & 2+14=16 & 2-14=-12 \\
0010 & 0010 & 0010 & 0010 \\
+0001 & +1111 & +1111 & +1111 \\
0011 & 1 0001 & 1 0000 & +0001
\end{array}
\]

0 1 2 3 4 5 6 7 8 9 ... 15
0000 0001 0010 ... 0111 1000 1001 ... 1111

^ subtraction overflow

Add -------> sub

Subtraction

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

\[6 - 7 = 6 + \neg 7 + 1 \]

input 1 ------------------------> ADD CIRCUIT ----> result

input 2 --> possible bit flipper

Try Out: Signed Overflow Rules?

4 bit signed values \(a \oplus b = a + \neg b + 1 \):

\[
\begin{array}{cccc}
9 + 11 = 1011 + 1011 + 0 = 1000 = 4 \\
9 + 6 = 1001 + 0110 + 0 = 0111 = 15 \\
3 + 6 = 0011 + 0110 + 0 = 0101 = 9 \\
6 - 3 = 0110 + 1100 + 1 = 1101 = 3 \\
3 - 6 = 0011 + 1001 + 1 = 0111 = 3
\end{array}
\]

Rule for detecting overflow in signed arithmetic?

is the carry-out bit meaningful?

if values are different signs, can we ever get overflow?

Try Out: Unsigned Overflow Rules?

4 bit unsigned values \(a - b = a + \neg b \):\(a + b = a + b \):

\[
\begin{array}{cccc}
9 + 11 = 1011 + 1011 + 0 = 1000 = 4 \\
9 + 6 = 1001 + 0110 + 0 = 0111 = 15 \\
3 + 6 = 0011 + 0110 + 0 = 0101 = 9 \\
6 - 3 = 0110 + 1100 + 1 = 1101 = 3 \\
3 - 6 = 0011 + 1001 + 1 = 0111 = 3
\end{array}
\]

Rule for detecting overflow?

is the carry-out bit meaningful? When?

Overflow Rules

- **Signed**: can only occur when adding two values of the same sign:
 - When sign bits of operands are the same, but the sign bit of result is different

- **Unsigned**: can occur when adding or when subtracting larger from smaller:
 - When carry-in bit is different than carry-out bit

<table>
<thead>
<tr>
<th>C_{in}</th>
<th>C_{out}</th>
<th>XOR</th>
<th>C_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

During Execution what Happens if Overflow?

- HW: sets flags as side-effect of arithmetic computations, these can be tested for error conditions
 - OF: overflow flag: set based on signed overflow
 - CF: set if carry-out is 1, can be used to test for unsigned overflow with carry-in bit

- What does C do?
 - Nothing:
 unsigned char $s = 255$;
 $s = s + 4$; // 3, maybe that is what you want?

Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?
- $0111 \rightarrow 0000\ 0111$ obviously still 7
- $1010 \rightarrow 1111\ 1010$ is this still -6?

$-128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6$ yes!

Try out some 4-bit examples:

(1) signed result? (2) unsigned result? (3) overflow?

$0110 + 0010$ 1001 $- 1010$ 1001 $+ 1110$

Sign Extension

- When combining signed values of different num bytes, expanded smaller to equivalent larger size:

 char y = 2, x= -13;
 short z = 10;

 $z = z + y$; $z = z + x$;

 0000000000001010 0000000000000101
 000000001110011 11110011
 0000000000000010 1111111111110011

 Fill in high-order bits with sign-bit value to get same numeric value in larger number of bytes

Different Number Representations

- **Binary**: base 2 digits (0,1)
- **Decimal**: base 10 digits (0, 1, ..., 9)
- **Hexadecimal**: base 16 digits (0,...,9,a,b,c,d,e,f)

 - 2^4 is 16, so 4 binary digits to represent 1 hex: 0101, 1100:

<table>
<thead>
<tr>
<th>Binary to hex</th>
<th>group into 4 bin digits</th>
<th>convert each group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0011 1010 1100 0101</td>
<td>0011101011000101</td>
</tr>
<tr>
<td></td>
<td>3 a c 5</td>
<td>= 0x3ac5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hex to binary</th>
<th>expand each hex digit into its 4 binary digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1 2 f 0xa1f</td>
</tr>
<tr>
<td>1010 0001 0010 1111</td>
<td>= 10100000100101111</td>
</tr>
</tbody>
</table>

 - Hex is easier to read than binary: 0x3efa vs. 0011111011111010
Decimal to Binary (or to hex)

- 543876 in binary?
- 34252 in binary?

If D negative: convert the positive to b, then negate (~b + 1)
If D positive: need to find 0 and 1 digits for a7-a0 such that:

\[a_7*2^7 + a_6*2^6 + a_5*2^5 + a_4*2^4 + a_3*2^3 + a_2*2^2 + a_1*2^1 + a_0*2^0 = D \]

Idea: build up binary value from low to high order bit
- If the number D is odd then a0 = 1, if even then a0 = 0
- Consider the next bit a1: its value determined by whether or not D/2 is odd
- ... continue until D/2/2/.../2 is zero

Algorithm: decimal value D, binary result b (b_i is ith digit):

\[i = 0 \]
while (D > 0)

if D is odd
set b_i to 1
if D is even
set b_i to 0
\[i++ \]
\[D = D/2 \]

Idea: example: D = 105
- a0 = 1
- D = b
- D/2 = b/2
- D/4 = b/4
- D/8 = b/8
- ... until D/2^i = 0

Operations on Bits

- Bit-wise operators: bit operands, bit result

<table>
<thead>
<tr>
<th>& (AND)</th>
<th></th>
<th>(OR)</th>
<th>~ (NOT)</th>
<th>^ (XOR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A & B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

01010101 01101010 10101010 11011111
01010101 00100001 10111011 01010101 01010000
01110101 00101010 11000011

More Operations on Bits

- Bit-shift operators: \(<<< \) left shift, \(>>\) right shift

01010101 \(<<<\) 2 is 01010100
- 2 high-order bits shifted out
- 2 low-order bits filled with 0

01101010 \(<<<\) 4 is 10100000
01010101 \(<<<\) 2 is 00010101
01101010 \(<<<\) 4 is 00000110

10101100 \(<<<\) 2 is 00101101 (logical shift)
or 11101101 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit

How Used?

Bit vectors: encode yes/no values in individual bits:

(ex) file permissions: 1s -1
directory owner group world
d rw rw rw
-rw-rw-rw - foo.c
-rw-rw-rw - a.out*
-rw-rw-rw - cs31/

Encode in 10 bits: (need a short variable, 2 bytes, to store):

- rw - rw - rw -
0 1 1 0 1 1 0 1 1 0 permission: 666

chmod 620 foo.c: 0 1 1 0 0 1 0 0 0

Try 74

Try -115
Try using bit operators

```c
short f = 281; // 0000 0001 0001 1001
```

(1) C code to see if file is readable by group? `drwxrwxrwx`

```c
000000 0 100 011 001 (this value)
```

(2) C code to set perms. so that owner can write?

printf to print diff types and reps:

```c
%x: hex
%u: unsigned
%ld: long signed
%llu: unsigned long long
```

```c
printf("%c %d %x", 'a', 'a', 'a');
printf("%d %x", 1234, 1234);
```

Floating Point Representation

<table>
<thead>
<tr>
<th>1 bit for sign</th>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bits for exponent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 bits for precision</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

value = (-1)^sign * 1.fraction * 2^(exponent-127)

let's just plug in some values and try it out

```c
0xc080015a: 1 10000001 00000000000000101101010
```

```
sign = 1
exp = 129
fraction = 346
```

```
= -1 + 1.346*2^10 = 5.384
```

I don't expect you know how to do this

Summary

- Know how binary data represented and manipulated:
 - Different sizes depend on C type:
 - 1 byte, 2 bytes, 4 bytes, 8 bytes
 - Unsigned and Signed Representations
 - Arithmetic operations: + and –
 - Same rules for performing signed & unsigned ops
 - Different rules for determining if result overflowed
 - Bit-wise operations: & , | , ^ , << , >>
 - Different representations: hex, binary, decimal
 - Converting values between these