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Abstract—Deep learning is a popular field that encompasses
a range of multi-layer connectionist techniques. While these
techniques have achieved great success on a number of difficult
computer vision problems, the representation biases that allow
this success have not been thoroughly explored. In this paper, we
examine the hypothesis that one strength of many deep learning
algorithms is their ability to exploit spatially local statistical
information.

We present a formal description of how data vectors can
be partitioned into sub-vectors that preserve spatially local
information. As a test case, we then use statistical models to
examine how much of such structure exists in the MNIST dataset.
Finally, we present experimental results from training RBMs
using partitioned data, and demonstrate the advantages they
have over non-partitioned RBMs. Through these results, we
show how the performance advantage is reliant on spatially local
structure, by demonstrating the performance impact of randomly
permuting the input data to destroy local structure. Overall,
our results support the hypothesis that a representation bias
reliant upon spatially local statistical information can improve
performance, so long as this bias is a good match for the data.
We also suggest statistical tools for determining a priori whether
a dataset is a good match for this bias or not.

I. INTRODUCTION

In the past few years, the area of exploration known as
Deep Learning has demonstrated the ability of multilayer con-
nectionist networks to achieve good performance on a range
of difficult machine learning problems, and has been gaining
increasing prominence and attention in the machine learning
and neural network communities. The theoretical basis for
understanding why these techniques perform well on particular
problems, however, has only begun to be explored. A deeper
understanding of how and why deep learning algorithms work
will not only help us to decide what problems are good
candidates for their application, but may also suggest ways
of improving existing techniques or harnessing their strengths
in novel contexts.

The hypothesis we seek to examine is the hypothesis that
many deep learning algorithms make use of spatially local
structure in their input data to help them achieve good perfor-
mance. There has long been an intuition in the deep learning
community that this hypothesis is likely to hold, based partly
on everyday experience, and partly on the structure of the
human visual cortex. To our knowledge, however, there has
been no previous attempt to formalize and test this hypothesis
specifically.

In this paper, we take the example of the Restricted Boltz-
man Machine (RBM) and show how its performance can

be improved while simultaneously decreasing total training
time. We do this by introducing a vector-partitioning scheme
borrowed from deep learning algorithms like Convolutional
Networks. We then analyze the input data to see if we can
identify the statistical properties that are being exploited by
the Partitioned-RBM to achieve this performance. In so doing,
we hope to expose part of the representation bias of deep,
vector-partitioning approaches in general. As Tom Mitchell
pointed out in his seminal paper [1], not only is a bias
necessary for learning, but examination of that bias is critical
to understanding and improving our learning algorithms.

A. Deep Learning

While techniques similar to modern deep learning algo-
rithms have been proposed previously (see Fukushima [2], for
example), it has only been the past few years that have seen
deep learning come into its own. Works begun by Hinton,
Bengio, and LeCun (for example, [3]–[5]) have since been
extended by many others, and a set of common characteristics
defines an overall framework for deep learning. In particular,
the word “deep” in this context refers to the fact that there are
several levels of functional abstraction between inputs and out-
puts; generally, this means a connectionist network consisting
of multiple hidden layers in a feed-forward architecture.

The innovation in deep learning has not been the proposal
to use such networks, but rather the algorithms required to
train the weight vectors. Historically, deep networks were
difficult to train, because of a credit assignment problem;
standard error-backpropagation suffers from gradient diffusion
if applied to a deep network, resulting in generally poor per-
formance [6]. Most deep learning techniques now get around
this problem by performing some form of “unsupervised pre-
training,” which involves learning the weights to minimise
reconstruction error for (unlabeled) training data, one layer
at a time in a bottom up fashion. This is then often followed
by a supervised learning algorithm which, it is hoped, has been
initialized in a good part of the search space.

Deep networks of this type have demonstrated good per-
formance for a number of traditionally difficult tasks, many
in the domain of computer vision. Some examples are hand-
written character recognition [3], object recognition [7], de-
noising [8], and re-construction of missing or obscured infor-
mation [8].

There has also been some work attempting to derive a theory
to explain the success of deep learning. Erhan and Bengio [9]



suggest that unsupervised pre-training acts as a regularizer,
and we have suggested in previous work [10] that it also
takes advantage of spatially local statistical information in the
training data.

While some deep learning techniques (such as Deep Belief
Networks) treat all the elements of an input vector sym-
metrically, many take an approach that partitions the data
vectors into shorter sub-vectors, and performs analysis on the
sub-vectors before re-combining the analyzed data to form a
representation of the full data vector. Convolutional Networks
are the most well known of these, though there are several
others, including [2], [11] and [12].

From a statistical and information-theoretic standpoint, this
type of analysis seems like it should be highly detrimental
to performance. After all, any statistical information relating
two features that are not contained in the same partition is
completely hidden from the model. Unless we make the rather
absurd assumption that no relevant statistical patterns exist in
any of this data, we are left with less data upon which to
base our model. It is fundamental to all statistical learning
that the performance of a model is a function of the amount
of information available; so long as it is sampled from the
same underlying distribution, more information will always
lead to a better model.

In practice, however, things are more complicated. Aside
from the impossibility of truly unbiased learning, the main
reason for this is that for most real-world problems, we have
neither enough samples nor the computational capacity to
generate a fully optimal statistical model of our data. Most of
the models we are interested in yield exponential complexities,
and so we must rely on approximations to estimate them.
Effectively all of the problems experienced over the history of
connectionist networks, going all the way back to McCulloch
and Pitts [13], have been caused by the fact that finding the
optimal set of connection weights is intractable. The history
of the field has largely been a progression of ever improving
gradient descent-based approximation algorithms, which have
enabled more and more complex network architectures to be
capable of converging on an acceptable solution.

In this context, deep learning can be seen as the most
recent step in this long progression, with new approximation
learning algorithms allowing for deeper architectures than
could be successfully used previously. This brings us back to
the question of why they work; simplifying assumptions often
allow much more tractable approaches to problem solving
(since only the simplified version of the problem needs to be
solved), but the results are only as good as the match between
the assumptions made and the properties that actually hold for
the original problem.

We suggest that deep learning algorithms, and in particular
the ones that partition data vectors, are taking advantage of
spatially local statistical structure for their performance. This
requires not only that such structure exist, but that it be highly
relevant to the performance criterion being optimized. If this
hypothesis is correct, however, it means we may be able to
exploit this structure in other contexts as well.
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Fig. 1. Basic architecture of a Restricted Boltzmann Machine

To test this hypothesis, we examine the application of
this type of partitioning scheme to an RBM, which is not
inherently a deep learning model. In particular, because RBM
network architectures form bipartite graphs, there is no deeply
connected layering in place. In spite of this fact, we can apply
a vector-partitioning approach as a “deep feature extraction”
method to help us learn better RBMs and to learn them faster
as well.

B. Restricted Boltzman Machines

The RBM model was first proposed by Smolensky [14] in
1986. As a type of Hopfield Network, an RBM is a generative
model with visible nodes (x) and hidden nodes (h) as shown in
Figure 1. There are no dependencies between hidden nodes,
or between visible nodes; thus, an RBM forms a complete
bipartite graph. This model can be represented as a Boltzmann
energy distribution [15], in which the probability distribution
of the RBM is given as follows:

p(x,h) =
exp(−E(x,h))

Z

where the partition function defines configurations over all
possible x and h vectors

Z =
∑
x,h

exp(−E(x,h))

The conditional probability can be written in terms of the
energy function as follows:

p(h|x) = exp(−E(x,h))∑
h exp(−E(x,h))

The probability of data p(x) is then obtained by marginalizing
over the hidden vector h.

p(x) =
∑
h

p(x,h) =
∑
h

exp(−E(x,h))

Z

Calculating p(x,h) is not tractable due to the partition
function, Z; however, the conditional probability, p(h|x) =
p(x,h)/

∑
h′ p(x,h′), has a rather simple form. To differenti-

ate from the current vector h, we use h′ to represent all hidden
vectors (configurations) of size n. Then given our definition
of the Boltzmann distribution, we obtain



Algorithm 1 CD-1(xi, α)
1: Input: xi: data sample, α: learning rate.
2: Model Parameters: W: weight vector, b: bias vector on

visible nodes, c: bias vector on hidden nodes
Notation: x ∼ p means x is sampled from p
Positive Phase:

3: x0 ← xi

4: h0 ← σ(c+Wx)
Negative Phase:

5: h̃0 ∼ p(h|x0)
6: x̃ ∼ p(x|h̃0)
7: h1 ← σ(c+Wx̃)

Update parameters:
8: b← b+ α(x0 − x̃)
9: c← c+ α(h0 − h1)

10: W←W + α(h0x0 − h1x̃)

p(h|x) = exp(h>Wx+ b>x+ c>h)/Z∑
h′∈{0,1}n exp(h′>Wx+ b>x+ c>h′)/Z

Although training of the RBM was found to be tractable,
training was initially inefficient, and RBMs did not gain
popularity for several years until Hinton et al. developed
Contrastive Divergence, a method based on Gibbs Sampling
[16]. Since then, RBMs are used widely as basic components
of deep learning algorithms [17]–[19]. RBMs have also been
successfully applied to classification tasks [20]–[22]. More-
over, RBMs have been applied to many other learning tasks
such as Collaborative Filtering [23].

The Contrastive Divergence (CD) method provides a rea-
sonable approximation to the likelihood gradient of the en-
ergy function. Algorithm 1 shows pseudocode for training
RBMs using a one step Contrastive Divergence method. The
algorithm accepts a sample data instance and a set of model
parameters: weight vector (W), visible layer bias vector (b),
hidden layer bias vector (c), and learning rate (α). It updates
the model parameters in two phases, referred to as the positive
phase and the negative phase respectively.

First, in the positive phase (lines 3-4), the probability of
the hidden node is calculated for all hidden nodes, given the
visible vector. In the negative phase (lines 5-7), the probability
of each hidden node is determined by sampling from the
model. First a sample of points for the hidden nodes is drawn
based on the current estimate of the distribution p(h|x0) (line
5). Using these sampled points h0, the current estimate of
p(x|h) is used to sample points for the visible nodes x (line
6). Finally, on line 7, the probabilities of the hidden nodes are
updated based on the sampled vector for the visible nodes.
The parameters of the network are updated on lines 8-10.
Contrastive Divergence need not be limited to one forward
and backward pass in this matter, and Algorithm 1 can be
extended by creating a loop around lines 3–7. Then for k > 1,
the positive and negative phases are repeated k times before
the parameters are updated.

The CD-1 algorithm (i.e, Contrastive Divergence with one
step) has proven to be sufficient for many applications [24],
[25]. CD-k is rarely used, because resetting the Markov chain
after each parameter update is inefficient (as the model has
already changed [24]). As an alternative, Tieleman modified
the Contrastive Divergence method by making Markov chains
persistent [24]; one or more persistent chains are kept during
training, leading to greater efficiency for the multi-step case.
Even so, many applications have demonstrated minimal (if
any) improvement in performance using persistent Markov
chains.

II. PARTITIONED RBMS

To improve the performance of RBMs, Tosun and Shep-
pard proposed a training method for RBMs that partitions
the network into several subnetworks [26] that are trained
independently, and incrementally re-combined until only a
single, all-inclusive partition is left. With the partitioned RBM
method, training involves several levels of partitioning and
training. At each level, the RBM is partitioned into multiple
RBMs as shown in Figure 2. In this figure, the partitions
do not overlap, although [26] also demonstrates additional
improvement in training when some amount of overlap is
permitted. Each partitioned RBM is then trained using a set of
sub-vectors partitioned from the training instances; in effect,
each RBM is trained on instances that contain only the features
that correspond to the input nodes assigned to that RBM.

All the RBMs at a given level can be trained simultaneously
and in parallel. Once they have been trained, a new partitioning
with fewer splits is created, which forms the basis for the next
level up. Figure 2 shows an example in which the first layer
has 4 distinct RBMs, the second layer has 2, and the final layer
has 1. The power of the method comes from the fact that all
levels share the same weight matrix. This means that during
training, each RBM updates its own part of the globally shared
weights; because the partitions do not overlap, there is no
data dependency (which would prevent easy parallelization),
but there is only one set of weights. The result is that the
later levels begin their training with weights that have been
pre-initialized by the earlier levels.1

The reason this is useful is that, when RBMs are small (in
terms of number of nodes/weights being updated), they can be
trained more quickly. While the results of the disjoint training
will not be perfect (because they lack the full data vectors, they
will be missing some relationships), they can be allowed to
run for many epochs. At the higher levels, the RBMs become
larger from recombining, but training requires many fewer
epochs than normal to converge because the weights are much
closer to their optimal values than would be the case with
random initialization. This enables the overall Partitioned-
RBM hierarchy to achieve higher performance over a given
training interval than a single traditional RBM.

1Note that Fortier et al. [27]–[29] suggest an approach to enabling and
exploiting overlap that would also permit parallelization and distribution of
the networks being optimized.



Fig. 2. Example partitioning approach for an RBM

III. PARTITIONING THEORY

To describe the statistical effects of partitioning on data
vectors more formally, we will first introduce a notation to
describe different partitioning schemes. Given data vectors in
Rn, we define a partitioning function π (not to be confused
with the “partition function” Z used in defining the Boltzmann
distribution) as

π : Rn → {u0, . . . ,uk} ,ui ∈ Rs

which takes a single input vector in Rn and produces a set of
k output vectors in Rs, where s < n. Notice that, while we
will be restricting our attention to non-overlapping partitions,
nothing in this definition requires the partitions to be disjoint.

As a simple example, we can consider a function that simply
splits length 6 vectors into two equal length halves; in this
case, n = 6, s = 3, and k = 2; see Figure 3-A. As mentioned,
partition membership need not be mutually exclusive, and
partitions may overlap. So, we might have another partition
function that takes our length 6 vectors and produces 3 outputs
sub-vectors of length 4 by having a size-4 partition window
placed at the front, middle, and end of the original vector. This
would give us n = 6, s = 4, k = 3; see Figure 3-B.

In general, all partition functions must have 1 ≤ s ≤ n and
1 ≤ k ≤ n. There are further constraints between s and k, but
the precise formula will vary depending on the nature of the
partitioning being done. In the simple case given above, s +
k ≤ n+1, because the longer the sub-vector is, the fewer size-s
windows can be fit into the original vector without repetition.

Partitioning functions can also be constructed that respect
structural properties of the original data vectors. For example,
in the case of vectors representing images, there is a natural
2-dimensional layout to the vector elements (pixels). While
it is possible to treat an image as a single (long) vector and
partition it in the way described above, it would make more
sense to treat the image as a 2D grid and partition it into
smaller 2D patches. For example, an 8× 8 pixel image might
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Fig. 3. Simple examples of vector partitioning. (A) breaking a vector into two
disjoint sub-vectors, and (B) breaking it into three overlapping sub-vectors.

be split into a set of 4 × 4 pixel sub-vectors. In general, it
is desirable for adjacencies and distances between elements
of the original data vector to be preserved in the partitioned
sub-vector, especially given our hypothesis that we can exploit
spatially local characteristics of the data.

If we want to talk about what statistical information is
destroyed by the partitioning and what is preserved, we need
to be able to reference more than one vector at a time (since a
single sample contains no statistical information in isolation).
Therefore, we will assume we have a dataset of vectors

D = {x0, . . . ,xm},xi ∈ Rn,

where each xi is composed of n features. We will treat
each feature as a random variable Xj , meaning a vector is
interpreted as xi =

{
X0
i , . . . , X

n
i

}
. We will use Xj in the

absence of any subscript to denote the set of all the jth vector
features in the dataset,

Xj = {Xj
0 , . . . X

j
m}.

We can now describe the statistical properties of these
random variables across the dataset. For individual features,
we can compute statistical measures like mean and variance.
For any given pair of features (i, j), we can compute statistical
measures like correlation, covariance, mean-deltas, and so
forth; each vector in D provides one sample for each feature,
so the number of samples will be the cardinality of D.

By applying a partition function π to every element of a
dataset D, we can generate a new dataset, which will be a set
of the sets created by applying π to the xi:

Dπ = {{π(x0)}, . . . , {π(xm)}}

In some instances, we may be able to treat the partitioned
sub-vectors uniformly, in which case we may want to combine
them into a single set by taking the union of the subsets created
by the partitioning,

Dπ = {π(x0) ∪ . . . ∪ π(xm)},



but this will not be appropriate for all types of data. In cases
where all features are interpreted the same way, this is gener-
ally fine, but if some features need to be interpreted differently,
we cannot take the union this way. It also helps if the data
is isotropic (i.e., changes are independent of direction), and
spatial invariance is expected (i.e., a given pattern is equally
likely to occur anywhere in the data vector). Natural image
data tends to fit these assumptions fairly well, as do some
types of time-series data, geological and meteorological data
(for which this type of analysis is called geostatistics), and
location-based medical, social, and economic datasets (e.g. for
the analysis of cancer clusters).

The main advantage of taking the union is that we get a
larger number of samples, which allows for better estimation.
As an example, for natural image data, taking the union is
generally safe, since we frequently want to create spatially
invariant models anyway. In a more structured dataset, such as
the MNIST dataset used in this paper, we do not expect spatial
invariance in the data (because the images are always centered
and surrounded by a white border, the location of the digit does
not vary), so taking the union would be a tradeoff between
having more samples, but making an (incorrect) assumption
that they were all samples from a uniform distribution.

Within the partitioned dataset, we will need to keep track of
which random variables in the original dataset map to which
element(s) of the partitioned dataset. If we do so, we will then
be in a position to describe which statistical quantities can
still be calculated, and which cannot (because the variables
involved are not in the same partition, and so will not be
available to a learning algorithm at the same time).

So long as the partitioning function preserves locally adja-
cent blocks of the original vectors, it will be the case that we
can still measure statistical properties of feature pairs that are
“near” each other in the original vectors, but we will be unable
to measure statistical properties of features that are “far apart”
in the original vectors (here, we use Euclidean distance as the
measure of how far apart two features are). In other words,
spatially local statistical information is preserved, even while
much of the non-local information is lost.

This emphasis on spatial locality means that we would be
wise to draw from the field of spatial statistics. While some of
the techniques used in geostatistics, for example, will not be
relevant to all types of data, there are a number of principles
and techniques that can productively be borrowed and used in
our analysis of the impact of partitioning.

Probably the simplest, and most central, of these techniques
is the variogram, which provides a way of measuring how
important spatial distance is to statistical correlation. Given
two samples from a spatial distribution Z, sampled at locations
s1 and s2, Z(s1)−Z(s2) is the difference between the value
of those samples, and s1 − s2 is the distance between spatial
locations at which those samples were taken. If there exists a
γ(·) such that

var(Z(s1)− Z(s2)) = 2γ(s1 − s2),∀s1, s2 ∈ D,

where D is the set of all possible sampling locations, then

2γ(·) is called a variogram; note that it is a function of the
distance between sampling locations. For such a function to
be properly defined, some fairly strong assumptions about
the data must be made (including but not limited to it being
sampled from a static, isotropic spatial distribution).

In geostatistics, variograms are often used for predictive
modeling, which means that the assumptions must be fairly
closely held. For our purposes, we will mainly use an empirical
estimation of a variogram as a descriptive tool, so the fact
that it would make a poor predictive model for image data,
for example, is not a problem. Even if the assumptions are not
perfectly met, an estimated variogram can still be a useful tool
for testing the presence and extent of local structure in data,
and it is in this capacity we will use them in our experiments.

A variogram can almost be thought of as a kind of his-
togram, in which the bins are inter-feature (i.e. sampling
location) distances, and the height of each column is the mean
of the variance of the (sample value) differences between all
feature pairs that are that distance apart.

To generate a variogram plot like that in Figure 5, first, for
every pair of features i, j, take the element-wise difference
Xi −Xj , and then compute the variance of the resultant set
var(Xi−Xj). Next, for each distance d in the range [0, dmax],
compute the mean of all the feature-pair-variances between
feature-pairs that are separated by distance d. These averages
are then plotted against the distances.

We can make a similar histogram using correlations (or any
other pair-wise statistical measure) between feature-pairs of a
given distance. We must be careful, however, not to call such
a histogram a correlogram, since that is another term from
spatial statistics with a specialized meaning (which is close
to, but not the same as, the correlation plots we use here).

For a more in depth treatment of variograms, correlograms,
and spatial statistics in general, the reader is directed to
Cressie’s book on the subject [30].

IV. EXPERIMENTS

We used the MNIST dataset for our experiments due to its
wide use in evaluating RBMs as well as a variety of deep
learning algorithms. The MNIST database (Mixed National
Institute of Standards and Technology database) is a database
of handwritten digits, constructed from NIST’s SD-3 and SD-1
databases. MNIST has 60,000 training samples; we repeatedly
split this dataset for our cross-validation experiments. Each
image is 28 × 28 pixels, and encodes a single handwritten
digit (0 to 9). The raw digit images are scaled to fit in a
20×20 region (original aspect ratio maintained), and are then
centered in the final 28×28 image, resulting in a white border
around every image. See Figure 4 for some sample images.
The MNIST dataset was introduced in [3], and can be obtained
from [31].

We measure the performance of the RBMs using recon-
struction error, which is defined to be the mean difference
between the original and reconstructed images. We used a
binary reconstruction error, using a fixed threshold value of
30 to map pixels in the range [0− 255] to a binary 1 or 0



Fig. 4. Sample images from the MNIST dataset. The last row shows the
randomly permuted images corresponding with the original images in the first
row.

for the original images. To get the reconstructed image, we
first sampled a hidden node activation vector from the RBM
model for a given input image, and then sampled a visible node
activation vector based on the sampled hidden activations. The
resulting vector is also binarized and used in conjunction with
the original vector to calculate reconstruction error for length
n vectors:

E(x,x′) =

∑n
i=0(xi 6= x′i)

n

To examine what statistical information is being exploited
by the Partitioned RBMs, we performed a set of experiments
on a randomly permuted version of the data set. To generate
this new data set, a mapping was defined that assigned each
element of an input vector to each element of the output
vector with equal probability. The resultant mapping is 1-
to-1 and onto, and is referred to as a random permutation.
While the generation of the mapping is randomized, once a
permutation has been generated its operation on input vectors
is deterministic.

The permutation experiments were performed by generating
a random permutation, applying it to each vector in the original
dataset to generate a permuted dataset, and then training
the RBMs on this permuted dataset. The result is that we
can compare the performance of the RBMs using raw and
permuted data to see whether or not the RBMs make use of
any statistical information that is disrupted by the permutation.
See the last row of Figure 4 for example permuted images.

We also generated a variogram and a mean-correlation plot
for both the original dataset and for the permuted dataset
to determine the presence and strength of local statistical
structure in the two versions of the dataset.

V. RESULTS

Table I shows the results of our RBM experiments. In the
configuration column, Single RBM indicates the RBM was

TABLE I
RECONSTRUCTION ERRORS

Configuration Samples Original data:
Error (%)

Permuted Data:
Error (%)

Single RBM 60000 2.46 2.44
Single RBM 30000 2.55 2.55

RBM-28 60000 3.32 7.00
RBM-20 50000 2.20 6.42
RBM-15 40000 1.87 6.13
RBM-10 30000 1.64 5.00
RBM-5 25000 1.49 3.88
RBM-2 20000 1.44 2.89
RBM-1 30000 1.42 2.24

trained on the raw data vectors (i.e. no partitioning); RBM-
n indicates a Partitioned-RBM with n partitions. RBM-1 is
equivalent to Single RBM in terms of its configuration, but the
RBM-1 is trained on fewer samples. Note that each successive
RBM-n configuration starts with the output of the previous
configuration, as described in Section II. The Samples column
gives the number of training instances that were used to train
the given RBM, selected at random from the total training
set. As number of partitions decreases, we decrease training
set size to match the time complexity of Single RBM. Each
RBM was run for 15 iterations, and the error rates reported
are the mean values from 10-fold cross-validation (not using
MNIST’s predefined split between training and test data).

For the original MNIST dataset, the Partitioned-RBM out-
performs the Single RBM not only for the RBM-1, but in
all configurations except RBM-28. Additionally, when Single
RBM is trained using the same reduced-size dataset as the
final level of the Partition-RBM, its performance decreases
even further. By design, the computational complexity of the
full stack of Partitioned-RBMs is comparable to that of the
Single RBM trained on the entire dataset; however, it is
evident that less computation would have been necessary for
the Partitioned-RBM to yield superior performance.

For the Partitioned-RBM, reconstruction error on the per-
muted dataset is significantly worse (p > 99.99% using
a paired t-test) than the original dataset. Permutation has
no statistically significant impact on the performance of the
standard Single RBM, as we would expect.

Figure 5 shows the variograms and mean-correlation plots
for both the original MNIST training data and for the randomly
permuted version. To generate a variogram, we calculated
var(Xi −Xj) for each pair i, j, and then for each distance,
plotted the mean of all the variances of feature pairs that
distance apart. For the mean-correlation plots, we calculated
corr(Xi, Xj) for each pair i, j, and then for each distance,
plotted the mean of the correlations of feature pairs that
distance apart.

VI. DISCUSSION

From the results of our experiments using the permuted
dataset, we are led to the conclusion that the Partitioned-
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Fig. 5. Variogram and mean-correlation plots for the MNIST training set.

RBM is making use of statistical information that is spatially
localized, where the Single RBM is not. The permutation
results in no overall loss of information for the Single RBM; it
simply re-orders the elements of the vectors. For this reason,
any pair-wise correlation between a given pair of features will
be unaltered by the permutation. The unchanged behavior of
the Single RBM is therefore exactly what we would expect.

Things are different for the Partitioned-RBM, however,
since the location of the two features in a given pair will
be altered. This means that two features that would have been
assigned to the same partition in the original dataset might not
be assigned to the same partition in the permuted dataset. Since
each piece of a Partitioned-RBM only has access to features
in its partition, this means that whatever statistical information
was contained in the correlation between this pair of features
is no longer available to the Partitioned-RBM.

In fact, the Partitioned-RBM will always be cut off from a
great many of the pair-wise feature correlations; the difference
between the original and permuted datasets is simply in
which correlations are lost. The fact that the Partitioned-RBM
performs significantly worse on the permuted dataset implies

that not all correlations are of equal value. In particular, it
means that correlations between pairs of features that are
spatially proximate in the original data are more important
to the success of the algorithm than correlations between
arbitrary pairs (which will, on average, be significantly farther
apart in the original image).

In Figure 5, we can examine variogram and mean-
correlation plots for the original and permuted datesets to
draw much the same conclusion. At distance 0, there is of
course no variance and perfect correlation, since any feature
always has the same value as itself, regardless of the data.
Beyond that, however, the variance and correlation plots for
the permuted dataset are basically flat, indicating that after
permutation there remains no significant relationship between
statistical information and spatial distribution for feature pairs
(the deviation from the trend of the last two points in each
plot are caused by the reduced sample size available for
the extreme distances; generating a new random permutation
causes significant fluctuation in these last two values). This is
the expected behavior for any dataset which has been randomly
permuted, since the permutation is specifically created to make
the spatial distribution uniformly random.

The plots for the original data, on the other hand, exhibit
some interesting structure. The first thing to note is that
adjacent features have high correlation, and the variance of
the inter-pair differences is low. As the feature-pairs get farther
apart, the degree of correlation drops off rapidly; by a distance
of 5 pixels, there remains on average little statistical relation-
ship between feature pairs. This is likely related to the average
line-width of the hand-written digits, which is generally 2-3
pixels. The fact that correlation improves again as distances
increase may seem counterintuitive; however, this is an artifact
of the construction of the MNIST dataset. In particular, the
MNIST images all have a centered digit surrounded by a
white border. Since background pixels have the same value
in all images, correlation scales with the likelihood that both
members of a pair are background. The greater the distance
between a pair of features, the more likely that both features
will be a part of the background; in fact, beyond a distance
of 30 (note that maximum distance is 28 ×

√
2 ≈ 40)

both pixels are guaranteed to be background pixels, meaning
they are guaranteed to always have the same value. Note
that most correlation measures are actually undefined when
correspondence is perfect; for the purposes of Figure 5, we
have set these values to 1.

Thus, the results lead us readily to the conclusion that the
Partitioned-RBM is making use of spatially local statistical
information in the MNIST dataset to achieve its performance.
This supports our hypothesis [10] that partitioned deep learn-
ing algorithms rely on such local information.

VII. CONCLUSION AND FUTURE WORK

We have begun to explore one of the potential repre-
sentation biases that deep learning techniques leverage to
achieve their performance. Our experimental results suggest
that partitioned-data techniques are able to make use of



spatially local information, and we have in the variogram and
the mean-correlation plot some crude tools for analyzing how
much spatially local structure exists in a dataset. While these
results are promising, they offer only a first jumping off point
for the work that could be done in the area of understanding
and exploiting the biases that underpin deep learning.

In particular, we need to apply the idea of partitioning to
other problems and other techniques before we can make
any claims of generality. Our previous work [10] applied a
deep partitioning approach to Principal Component Analysis
and achieved results that support the results presented here.
However, there is still a great deal of space to explore, both
in terms of existing deep learning techniques that make use
of partitioning, and techniques that do not use partitioning but
might be modified to do so.

The statistical underpinnings are also in need of further ex-
pansion and exploration. While the variogram is a useful tool,
its utility is somewhat limited by the assumptions it makes,
which are unrealistic for many types of data. Developing more
sophisticated statistical models of spatially local structure that
allow us to measure both the amount and the kind of spatial
structure in data would allow us to check in advance whether
a given dataset is a good candidate for partitioned learning.
With sufficient resolution, such a model might even be used
in a predictive or generative capacity; truly used as a model,
rather than merely as a descriptive measure.

Finally, not all deep learning techniques do partitioning, and
even the ones that do not are able to achieve impressive perfor-
mance. This suggests that there must be other representation
biases that underly the success of these methods, and efforts
should be made to understand and explore these biases as well.
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