
Deep Structure Learning: Beyond Connectionist
Approaches

Ben Mitchell
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21218
Email: ben@cs.jhu.edu

John Sheppard
Department of Computer Science

Montana State University
Bozeman, MT 59717

Email: john.sheppard@cs.montana.edu

Abstract—Deep structure learning is a promising new area of
work in the field of machine learning. Previous work in this
area has shown impressive performance, but all of it has used
connectionist models. We hope to demonstrate that the utility
of deep architectures is not restricted to connectionist models.
Our approach is to use simple, non-connectionist dimensionality
reduction techniques in conjunction with a deep architecture to
examine more precisely the impact of the deep architecture itself.
To do this, we use standard PCA as a baseline and compare
it with a deep architecture using PCA. We perform several
image classification experiments using the features generated by
the two techniques, and we conclude that the deep architecture
leads to improved classification performance, supporting the deep
structure hypothesis.

I. INTRODUCTION

Finding structure in data is one of the most fundamental
tasks in many areas of Artificial Intelligence research, includ-
ing machine learning, statistical pattern recognition, computer
vision, data mining, and natural language processing. The
name “statistical pattern recognition” makes this connection
especially clear, since all structure can be viewed as statistical
patterns. Techniques like Bayesian networks try to model these
statistical patterns explicitly, but even techniques like connec-
tionist networks can be thought of as implicitly capturing the
statistical properties of patterns in data.

The No Free Lunch theorems [17] state that all techniques
have the same expected value over all data. This means no
technique can be best for all data, making the search for
algorithms that consistently perform well seem to be futile.
Fortunately, there is significant evidence that real-world data
has properties that allow a small class of techniques to perform
well on a wide range of problems: humans are able to function
in the world, and can make sense of the complex, noisy, and
ambiguous input signals the world provides. There is also
evidence that the human brain is able to learn to interpret
this data using a relatively constrained set of algorithms, and
a fairly limited amount of pre-determined structure [15], [11].

The question, then, is what are the properties of real-world
data that can be relied upon and exploited to make apparently
insoluble learning problems tractable? One hypothesis that
has been gaining interest over the last few years is the deep
structure hypothesis. This hypothesis essentially states that
data of interest has structure at multiple levels of resolution.

The applications so far have mostly been to image data,
with multiple levels of spatial resolution providing “deep”
features [5]. This work has shown great promise for solv-
ing “hard” computer vision problems like generalized object
recognition.

In The Need for Biases in Learning Generalizations,
Mitchell states that “progress toward understanding learning
mechanisms depends on understanding the sources of, and
justification for, various biases.” [14] He points out that
unbiased learning is useless, and therefore we must consider
the bias of a technique to understand when and how it is useful.
If deep learning is effective on real-world problems, we must
conclude that it has a useful and important bias built in.

Unfortunately, most existing work does not directly ex-
plore the deep structure hypothesis, or any other source of
bias in deep learning. The learning algorithms are highly
complex, and produce results that are difficult to analyze.
This is largely due to their connectionist approach; while
connectionist techniques often produce good results, they have
long been criticized for failing to provide interpretability and
separability. This can be thought of as a form of the credit
assignment problem: we would like ro analyze why a given
architecture produces good results, and tease apart what impact
various features of that architecture have on performance.

Our goal in this work is to attempt to separate out some
of the properties that existing deep architectures have, and
apply them in a simplified, non-connectionist framework. This
will allow us to directly explore and test the hypothesized
biases that underlie deep structure learning, and see what is
required to take advantage of deep structure. While there is
some other work in the area of analyzing deep learning [8], to
our knowledge no one has attempted to extend deep learning
beyond the realm of network-like architectures.

II. DEEP STRUCTURE LEARNING

There have been several attempts to exploit deep structure
going back many years, including Fukushima’s Neocogni-
tron [9], LeCun’s Convolutional Networks [13], Behnke’s Neu-
ral Abstraction Pyramids [4], Hawkins’ Hierarchical Temporal
Memories [10], Hinton’s Deep Belief Networks [12], and
Bengio’s Stacked Auto-encoders [6]. All of these techniques
take a connectionist approach to deep structure learning.

Additionally, they all share the same neuromorphic approach,
basing their functionality on the human visual cortex, and
they have all been targeted at computer vision problems. In
this paper, we will focus on a non-neuromorphic approach,
but retain image classification as our benchmark task to allow
more direct comparison with previous work.

Until recently, work in deep learning did not receive much
attention. In fact, the term “deep learning” did not come into
common usage until around 2008. The recent growing interest
has been sparked largely by the success of two techniques,
Convolutional Networks and Deep Belief Networks.

Convolutional Networks are a deep learning technique intro-
duced by LeCun [13] in an attempt to create a computer vision
system that replicates the behavior of the human visual cortex.
A Convolutional Network functions by convolving a bank of
filters with an image, and then aggregating over local areas to
reduce the size of the output. These two steps are alternated
until the size of the final output is as small as is desired. For
a more detailed explanation of Convolutional Networks, we
refer the reader to [13] and [7].

Deep Belief Networks (DBNs) were introduced by Hin-
ton [12] as an alternative to the gradient-based learning done
by LeCun. DBNs work by building a hierarchy of Restricted
Boltzmann Machines (RBMs), trained using contrastive di-
vergence and then converted into a multilayer neural network.
DBN training is conceptually similar to the training of stacked
auto-encoders, but does not use standard gradient descent
alone to learn the weights of the neural network. For a more
detailed description of Deep Belief Networks, see [12] and [7].

III. DEEP FEATURE EXTRACTION

While the results of existing deep learning algorithms are
impressive, the complexity of the resulting systems makes
it difficult to say which properties of those systems are
responsible for the improved performance. Therefore, we have
set out to create a simpler form of deep learning algorithm that
will allow us to test hypotheses about the existence of deep
structure and the utility of various techniques for handling it.

The basic framework we propose for doing this is one
of Deep Feature Extraction (DFE). Deep Feature Extraction
produces a hierarchy of features representing some data, in
which the higher levels correspond to shorter overall descrip-
tion length of that data. For instance, a hierarchy might have a
bottom level that was a 4096-dimensional raw image, and a top
level that was a 10-dimensional feature vector. Intermediate
levels would have intermediate resolutions. The important
property of the hierarchy is that each level is created by
performing some type of dimensionality reduction or feature
extraction on the level below (excepting the bottom level,
which is the raw input data). This is unsupervised greedy
layer-wise training, because each layer is trained based only
on its inputs; the utility of its outputs are not factored in to
the training.

This is a fairly broad framework; in fact, traditional Con-
volutional Networks and DBNs could be described within this
framework. In the broadest description, the DFE framework

is agnostic to how the dimensionality reduction is performed;
the filter bank/softmax approach of a Convolutional Network
is a valid, if fairly complex, example. At the far end of
the spectrum, the “featurespace projection” could simply be
downsampling, in which case the DFE would mimic a standard
image pyramid [1]. In this paper, we use a simple but non-
trivial dimensionality reduction technique to explore more
closely the impact of the hierarchical architecture.

A. Deep PCA

As our basic method of feature extraction, we chose Prin-
cipal Component Analysis (PCA). We made this choice for
several reasons. Firstly, PCA is simple and well understood.
PCA is also advantageous because it is deterministic, generates
linear encode/decode functions, and is guaranteed to produce
an optimal encoding (with respect to minimizing reconstruc-
tion error for a length k linear encoding [2]). PCA has no
parameters (other than the choice of how many principal
components to keep), avoiding a large set of experimental
design issues. Finally, PCA has been used successfully for
dimensionality reduction in the field of computer vision for
many years [16], so there is broad familiarity with the tech-
nique. For this paper, we restrict our interest to image data,
though there is no reason the technique could not be applied
to other types of data, and we hope to do so in future work.

To create a DFE hierarchy for a set of images using PCA, we
begin by subdividing the images. In our experiments, we used
a quad-tree decomposition to split each image recursively; the
bottom level of the quad-tree was a set of non-overlapping 4×4
pixel patches. The set of all 4× 4 patches from all images in
the training dataset was then used as the input for PCA, and
the top k eigenvectors were used as a reduced-dimensionality
basis. Each patch was projected into this new basis, and the
reduced-dimensionality patches were then joined back together
in their original order. The result of this was that each image
had its dimensionality multiplied by k/16 (Figure 1). These
reduced dimensionality images formed the next layer up in
the hierarchy after the raw data.

This process was repeated, using the newly created layer
as the data for the split-PCA-join process to create the next
layer up. At every layer after the first, the dimensionality was
reduced by a fixed factor of 4. The process was terminated
when the remaining data was too small to split, and the
entire image was represented by a single k-dimensional feature
vector at the “top” of the hierarchy.

As an illustration, if our original data is a set of m vectors,
each length n, then we start with a raw data matrix D1, which
is m × n. In the case of images, this means each row of the
matrix is an image. The level one split data matrix, S1, in our
hierarchy is generated by recursively splitting the vectors in
D1 down to 4 × 4 = 16 dimensional patches, so it will be a
(m · n

16) × 16 matrix. We apply PCA to S1, extract the top
k eigenvectors into F1, and use F1 as a basis to project the
vectors of S1 into. Applying the projection to the vectors in
S1 results in P1, an (m · n

16)× k matrix. Adjacent vectors in
P1 are then joined (using the inverse of the splitting operator),

Split

~v2
1 ~v2

2

Join

~v1
22

~v1
23

~v1
21

Split

~v1
13

~v1
12

~v1
11

~v1
14

~v1
24

~p1
13

~p1
14

~p1
23

~p1
24

PCA projection

~p1
11

~p1
12

~p1
21

~p1
22

Fig. 1: An example of how Deep PCA works on a pair of images
from our dataset. The ~v1 are vectors in S1, the ~v2 are vectors in
S2, and the ~p1 are vectors in P 1. Note only a small number of the
vectors from each of these levels are shown.

resulting in S2, which is (m · n
16·4) × (4 · k). If we continue

to recursively join the S2 data, we will get D2, which is an
m× (n · k

16) matrix. Alternatively, we can simply apply PCA
directly to S2 and avoid some extra split/join operations when
building the hierarchy. In general, Dl will be m× (n · k

16·4l).
When 16 · 4l = n, the hierarchy is complete, giving a top
layer with dimensions of m× k. We note that the math only
works cleanly for raw data vectors whose length is a power
of four; this means we need square images with power of two
widths. While there are several ways this constraint could be
relaxed (by changing the split/join operation), we leave them
for future work.

Pseudocode for this algorithm is given in Algorithm 1.
The SplitQuads function (line 3) does a quad-tree style
split of an image into four equal-sized sub-images, and the
JoinQuads function (line 8) inverts this operation. The func-
tion PCA(M,k) (line 6) computes an eigen-decomposition of
the covariance of M and then returns the top k eigenvectors.
The matrix multiplication in line 7 projects the data into the
new eigen-basis. The for loop in lines 2–4 does the “recursive”
splitting of data, and the for loop on lines 5–9 builds the
feature hierarchy one level at a time.

Since our goal was to examine the benefits of performing
dimensionality reduction in this hierarchical fashion, we used
only the top layer as the “output” of the overall “Deep PCA”
technique. This allowed us to compare the k-dimensional
feature vector produced by Deep PCA directly to the k-
dimensional feature vector produced simply by applying PCA
directly to the raw image data and projecting into the top-k
eigen-basis (which we will call “Flat PCA” for the sake of
clarity). We will leave the exploration of using lower layers

Algorithm 1 Deep PCA

Require: data matrix Data, depth of hierarchy m, number of
eigenvectors to keep k

Ensure: featurespace hierarchy F , projected data hierarchy D
1: D1 = Data
2: for i = 1→ m do
3: D1 = SplitQuads(D1)
4: end for
5: for i = 1→ m do
6: Fi = PCA(Di, k)
7: P = FiDi

8: Di+1 = JoinQuads(P)
9: end for

10: return F , D

of the hierarchy as outputs for future work.
The Deep PCA model has less theoretical power than

most previous deep learning models, due to the fact that it
is primarily a linear model. In fact, the only non-linearity
occurs in the vector split/join operation; there is no other
inter-layer processing. This is in contrast to the complex non-
linear functions used in other deep models, which generally
include things like inter-layer adaptive contrast normalization,
soft-max functions, and sigmoid or hyper-tangent input ag-
gregation. Additionally, some deep methods do not restrict
themselves to feed-forward operations [4], making the overall
behavior of the system that much more complicated.

The inherent power of the repeated non-linear aggregation
used in standard deep learning techniques makes it difficult to
tell how much of the performance of those techniques is due
to the feature hierarchy, and how much is due to the stacked
non-linear functions. It was for this reason that we designed
Deep PCA to have as little non-linearity as possible. While this
likely handicaps its performance in comparison to something
like a Convolutional Network, it allows us to examine the
effects of the hierarchy much more cleanly than would be
possible using non-linear aggregation (or using a non-linear
feature extractor at each layer instead of PCA, which would
also introduce significant non-linearity into the result).

IV. EXPERIMENTS

One of the most basic deep-structure hypotheses is that
real-world data contains deep structure, and exploiting this
structure will yield improved performance on machine learning
tasks. To test this hypothesis, we designed experiments to com-
pare the performance of a standard (shallow) feature extractor
directly with a deep feature hierarchy using the same extractor.
As described, our goal in choosing PCA was to have a well-
understood feature extractor that could be used to expose
the differences between deep and flat feature extraction; we
have no expectation that it will produce optimal classification
results. For our purposes here, the differences between deep
and flat are more important than the absolute performances.
In an application where performance is the primary goal, the
best feature extractor available should be used.

Fig. 2: Some example images from our data set.

We chose an image classification task because this is the
type of task that has been used in most of the deep structure lit-
erature. Since previous work has shown improved performance
on these tasks using deep architectures, we expect that this
type of data should have deep structure that can be exploited.

We began with a dataset consisting of 600 greyscale images.
The images were pictures of 10 different objects taken against
5 different backgrounds. Multiple images were taken of each
object/background pair, and the camera was moved slightly
between images so that no two were alike in the position
and scale of the foreground object (see Figure 2 for example
images). We performed our experiments on three different ver-
sions of the dataset, each of which was a different resolution.
The resolutions used were 512×512, 256×256, and 128×128
pixels. We created this novel data set so that we could have
natural images (i.e. not artificially generated or composited)
in multiple resolutions, with multiple images of each object.
In the future, we hope to find other data sets that we can use
to test our algorithms, but many existing image data sets have
only low (and often variable) resolutions, which make deeper
hierarchies less interesting.

For each image width, we did experiments using both 5×2
cross-validation, and 10-fold cross-validation. Five-by-two has
some nice theoretical properties, but due to the relatively small
size of our dataset, the accuracy achievable by 10-fold cross-
validation was higher. We report the results for both methods.

For each experiment, a dataset was split into “train” and
“test” sets using one of the validation methods, and the
training set was used to generate two feature spaces. The
first used Flat PCA to generate 16 features, and the second
used Deep PCA to generate 16 features. The dimensionality
of the resultant feature space was the same for both techniques.
Due to the length of our data vectors, operations on the full
covariance matrix proved intractable, so we used an iterative
PCA algorithm [3] to generate only the first 16 eigenvectors.

The training data was then projected into both feature
spaces, and the projected training data was used to train two
standard classifiers. Once the classifiers were trained, the test-
ing data was projected into each feature space and presented
to the corresponding classifier to evaluate its performance.

TABLE I: Classification accuracy for different experiments. Each
score is averaged over the samples created by the indicated validation
technique. Bold numbers indicate that the advantage a technique
showed was significant (p ≥ .95 using two-sided paired Wilcoxon).

Width Validation Classifier Flat Deep
128 10-fold KNN 52.56% 53.20%
128 10-fold SVM 45.40% 48.09%
128 5x2 KNN 43.84% 44.93%
128 5x2 SVM 37.77% 39.63%
256 10-fold KNN 51.26% 52.08%
256 10-fold SVM 45.04% 46.71%
256 5x2 KNN 42.33% 43.54%
256 5x2 SVM 36.28% 37.83%
512 10-fold KNN 50.83% 52.60%
512 10-fold SVM 43.59% 46.57%
512 5x2 KNN 43.87% 45.03%
512 5x2 SVM 36.61% 38.47%

TABLE II: Percentage of validation runs in which one technique out-
performed the other. In cases where performance was the same, no
winner is listed. The margin is the amount that the winning technique
won by, averaged over the instances in which that technique won.

Width Validation Classifier Deep:Flat Wins Margin
128 10-fold KNN 50%:20% 2.94%:4.08%
128 10-fold SVM 90%:10% 3.14%:1.66%
128 5x2 KNN 60%:20% 1.93%:0.33%
128 5x2 SVM 80%:10% 2.45%:1.00%
256 10-fold KNN 50%:30% 3.24%:2.70%
256 10-fold SVM 60%:40% 6.03%:4.93%
256 5x2 KNN 70%:20% 1.87%:0.49%
256 5x2 SVM 70%:30% 2.82%:1.43%
512 10-fold KNN 50%:30% 4.90%:2.18%
512 10-fold SVM 50%:30% 8.17%:3.81%
512 5x2 KNN 80%:20% 1.57%:0.50%
512 5x2 SVM 80%:20% 2.53%:0.83%

Average 65.83%:23.33% 3.47%:2.00%

We used two classifiers, a simple Nearest Neighbor classifier
and a Support Vector Machine. As with the choice of feature
extractor, we chose simple, widely-used, deterministic classi-
fication algorithms. While we performed a few experiments
to make sure we had reasonable parameters for the SVM
(i.e. kernel type, degree, etc.), we make no claim that these
classifiers will yield the highest possible performance on the
task. Again, the goal was to use simple algorithms to make
the difference between the deep and flat feature extraction as
clear as possible.

Finally, we performed experiments on a modified version
of the dataset, in which a random permutation was applied to
the feature vectors. This meant that the pixels of an image
were re-ordered randomly (but consistently across all the
images in the data set). This permutation effectively erases any
local structure in the data, while preserving global statistical
properties. This was done to test whether the deep architecture
was truly making use of local structure or not.

V. RESULTS AND DISCUSSION

We ran both 10-fold and 5 × 2 cross-validation in com-
bination with each image size and classifier. The results of

TABLE III: Mean squared reconstruction error for the different
techniques and image sizes. The results are averaged over all data
sets with the indicated resolution.

Width Flat MSE Deep MSE Flat Accuracy Deep Accuracy
128 6.53 6.96 44.89% 46.47%
256 14.08 13.90 43.73% 45.04%
512 29.92 29.51 43.73% 45.67%

TABLE IV: Classification error on randomly permuted images.
Results reported using 5x2 validation and the nearest neighbor
classifier; results for other methods were similar.

Flat Flat Deep Deep
Width Original Permuted Original Permuted
128 43.84% 44.07% 44.93% 35.89%
256 42.33% 41.02% 43.54% 31.11%
512 43.87% 43.25% 45.03% 28.59%

these experiments are summarized in Table I by giving the
mean accuracy achieved by each group of 10 experiments
(one per validation fold). As can be seen in this table, Deep
PCA achieves a higher mean accuracy than Flat PCA in
all cases; the overall mean improvement achieved by Deep
PCA is 1.16%. While this difference is small, it is highly
significant; a two-sided paired Wilcoxon test yields a p-value
of p = 1.86×10−7 for the null hypothesis that the two methods
produce equivalent results.

The absolute values of the accuracies are low in all cases,
though well above random chance for a 10 class problem.
This seems to be due largely to the difficulty of the prob-
lem; as a baseline, we performed experiments using standard
Convolutional Networks, and were unable to obtain accuracy
above 48%. It is possible that with more parameter tuning
we could do slightly better, but the difference is minimal.
Our technique offers competative performance despite using
a simple, non-connectionist architecture. Additionally, it is far
more computationally efficient; the Convolutional Networks
took several orders of magnitude longer to train.

Additionally, while object recognition is known to be a
hard problem, it is likely that we could achieve better results
using something other than PCA to do feature extraction, since
PCA tends to work best for vision problems after lots of
pre-processing (e.g. see the original Eigenfaces work [16]).
Most work with Convolutional Networks also does more
preprocessing than we used here; in particular, local con-
trastive normalization is standard, and would likely improve
the performance of either technique. As previously stated, we
wanted a simple, general algorithm for our feature extractor,
with as little preprocessing as possible. Our goal was to
examine the role of deep structure in learning, not create a
state-of-the-art classifier system.

Looking at the p-values for each experiment individually
(highlights in the last column of Table I), we see that the 5×2
cross-validation gives much better significance. In fact, in all
but one of the 5× 2 experiments, Deep PCA was better by a
statistically significant margin (p ≥ 0.95). In the one instance

where it failed to meet this significance, it was only off by
about 2% (p = 0.93). The 10-fold cross-validation runs, on the
other hand, had poor significance results, but higher absolute
performance scores. This result should not be surprising; the
10-fold method has more training data, so it can achieve better
performance, but much less testing data, which handicaps its
ability to produce a wide and consistent margin.

While Deep PCA is better on average for every cross-
validation run, it was not always better for every single training
fold. Table II shows how often each algorithm beat the other
during each 10-experiment validation run, as well as the
margin of that victory. In cases where the two algorithms tied,
neither was counted as winning. We note that Deep PCA not
only wins more frequently, but when it wins it does so by a
larger margin.

Due the relatively small data sets, we saw a large variance
between different test/train splits; there could be as much
as a 15% difference in accuracy (the same for both tech-
niques) between the different splits of a single 10-fold cross-
validation run. This behavior suggests that the number of
training samples was a limiting factor in the final performance
of the classifiers. Additionally, the average accuracy achieved
during the 10-fold cross-validation experiments was around
10% higher than that achieved during the 5×2 cross-validation
experiments, which lends support to this hypothesis. The
difference between the classification accuracy achieved by the
“flat” and “deep” methods was rarely more than a few percent,
but it also showed a very small variance, proving to be quite
stable across all the different experiments. Thus, we expect that
a larger data set would show improved accuracies for both flat
and deep methods, but we do not expect the difference between
flat and deep would be impacted greatly.

Table III shows the average mean-squared reconstruction
error (MSE) that results from projecting into and then out of
each feature space, along with the average accuracy for each
method. These results do not show any significant difference
in MSE between the flat and deep techniques. As expected,
increasing the length of the raw data vectors while leaving
the dimensionality of the generated feature space fixed leads
to higher MSE. Higher classification accuracy without higher
MSE suggests that the deep technique is doing a better job of
keeping “meaningful” features.

Table IV shows the results of randomly permuting the data
before applying the learning process. The fact that permutation
makes no significant difference for Flat PCA is exactly what
we would expect; since PCA works by looking an global
statistical properties, the order in which the features appear
makes no difference in the projected data. In the case of
the deep technique, however, there is a significant difference;
performance on the permuted dataset is far worse than on
the unmodified images. This suggests that two of our original
hypotheses hold.

First, it suggests that one of the major biases of the deep
technique is an expectation of local structure. And second,
it suggests that our images have local structure that fits this
expectation reasonably well. In both cases, the support is

the fact that random permutation destroys local structure, but
leaves the global statistical properties of the data unchanged.
If permutation hurts the performance, then this can only mean
that our data started out with useful local structure, and that
the deep technique was exploiting this structure; otherwise, the
performance would not have been impacted. If the improved
performance of the deep technique on the original data was due
only to the non-linearity involved in the split/join operation,
we would expect that the performance on the permuted data
would not have been impacted, so we can conclude that the
increased performance was likely due to the exploitation of
deep structure, and not just the non-linearity.

VI. CONCLUSIONS AND FUTURE WORK

The central result of this work is that deep architectures can
yield improved results even without connectionist models, and
that this performance seems to be due to a bias that assumes
the presence of deep local structure. While many authors have
claimed that deep techniques can learn abstract features, it has
never been demonstrated that this property holds even without
complex connectionist models. We have demonstrated that this
property is, at least in part, created directly by the structure of
the deep feature hierarchy, and not just by the interactions of
non-linearities in a multi-layer connectionist network. Both our
deep and flat techniques have the same length output, meaning
that neither one has an information-theoretic advantage in
its representational power, and removing the local structure
from the data via random permutation results in a significant
performance loss for the deep technique only.

Another potential advantage of deep methods, and one
that is not generally emphasized in the literature, is that in
cases where less abstract features are required, a lower level
of the hierarchy can be used as the “output” layer, easily
providing a range of feature representations at varying levels
of abstraction. We have made no use of this property in these
experiments, but it is easy to imagine circumstances under
which this would be a desirable property. For example, in an
image classification or retrieval setting, it would be useful to
be able to specify a sub-region of an image, and ask for any
image with a similar sub-region to be returned. Many image
retrieval systems try to incorporate some type of “region of
interest,” but they tend to use a brute-force approach; in a deep
system, this ability would fall out naturally.

As another example, it might be the case that we would want
to include a “level of abstraction” in our query; by performing
classification/retrieval at the top level of a DFE hierarchy, we
can expect results that are broadly similar, while performing
the same operation using a lower level would give us a much
more narrow similarity set. We view the exploration of these
properties as a promising direction for future work.

As with any results based on real-world data, it is difficult
to know how well those results will generalize to different
kinds of data. In the future, we intend to apply DFE not only
to other image data sets, both natural and synthetic, but also to
non-image data. The basic deep-learning hypothesis suggests
that other types of data should be amenable to DFE; after all,

humans are able to process data other than static images. In
particular, we are interested in seeing how the ideas of deep
feature extraction can be applied to time-series data.

We also expect that the use of feature extractors other than
PCA should be able to improve absolute performance, and plan
to do empirical testing to discover how great this impact is.
While absolute performance was not our main interest in this
work, it will be of prime importance in real world applications
of DFE. The feature extractor is also the dominant factor in
the overall algorithmic complexity; the overall runtime of our
experiments scaled approximately linearly with the depth of
the feature hierarchy, but not all feature extractors would be
so well behaved.

We set out to explore the properties of deep learning
hierarchies by starting with as simple a hierarchy as we
could create. Even in this highly simplified hierarchy, we
see some benefits from deep learning on a real-world image
classification task. These results, while interesting, are only the
beginning of a full exploration of how and why deep learning
works. Both theoretical analysis and experimental exploration
are needed to understand what gives deep learning hierarchies
their power, what types of data they are appropriate for, and
how to best design hierarchies for particular tasks.

REFERENCES

[1] E. Adelson, C. Anderson, J. Bergen, P. Burt, and J. Ogden. Pyramid
Methods in Image Processing. RCA Engineer, 29-6, 1984.

[2] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2004.
[3] M. Andrecut. Parallel gpu implementation of iterative pca algorithms.

Journal of Computational Biology, 16(11), 2008.
[4] S. Behnke. Hierarchical Neural Networks for Image Interpretation.

Springer, 2003.
[5] Y. Bengio. Learning deep architectures for AI. Foundations and Trends

in Machine Learning, 2(1):1–127, 2009. Also published as a book. Now
Publishers, 2009.

[6] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-
wise training of deep belief networks. Advances in Neural Information
Processing Systeml 19 (NIPS ’06), pages 153–160, 2007.

[7] Y. Bengio and Y. LeCun. Scaling learning algorithms towards AI. Large-
Scale Kernel Machines, 2007.

[8] D. Erhan, Y. Bengio, A. Courville, P. Manzagol, and P. Vincent. Why
does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11:625–660, 2010.

[9] K. Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36(4):193–202, 1980.

[10] D. George and J. Hawkins. Invariant Pattern Recognition using Bayesian
Inference on Hierarchical Sequences. Proc. of International Joint
Conference on Nerual Networks, 2005.

[11] J. Hawkins and S. Blakeslee. On Intelligence. Owl Books, Henry Holt
and Company, 2004.

[12] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algortihm for
deep belief nets. Neural Computation, 18:1527–1554, 2006.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[14] T. Mitchell. The need for biases in learning generalizations. Technical
Report CBM-TR-117, 1980.

[15] C. Shaw and J. McEachern. Toward a theory of neuroplasticity.
Psychology Press, 2001.

[16] M. Turk and A. Pentland. Face recognition using eigenfaces. Proc.
IEEE Conference on Computer Vision and Pattern Recognition, pages
586–591, 1991.

[17] D. H. Wolpert and W. G. Macready. No free lunch theorems for search.
Technical Report SFI-TR-95-02-010, 1995.

