Consider the following type definition and variable declarations:

struct personT {
char name[32];

struct personT pl;

int age; struct personT people[40]
float heart_rate;

i

(1) What type is each of the following expressions?
pl pl.name people
pl.heart_rate people.name people[0]

people[0].name people[0].name[3]

(2) Show the C staments to set the 3rd person’s age to 18,
heart_rate to 66, and name to “Ralph”

9/17/13

void mystery(int x[], int y); // STACK:
int main() {
int i, arr[5];
for(i=0; i < 5; i++) {
arr[i] = i;
}
mystery(arr,4);
for(i=0; i < 5; i++) {
printf("arr[2d]=%d\n”,I,arr[i]);
}
}
/ /
void mystery(int x[], int y) {

int i;
for(i=0; i < y; i++) {
if((x[1]82) == 0) {
x[i] = x[i] + 1;
}
}

return;

Binary Representation and
Operations on Binary Data

Week 2, CS31 Fall 2013
Tia Newhall

How a computer runs a program

Program

Operating System

Computer Hardware

* Compiler: translates C source to binary
executable file (OS/Arch specific)
foo.c -- ->a.out
* a.out: binary executable: all 0’s and 1’s
¢ Instructions (e.g. add the value of x and 6)

¢ Some data (e.g. 6, maybe initial value of x)
¢ Information so that OS can load and start running

Operating System

./a.out:

1. Loads a.out from Disk into RAM

2. Creates a Process: running program w/own address space:
(like an array of addressable contents: data, instructions)

3. Initializes the CPU to start running 1%t instruction

You can view binary file contents
xxd (or hexdump —C) to veiw binary file values:
xxd a.out # a binary executable file
Address: value of the next 16 bytes in memory
0000000: 7£f45 4c46 0201 0100 0000 0000 0000 0000
0000010: 0200 3e00 0100 0000 3007 4000 0000 0000
0000020: 4000 0000 0000 0000 084d 0000 0000 0000

(these weird numbers (f,c,e, ...), are hexidecimal digits)

xxd myprog.c # binary ascii encoding of C source:

0000000: 2369 6e63 6c75 6465 3c73 7464 696f 2e68

#1 nc 1lu de <s td io .h
0000010: 3ela 696e 7420 6d61 696e 2829 207b 0a20
>\n in t ma in) { \n

This Week:

* Binary Representation of different data types:
6,-4.6,‘a’
bit, byte, word
signed and unsigned

* How operations on binary data work
6+12,15-5,-9+12, ..

* Operations on bits
Logical vs. bit-wise operators

9/17/13

Bits and Bytes

* Bit: a0 or 1 values
* HW represents as two different voltages

« 1: the presence of voltage (high voltage)
* 0: the absence of voltage (low voltage)

* Byte: 8 bits, the smallest addressable unit
0: 01010101
1: 10101010
2: 00001111

* Word: some number of bytes, depends on
architecture (4 bytes is common)

How many values?

* The number of bits determines the range of values
¢ 2values with 1 bit
* 4 values with 2 bits
* 8values with 3 bits
¢ 16 values with 4 bits ... 2~n values with n bits

1 bit: 0 1
/ \ / \
2: 00 01 10 1
/ \ / \ / \ /
3: 000 001 010 011 100 101 110
/ N\ /N /N /N /N /N /N

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 ..

111
/

\

C types and their sizes

byte:
bytes: short, unsigned short

char, unsigned char

bytes: int, unsigned int, float
bytes: long long, unsigned long long, double

.
e R N N e

or 8 bytes: long, unsigned long

unsigned long vl;
short s2;
unsigned int ul;
long long 11;
double dl;

printf(“%lu %u %d %11ld %g\n”, v1, ul, s2, 11, dl);
printf(“%lu %lu %lu\n”, sizeof(vl), sizeof(s2),
sizeof(1ll)); // prints out number of bytes

Unsigned numbers

With N bits, can represent values: 0 to 2"-1
4 bits: 0000 0

0001 1 =1%20
0010 2 = 1%
0011 3 = 1%214+1%20 = 2 + 1
0100 4 = 1%*2?

1111 15 = 1%23 4 1%2241%21 4 1%20
= 8+ 4+ 2+ 1
Converting binary to decimal:

low order, 0t bit, counts the number of 2° (0 or 1)
15t bit is number of 2(0 or 1)

2" bit is number of 2%’s ...

Binary: base 2 numbers

* Decimal, base 10, digits {0,1,2, ..., 9}%:
1703: 1*103+7*102+0*10! + 3*100

= 1000 + 700 + 0 + 3 = 1703
* Binary, base 2, digits {0,1}:
10101: 1*24+0%*23+ 1*%22+0*21 + 1*20
= 16+ 0 + 4+ 0+ 1= 21

Converting binary to decimal: just follow this pattern

Try

unsigned char ch = ‘m’;
in binary, ch’s valueis: 01101101
* Convert to decimal (leave as expression):

* ch+1 (addin binary, then convert to decimal):

9/17/13

Adding Binary Values

* Add Corresponding digits to get either 0 or 1 with a
possible carry bit to next place

* Example adding two 4-bit values (result is 4-bits):

1

0110 6 1100 12
+ 0100 + 4 + 1010 +10

1010 10 1 0110 6

“carry out bit
Unsigned overflow: result requires
more bits than have

Representing Signed Integers

int, short, char, long, long long
* Use 2's complement encoding

* High-order bit is sign bit (0:positive, 1: negative)
1xxxxxxx : some negative value

OXXXXXXX: some positive value
 Positive 2’s compliment encodings are same as
their unsigned encodings
* 0000 is zero signed and unsigned
« 0110 is six signed and unsigned
* With N bits, can represent: -2N1 to 2N-1-1
4 bit value can represent: -8,-7,...,-1,0,1, ..., 7

2’s Complement
2’s complement of N bit value x is: 2N —x
4-bit value: 0010 (2)
its 2’s complement is: 24—2

10 borrow bit

10000 01170 24
- 0010 - 0010 -2
1110 1110 -2

(borrow minus 1:10-1=1)

(there is a much easier way to negate and to subtract)

2’s Complement to Decimal

High order bit is the sign bit, otherwise just like
unsigned conversion. 4-bit examples:

0110: 0*-23 + 1*22 + 1*21 + 0*20
0 + 4 + 2 + 0 =6
1110: 1*-23 + 1%22 + 1*21 + 0*20
-8 + 4 + 2 + 0=-2
Try: 1010
1111

2’s Complement Negation
Flip the bits and then add 1 (~x + 1):

6: 0110: 1001 -3: 1101: 0010
+ 0001 +0001
1010
= -8+2 = -6 = 2+1 = 3

Try: negate 1 negate 7

2’s Complement Subtraction

Negate and add: much easier than borrowing
6-3 == 6+~3+1

6 0110 0110
-3 - 0011 1100
+ 0001

1 0011 =

2 +1 =3

~ what about carry out bit?

It looks like overflow, but the result works out fine if we
ignore the carry-out bit (0011 is the correct result)

**we can also do unsigned subtraction in this way

9/17/13

Subtraction

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:
6-7==6+~7+1

input 1 >

input 2 -->|possible bit flipper|-->|ADD CIRCUIT |---> result

possible +1 input-------- >

Arithmetic Operation Overflow

Overflow: ~running out of enough bits to store result

Signed addition (and subtraction):

2+-1=1 2+-2=0 2+-4=-2 2+47=-1 =2+=7=7
0010 0010 0010 0010 1110
+1111 +1110 +1100 +0111 +1001
1 0001 1 0000 1110 1001 1 0111
0 1 2 7 -8 -7 . -2 -1
0000 0001 0010 .. 0111 1000 1001 ... 1110 1111
add pos --------- > Kemmmmen add neg
<--------- add neg add pos ------ >
0 1 2 7~ 8 T . -1
0000 0001 0010 ... q{il 1000 1091 B 1111

\" overﬂoy&vhen operation crosses here

Try Out: Signed Overflow Rules?

4 bit signed values (a-bisa+~b+1):

carry-in carry-out

3+ 7= 0011 + 0111 = 0 1010 = -6
-3 + -6 = 1101 + 1010 = 1 0111 = 7
-3+ 6 = 1101 + 0110 = 1 0011 = 3
3 - 6= 0011 + 1001 + 1 = 0 1101 = -3
3+ -6 = 0011 + 1010 = 0 1101 = -3

Rule for detecting overflow in signed arithmetic?
is the carry-out bit meaningful?

if values are different signs, can we ever get overflow?

Arithmetic Operation Overflow

Overflow: ~running out of enough bits to store result

Unsigned addition (and subtraction):

2+1=3 2-1=1 2+14=0
0010 0010 0010
+0001 +1111 +1110
0011 1 0001 1 0000
0 1 2 7 8
~ 0000 0001 0010 .. 0111 1000
\j// 7\3 add --------- >
N e sub

A subtraction overflow

2-3=15
0010
1100
+0001
1111
9 . 15
1001 .. 1111
AT\
A

addition overflow *

Try Out: Unsigned Overflow Rules?

4 bit unsigned values (a—bisa+~b+1, a+bisa+b+0):

carry-in carry-out

9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4
9+ 6 = 1001 + 0110 + 0 = O 1111 = 15
3+ 6 = 0011 + 0110 + 0 = 0 1001 = 9
6 - 3 = 0110 + 1100 + 1 =1 0011 = 3
3 - 6 = 0011 + 1001 + 1 =0 1101 = 13

Rule for detecting overflow?

is the carry-out bit meaningful? When?

Overflow Rules

 Signed: can only occur when adding two
values of the same sign:

* When sign bits of operands are the
same, but the sign bit of result is different

* Unsigned: can occur when adding
or when subtracting larger from smaller:
* When carry-in bit is different than carry-out bit

Cin Cou Cin XOR Copup
0 0 0

0 1 1

1 0 1

1 1 0

9/17/13

Try out some 4-bit examples:

(1) signed result? (2) unsigned result? (3)overflow?

0110 + 0010 1001 -1010 1001 + 1110

During Execution what Happens if
Overflow?

* HW: sets flags as side-effect of arithmetic
computations, these can be tested for error
conditions

* OF: overflow flag: set based on signed overflow

* CF: setif carry-out is 1, can be used to test for
unsigned overflow with carry-in bit

* What does C do?
* Nothing:
unsigned char s = 255;
s=s+4; //3, maybe thatis what you want?

Sign Extension

* When combining signed values of different num
bytes, expanded smaller to equivalent larger
size:

char y=2, x=-13;

short z = 10;

z =2z + y; z =2z + x;
0000000000001010 0000000000000101
00000010 11110011
0000000000000010 1111111111110011

Fill in high-order bits with sign-bit value to get
same numeric value in larger number of bytes

Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the
same value?

0111 ---> 00000111 obviously still 7
1010 ---->11111010 s this still -6?

-128+64+32 +16+ 8+0+2+0= -6 yes!

Different Number Representations

* Binary: base 2 digits {0,1}
¢ Decimal: base 10 digits {0, 1, ..., 9}

¢ Hexidecimal: base 16 digits {0, ...,.9,3,b,c,d,e,f}
* 2%is 16, so 4 binary digits to represent 1 hex: 0101:5, 1100:c

Binary to hex: group into 4 bin digits, convert each group:

0011 1010 1100 0101 0011101011000101
3 a c 5 = 0x3ac5
Hex to binary: expand each hex digit into its 4 binary digits:
a 1 2 f Oxal2f
1010 0001 0010 1111 =1010000100101111

hex is easier to read than binary: Ox3efavs.0011111011111010

9/17/13

Decimal to Binary (or to hex)
e 543876 in binary? -34252 in binary?

if D negative: convert the positive to b, then negate (~b +1)

if D positive: need to find 0 and 1 digits for a,-a, such that:

*97 *76 *95 *94 *93 *92 *91 *90 —
a;%27 +ag*2% + a;*2° + a,*2% + a;*2% + a,*2* + a,*21 + a,*2° =D

idea: build up binary value from low to high-order bit
« if the number D is odd then a, 1, if even then a;is 0

« consider the next bit a,: its value determined by whether
or not D/2 is odd

... continue until D/2/2 .../2 is zero

Algorithm: decimal value D, binary result b (b; is ith digit):

Try 74 Try -115

More Operations on Bits
* Bit-shift operators: << left shift, >> right shift

01010101 << 2 is 01010100
2 high-order bits shifted out
2 low-order bits filled with 0
01101010 << 4 is 10100000
01010101 >> 2 is 00010101
01101010 >> 4 is 00000110

10101100 >> 2 is 00101011 (logical shift)
or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit

i=0
while (D > 0)
if D is odd
setb;tol
if D is even
setb,to 0
i++
D=D/2
idea: example: D = 105 a0 =1
D=bD D = 52 al =0
D/2 = b/2 D= 26 a2 =0
D/2 = b/2 D= 13 a3 =1
D/2 = b/2 D = 6 a4 =0
D/2 = b/2 D = 3 a5 =1
0= 0 D = 1 a6 =1
D = 0 a7 =20
105 = 01101001
Operations on Bits
* Bit-wise operators: bit operands, bit result
& (AND) | (OR) ~(NOT) A(XOR)
A B A & B A | B ~A A~B
0 0 0 0 1 0
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 1 0 0
01010101 01101010 10101010 ~10101111
| 00100001 & 10111011 ~ 01101001 01010000
01110101 00101010 11000011
How Used?

Bit vectors: encode yes/no values in individual bits:

(ex) file permissions: 1s —1
directory owner group world

d rwx rwx rwx
—rwW-—-————- . foo.c
—rwx--——-—-- . a.out*
drwx--—---- - cs31/

Encode in 10 bits: (need a short variable, 2 bytes, to store):

- rw- IW-—- IW-

0 110 110 110 permission: 666

chmod 620 foo.c: 0 110 010 00O
6 2 0

9/17/13

Try using bit operators
short £ = 281; // 0000 0001 0001 1001

(1) C code to see if file is readable by group? drwxrwxrwx
000000 0 100 011 001 (this value)

(2) Ccode to set perms. so that owner can write?

printf to print diff types and reps:

%x: hex

%u: unsigned

%$1d: long signed

%1lu: unsigned long long

printf (“sd %x”, 1234, 1234);

Floating Point Representation
1 bit for sign sign | exponent | fraction |
8 bits for exponent
23 bits for precision
value = (-1)s8" + 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0xc080015a: 1 10000001 00000000000000101011010
sign = 1 exp = 129 fraction = 346

= -1 + 1.346%*22 = 5.384

I don’t expect you know how to do this

Summary

* Know how binary data represented and
manipulated:
« Different sizes depend on C type:
* 1 byte, 2 bytes, 4 bytes, 8 bytes
* Unsigned and Signed Representations
* Arithmetic operations: + and —
* Same rules for performing signed & unsigned ops
« Different rules for determining if result overflowed
* Bit-wise operations: &, |, #, ~, <<, >>
« Different representations: hex, binary, decimal
« Converting values between these

