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Abstract—The Institute for Electrical and Electronics 
Engineers (IEEE), through its Standards Coordinating 
Committee 20 (SCC20), is developing interface standards 
focusing on Automatic Test System-related elements in 
cooperation with a Department of Defense (DoD) initiative 
to define, demonstrate, and mandate such standards. One of 
these standards—IEEE Std 1232-2002 Artificial 
Intelligence Exchange and Service Tie to All Test 
Environments (AI-ESTATE)—has been chosen for 
demonstration prior to mandate. In this paper, we discuss 
the results of the first phase of the AI-ESTATE 
demonstration, focusing on semantic interoperability of 
diagnostic models. The results of this demonstration 
successfully showed the effectiveness of semantic modeling 
in information exchange. In addition, the engineering 
burden was demonstrated to be manageable: all applications 
were constructed in less than four months by three graduate 
students working part time.1,2 
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1. INTRODUCTION 
The Department of Defense (DoD) has established a 
partnership between government, industry and academia to 
address architectural design and standardization issues for 
automatic test systems (ATS). This DoD ATS Framework 
Working Group is focusing on defining an information 
framework and identifying standards for next-generation 
ATS. The principal requirement to be satisfied by the 
framework and associated standards is providing an open 
architecture for ATS to reduce overall cost of development 
and ownership for resulting families of standards. Based on 
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work in the 1990s when the ATS Research and 
Development Integrated Product Team defined a set of 
“critical interfaces” for ATS, the current working group has 
been selecting, supporting the development of, and 
demonstrating commercial standards to be used in ATS with 
the intent of, ultimately, mandating these standards in future 
ATS procurement programs. The current ATS Framework, 
identifying relevant standards, is shown in Figure 1. 

Of specific interest in the work reported here are the DIAD 
(diagnostic data) and DIAS (diagnostic service) interfaces. 
Currently, these interfaces are defined as follows: 

• Diagnostic Data is that information which supports the 
investigation and analysis of the cause or nature of a 
condition, situation, or problem through all phases of 
the system life cycle. 

• Diagnostic Services are those standardized interfaces 
that facilitate transmission, conversion, and retrieval of 
diagnostic data for utilization in the maintenance 
process. These services link results obtained from the 
execution of a test with a diagnostic process that 
utilizes these results and suggests conclusions or 
additional actions that are required. 

In 1976, the IEEE established the Standards Coordinating 
Committee 20 (SCC20) for purposes of standardizing on the 
Abbreviated Test Language for All Systems (ATLAS). 
Since then, SCC20 has expanded its scope to develop 
standards for larger system-level test and diagnostic related 
systems. In 1989, the IEEE approved a project authorization 
request (PAR) for SCC20 to develop a new standard 
focusing on diagnostic systems that use techniques from the 
maturing field of artificial intelligence—the Artificial 
Intelligence Exchange and Service Tie to All Test 
Environments (AI-ESTATE) standard under project P1232. 
In 1995, SCC20 approved and published the AI-ESTATE 
standard, IEEE Std 1232-1995, and in 2002, the standard 
was updated [1]. 

The AI-ESTATE is undergoing a major revision to update 
several standard diagnostic models and to define data and 
software interfaces consistent with modern software 
architectures [2]. Prior to mandating the revised AI-
ESTATE standard, several demonstrations are being 
performed to show that the standard is capable of meeting 
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relevant DoD requirements for fault diagnostics. The 
purpose of this paper is to present the results of the first of 
these demonstrations. 

2. DEMONSTRATING AI-ESTATE 
The AI-ESTATE interoperability demonstration consists of 
three phases, where the first phase (now complete) focused 
on seamlessly exchanging diagnostic models between 
applications. The emerging revision of AI-ESTATE 
includes six schemata defining the semantics of the domain 
of system-level diagnosis using the ISO 10303-11 
EXPRESS language [3]. Phase two will use standard 
services to interact with diagnostic reasoners, and phase 
three will integrate an AI-ESTATE conformant reasoner 
into an automatic test system. This paper focuses on the 
results of the first phase. 

The principal requirement of the first phase of this 
demonstration was to show that models can be created and 
exchanged between independently developed reasoner 
applications and to assess the extent to which the semantic 
definition of the models minimized modification/adaptation 
of models when imported by another reasoner. To 
accomplish this, XML schemata were derived from the 
EXPRESS models for the AI-ESTATE Fault Tree Model 
and the AI-ESTATE Bayesian Model using ISO 10303-28 
[4]. Diagnostic reasoners were developed by two 

independent teams where each team developed a fault-tree 
reasoner and a Bayesian reasoner as well as import and 
export functions based on the XML and EXPRESS 
schemata. The demonstration process considered the impact 
on exchanging semantically valid models using the 
information from the XML schema alone and from the 
XML and EXPRESS schemata combined. The development 
process was also monitored to determine the engineering 
burden to develop an application based on AI-ESTATE 
conformant models. 

As we will describe below, the results of this demonstration 
successfully showed the effectiveness of semantic modeling 
in information exchange. All applications successfully 
created, exported, and imported semantically valid models 
from the other compatible applications (i.e., fault tree 
reasoner to fault tree reasoner and Bayesian reasoner to 
Bayesian reasoner) and rejected semantically invalid 
models. Exchange based on the XML schemata alone, on 
the other hand, resulted in accepting semantically invalid 
models. In addition, by using the EXPRESS schemata, no 
modifications of imported models were required to make 
import succeed. Finally, the engineering burden was 
demonstrated to be manageable: all four applications were 
constructed in less than four months by three graduate 
students working part time. 

Executive

Diagnostics

C
TI

IEEE
1505.1

IEEE 1232 Services

UUTITAInstruments

R
TS

A
TM

L1671

Signal
Models

IEEE 1641

Test Adapter
ATML 1671.5

Instrument
Description

ATML 1671.2

Test Station
ATML 1671.6

Test Description
ATML 1671.1

Test Results
IEEE 1636.1

UUT
Description

ATML 1671.3 

MAI
IEEE 1636.2

Master Conformance Index ATML 1671.4 

AI-ESTATE
IEEE 1232

InstrumentsInstrumentsInstruments

VISA

Test
Program

Note: ATML are IEEE
Standards

DTIF
IEEE 1445

Boundary Scan
IEEE 1149

IVI

ATE

OutcomeTest Reference

 
 

Figure 1. Simplified ATS Framework Architecture 



 

 3

3. INFORMATION MODELING IN AI-ESTATE 
The purpose of an information model is to specify clearly 
the objects in a domain of discourse (e.g., diagnostics) to 
enable precise and unambiguous communication about that 
domain. Such a model consists of one or more schemata 
each of which comprise objects or entities, relationships 
between those objects, and constraints on the objects and 
their relationships. When taken together, these elements of 
an information model provide a complete, unambiguous, 
formal specification of the domain of discourse. In other 
words, they provide a formal language for communicating 
about the subject of interest or domain. 

The IEEE 1232 AI-ESTATE standard [1] was developed 
using information modeling practices, resulting in the 
definition of five models addressing static and dynamic 
aspects of the diagnostic domain. The AI-ESTATE 
information models are: the Common Element Model 
(CEM), the Bayesian Model (BM), the Fault Tree Model 
(FTM), the D-Matrix Inference Model (DIM), the 
Diagnostic Logic Model (DLM), and the Dynamic Context 
Model (DCM). This standard formally defines a set of 
standard software information services to be provided by a 
diagnostic reasoner in an open-architecture test 
environment. 

Based on the formal information models, AI-ESTATE 
provides three different mechanisms for exchanging 
diagnostic information. The historical approach uses the 
STEP Physical File Format defined in ISO 10303-21 [5]. 
This format specifies a simple ASCII, flat file utilizing 
tokens within an attribute-value structure and must be used 
in conjunction with the EXPRESS Schema. The Diagnostic 
and Maintenance Control subcommittee (DMC) is also in 
the process of defining an XML schema consistent with the 
information model. Busch describes an approach to using 
XML, XSLTs, and Part 21 files to exchange data validated 
according to both the XML schema and the original 
information model [6]. Since publishing this approach, the 
DMC decided to use the ISO standard for generating XML 
schemata from the EXPRESS [4]. Finally, the third 
approach to exchanging information is through the 
specification of a software interface (or application program 
interface—API). This API is being developed using the 
Web Services Description Language (WSDL) [7], and 
implementations using this API will be the focus of 
subsequent phases of the demonstration. 

A. ISO 10303-11 EXPRESS 

The DMC decided to specify the various models within AI-
ESTATE using the EXPRESS information modeling 
language [3]. Within EXPRESS, models are defined using a 
simple hierarchy partitioned along schemata, entities, and 
attributes. Furthermore, legal values of attributes are 
defined through constraints on those attributes. The scope of 
the language is to define the information to be used or 

generated by a system or process and is not intended to 
define database formats, file formats, or exchange formats. 

In addition to the “lexical” EXPRESS language, ISO 
10303-11 provides for presenting EXPRESS models in a 
graphical form using EXPRESS-G. Figure 2 is an example 
of a portion of an information model in EXPRESS-G. To 
read this figure, the solid rectangles correspond to entities 
while the dashed rectangles are defined types. The principal 
distinction between entities and defined types is that entities 
are complex types with “attributes” that relate them to other 
entities or types within the model. For example, the entity 
“Outcome” has two attributes—confidence and 
valueDomain—of type “ConfidenceValue” and 
“AssignedValue” respectively. The attributes are shown as 
solid lines with small bubbles on the ends. The bubbles 
identify the type of the attribute. Defined types, on the other 
hand, associate meaningful labels with “base” types such as 
strings, integers, or Booleans. 

The EXPRESS language incorporates a number of object-
oriented features, such as encapsulation, abstraction, and 
inheritance. Encapsulation comes from the specification of 
schemata where concepts specific to a domain or subdomain 
are contained within a single schema. Concepts from other 
schemata can be used through the USE and REFERENCE 
interface. Abstraction is supported through the specification 
of entity or class hierarchies where specialization occurs 
through subtyping. Attributes and constraints defined for a 
supertype are inherited by all of the subtypes. 

Perhaps the most significant feature of the EXPRESS 
language is in the definition of mathematical and logical 
constraints. EXPRESS supports defining constraints in two 
ways—through rules (which are applied globally in a 
schema) and through “where” clauses (which are applied to 
attributes of an entity). It is through these constraints that 
much of the computer-processable semantics are defined. 
By constraining relationships and legal values, often in non-
trivial ways, applications are able to discern if the 
information being received satisfies the intended meaning 
when it was generated and transmitted. It is this point that 
shapes the primary objective of this phase of the AI-
ESTATE demonstration. 

B. ISO 1030-28 XML Exchange 

The main objective of the phase one demonstration is to 
show that AI-ESTATE conformant diagnostic models can 
be exchanged between two diagnostic reasoner applications 
using XML and validated against the semantics defined in 
the associated information models. Although there are 
several approaches to exchanging such diagnostic models, 
the DMC has decided to use ISO 10303-28 (called Part 28 
for convenience) for generating XML Schema Definitions 
(XSD) for each of the respective AI-ESTATE models [4]. 
The advantage to using XML is that it is a widely used data 
exchange format. The advantage to using XSDs is that they 
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provide an added layer of semantic specification, primarily 
focusing on legal structural relationships between the data 
entities. The advantage to using Part 28 is that the structure 
of the XSD is coupled with the structure of the EXPRESS 
information model, thus eliminating the potentially labor 
intensive problem of verifying that a given XSD 
corresponds to the standard specification. 

For the standard and this demonstration, we considered the 
stated scope from Part 28 [4]: 

The following are within the scope of this part of ISO 
10303: 

⎯ specification of the form of XML documents 
containing EXPRESS schemas and data governed 
by EXPRESS schemas; 

⎯ for an arbitrary EXPRESS schema, specification of 
an XML schema that corresponds to the EXPRESS 
schema and formally describes the XML 
representation of data governed by that schema; 

⎯ specification of the representation of values of 
EXPRESS data types as XML element content and 
as XML attribute values; 

⎯ specification of the set of configuration directives 
that may be used to specify options for the 
structure of the XML representation of data sets 
that conform to EXPRESS schemas. 

 
The following are outside the scope of this part of ISO 
10303: 

⎯ specification of XML Schema declarations or 
definitions that depend on the semantic intent, as 

distinct from the EXPRESS language statements, of 
any particular EXPRESS schema; 

⎯ specification of mappings from the XML Schema 
language to the EXPRESS language. 

⎯ specification of the mapping to an EXPRESS 
schema from an XML schema that has been 
derived from an EXPRESS schema. 

 
Part 28 requires that at least four XSDs be generated when 
mapping from an EXPRESS model. The first XSD is named 
in a way that identifies the associated information model 
and specifies the structure of the information elements 
within that model. Three other XSDs are required to support 
Part 28 exchange and are used with all models—cnf.xsd, 
doc.xsd, and ex.xsd. The first, cnf.xsd, specifies 
configuration information for the main schema. Within Part 
28, a configuration language is specified that permits 
considerable tailoring of the main XSD and associated 
instance documents. For purposes of this demonstration, the 
default configuration was used (as specified in Clause 7 of 
[4]). The second, doc.xsd, corresponds to the document 
schema, as specified in Annex D of [4]. The purpose of the 
document schema is to provide a common set of XML 
Schema declarations that are to be available and used by 
any Part 28-generated XSD. The combined set of element 
names, attribute names, and data type names define the 
namespace for the schema. Finally, the third schema, 
exp.xsd, defines the base schema as specified in Annex C of 
[4]. Similar to the document schema, the base schema 
defines a set of common definitions and declarations to be 
used in all Part 28-conforming instance documents. 

As described below, all four XSDs were generated for each 
of the demonstration information models. Key to 
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Figure 2. Sample EXPRESS-G Specification for AI-ESTATE 
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understanding the role of Part 28 in AI-ESTATE is in the 
second two bullets in scope, namely the specification of an 
XML schema corresponding to an EXPRESS schema and 
the specification of how to represent values of an EXPRESS 
data type in XML. Also of note is the first bullet out of 
scope. Any resulting XSD is not intended to address all of 
the semantic specification that is resident in the associated 
EXPRESS schema. Why? Because inherent limitations of 
XML Schema make an XSD incapable of representing these 
semantic specifications. This motivates the objective in the 
phase one demonstration to illustrate where the lack of such 
semantic specification in an XSD breaks down and, thereby, 
demonstrate the benefit of coupling an EXPRESS 
information model with an XSD in performing semantic 
validation. 

C. Key Information Models 

The AI-ESTATE standard defines six information models 
that play various roles in the diagnostic process [2]. These 
information models are named as follows: 

• AI_ESTATE_COMMON_ELEMENT_MODEL 
• AI_ESTATE_FAULT_TREE_MODEL 
• AI_ESTATE_DMATRIX_INFERENCE_MODEL 
• AI_ESTATE_DIAGNOSTIC_LOGIC_MODEL 
• AI_ESTATE_BAYES_MODEL 
• AI_ESTATE_DYNAMIC_CONTEXT_MODEL 

 
The models are listed above in an order that illustrates the 
roles the various models serve.  

The Common Element Model (CEM) is intended to capture 
the key concepts from system diagnosis that would be used 
or made available for any diagnostic system. For example, 
entities have been defined for tests, diagnoses, outcomes, 
costs, and actions. However, attributes that relate various 
outcomes (test, diagnosis, or action) to each other have been 
left out of the CEM because those relationships, for 
example, the relationship between outcomes and diagnoses, 
begin to define a reasoner. Therefore, such relationships are 
not included in the CEM but are specified in the models 
associated with a particular reasoner type.  

The next four models specify information and relationships 
between outcomes (test, diagnosis, and action) that would 
be used by an associated diagnostic reasoner. So far, the 
DMC has specified models for four distinct types of 
reasoners: fault trees, D-matrix/associative, logic/rule-
based, and Bayesian. Because AI-ESTATE attempts to 
provide a formal semantic foundation for different types of 
reasoners, the standard models necessarily omit certain 
characteristics that were deemed either not sufficiently 
mature or not commonly applied. Here, we will describe 
only the two models involved in the demonstration. 

The Fault Tree Model (FTM) was specified to support 
traditional, legacy diagnostic systems based on a decision 

tree. Fault-tree based tools have existed since the 1970s, and 
most technical manuals and test programs still follow a 
structured decision tree to perform diagnosis. The structure 
of a fault tree can be viewed as a decision tree or table. The 
nodes in the tree correspond to the different tests to be run 
during the fault isolation procedure. Each branch from a 
particular node corresponds to one of the possible outcomes 
for that test and points either to a follow-on test or to a 
diagnosis. AI-ESTATE also adds the ability to associate 
intermediate diagnoses in interior nodes of the tree and to 
associate confidence information with tests and diagnoses. 
These optional extensions provide a means to modernize the 
fault tree while still supporting the legacy approach. 

The Bayes Model (BM) is the first diagnostic information 
model introduced into AI-ESTATE since the 2002 standard 
was published. The intent of the BM was to provide an 
approach to representing probabilistic models in terms of 
relationships between random variables in the test and 
diagnosis process. For this model, the random variables are 
restricted to tests and diagnoses with the domains of the 
variables being the respective sets of outcomes. 
Assumptions made with this model include that random 
variables corresponding to diagnoses can depend only on 
test variables and the probability tables are to be fully 
explicated (including closure, i.e., summing to one across 
dependent joints). The Bayesian model was added to AI-
ESTATE because many diagnostic reasoning systems are 
emerging that make use of Bayesian networks and Bayesian 
inference. The intent was to provide a foundation for 
exchanging such models. 

The final model specified in AI-ESTATE, focuses on 
capturing historical information from a diagnostic session. 
This model—the Dynamic Context Model (DCM)—
represents the diagnostic process as a sequence of steps 
performed where one or more tests are evaluated at each 
step. Following the execution of the test(s), the diagnostic 
reasoner is invoked to draw inferences from the test results 
and update an internal hypothesis of what it believes the 
fault state of the system is. Arguably, the DCM could also 
be used to manage the state of the reasoner; however, the 
DMC decided that standardizing at this level would result in 
imposing an implementation approach that violates the 
intended role of AI-ESTATE. 

4. DEMONSTRATION PLAN 
The first phase of the demonstration focused on exchanging 
two of these models—the Fault Tree Model and the 
Bayesian Model. The rationale for selecting these two 
models is discussed in the next section. For this phase of the 
demonstration, the following steps were performed: 

(1) Each diagnostic approach was implemented twice as a 
standalone application. Thus two applications for fault 
tree diagnosis and two applications for Bayesian 
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diagnosis were created. In one case, the fault tree and 
Bayesian application were consolidated into a 
common tool. Each application was implemented 
independently, by two teams of students. One team 
completed a web-based application, and the other 
completed a desktop application. No code was shared 
between the teams, resulting in two implementations 
of each approach and associated model type. 

(2) The applications for the Fault Tree model were 
developed for creating and editing diagnostic fault 
trees and performing diagnosis with those fault trees. 
For the latter, a simple user interface was developed 
whereby test results could be provided to the 
application. No actual hardware tests were run. 

(3) The applications for the Bayesian model were 
developed for creating and editing simple diagnostic 
Bayesian networks and performing diagnosis with 
those Bayesian networks. For one Bayesian 
application, a separate Bayesian network reasoner that 
was developed by a fourth student as part of his 
masters project was used for the inference engine. For 
the second Bayesian application, the University of 
Pittsburgh Structural Modeling, Inference, and 
Learning Engine (SMILE) was used. 

(4) Each application was developed to read and write 
models in the XML format according to the AI-
ESTATE XML Schema. All reading was done with a 
validating parser using the AI-ESTATE XML 
Schema. Additionally, each module was implemented 
to perform model validation according to the 
EXPRESS information model.  

(5) Several test scenarios were constructed to evaluate the 
effectiveness of the exchange process. Most were 
designed to demonstrate the variety of errors that can 
occur and the necessity of both kinds of validation 
when exchanging models. Two larger scenarios were 
designed to demonstrate the success of the export, 
import/export, import sequence between applications. 

(6) The demonstration process itself consisted of the 
following steps for each of the two applications: 

a. Each application was used to develop a Fault Tree 
and a diagnostic Bayesian Network. The 
diagnostic models were based on a simple model 
of a door bell to make them small enough to 
explain yet large enough to be “interesting.”  

b. Each application was exercised to demonstrate the 
ability of that application to use the Fault Tree 
and the Bayesian Network for diagnosis. 

c. Each application was used to create AI-ESTATE 
conformant exchange files for the Fault Tree and 
Bayesian Network. 

d. The exchange files were passed from the creating 
application to the other application, and the 
receiving application was used to import and 
validate the models, based on both the XSD for 
the model and the associated EXPRESS 
information model. 

e. Each application was exercised to demonstrate the 
ability of that application to use the received Fault 
Tree and diagnostic Bayesian Network to perform 
diagnosis. 

f. Each of the received diagnostic models were then 
modified using the editing features of the 
application. Exchange files of the modified 
models were created, and the exchange files were 
subsequently passed back to the original 
applications. These applications were then 
exercised to demonstrate that they could process 
the received, modified models. 

In addition to the basic process described above, additional 
tests were performed to show the limitations of XML-based 
validation. Specifically, models were created using an 
external text editor that violated one or more of the 
EXPRESS constraints that cannot be represented in XML 
Schema. For example, in the Bayesian network, a 
probability table was defined where the probabilities for a 
particular variable did not sum to one. The applications then 
demonstrated that the resulting model would validate 
against the XML validator but fail against the EXPRESS 
validator. 

5. SCHEMA DEVELOPMENT 
For any process based on the exchange of XML files, one of 
the most important requirements is to develop a standard 
definition of the “vocabulary” to be used for the XML 
documents. This enables every party to be confident that 
others will be able to read their files and they will be able to 
read others’ files. There are currently several specifications 
that can be used to create definitions of such a vocabulary 
or “schema”. These are DTD, XML Schema Definitions 
(XSD), RELAX NG, and Schematron. XSDs have largely 
replaced DTDs by providing a language to define XML 
schemas in a format that is itself XML-based and are the 
most common. 

As previously noted, Part 28 defines how to map an 
EXPRESS model to an XSD. Although this is a great boon 
for facilitating the exchange of such models in XML format, 
it is far from a trivial task to convert an arbitrary EXPRESS 
model into an XSD. It should also be noted—and this will 
be a recurring theme—that the XSD and XSD validation 
have weaker semantics than the original EXPRESS model. 
Nevertheless, as long as the limitations are recognized, 
exchanging EXPRESS models in XML can be very 
convenient.  
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Fortunately, we were able to sidestep the difficulty of 
creating a Part 28 compliant XSD from the AI-ESTATE 
EXPRESS model specification. Instead of creating the 
XSDs by hand, we were able to use a tool called Jen-X that 
generates “default” XSDs (where “default” is defined by the 
standard) from a long form EXPRESS model [8]. 

To create the XSDs required for this project, we first took 
the simplified AI-ESTATE Fault Tree and Bayes Network 
models and created long form versions of them. In other 
words, the Common Element Model was physically 
imported into each of the models. Second, we ran the 
EXPRESS models through the Jen-X tool to generate the 
XSDs. These two XSDs were the ones used for the 
demonstration project. 

One additional tool proved to be very useful for the project. 
DocFlex-XML generates HTML documentation (like 
JavaDoc) for XSD files. This tool proved invaluable for 
documenting the automatically generated XSDs without 
resorting to commercial tools such as XMLSpy. 

6. APPLICATION DEVELOPMENT 
Two separate teams were responsible for application 
development. Each team was tasked to independently 
implement two applications: a Fault Tree diagnostic 
reasoner and a Bayes Network diagnostic reasoner. The 
specifications for each application were as follows: 

(1) Each application should be able to create, save and 
edit the implemented diagnostic reasoning model 
(Fault Tree or Bayesian Network). 

(2) Each application should be able to use the model for 
diagnosis including the recording and display of test 
results and ambiguity groups. Display features should 
be appropriate to the model implemented. 

(3) Each application should be able to validate and import 
a model from an XML file. The model should be 
validated using both the XSD and those constraints in 
the EXPRESS information model that could not be 
expressed in the XSD. 

(4) Each application should be able to export valid models 
with validation including both XSD and EXPRESS 
constraint checking. 

Programming languages, frameworks and other such 
architectural details were left up to the individual teams. 
The project leader stood in for the “customer” when 
specification and feature questions arose. 

A. Team A Application 

Team A’s application is written entirely in the Java 
programming language. All components were developed 

expressly for this application or use standard packages of 
the Java 6 API, with the sole exception of the Bayesian 
inference engine. This engine, which was created by 
another graduate student as an independent project, is also 
written in Java. 

The application has two distinct modes of operation: the 
first for creating, editing, and evaluating FTMs and the 
second for creating, editing, and evaluating BMs. Each 
mode has a Graphical User Interface (GUI) for creating and 
editing the diagnostic models, as well as a separate interface 
for performing diagnostic evaluation of the current 
diagnostic model. The interface for entering test results for 
diagnosis requires manual data input by the user, as does the 
interface for the creation and modification of diagnostic 
models. 

The EXPRESS compliant XML exchange file format is 
used as the application's native file format. Therefore, any 
time a model is saved to or loaded from disk, it must be 
converted from the internal data model of the application to 
the standard XML exchange format, or vice-versa. When an 
XML file is loaded from disk, the application checks the 
model against both the XSD constraints and the EXPRESS 
semantic constraints. In the event a model fails validation, 
the application generates an error message explaining which 
constraint has been violated and whether it is an XSD-based 
constraint or a higher-level EXPRESS constraint. 

Furthermore, the application can be set to ignore errors in 
this validation step. This allows models which are correct 
but incomplete, such as a BM in which the probability 
tables have not yet been populated, to be loaded so that the 
model can be completed. The application will still generate 
validation error messages in this mode, but will continue 
trying to load the model in spite of the errors. Truly 
malformed models will still fail to load if the data in the file 
cannot be mapped to the data structures expected by the 
standard. 

The application contains three principal components: the 
graphical user interface, the data model, and the XML 
parser and validator. The data model is a set of Java classes 
that contain information about the active diagnostic model. 
Because we chose to use the XML exchange format as our 
native file format, the structure of the data model closely 
parallels the model format defined by the exchange 
standard. This means that there are several classes in the 
data model that are not directly interacted with by the user 
via the GUI, but it also means that the translation to and 
from XML is a very natural one. In particular, writing XML 
files is a straightforward process of recursive traversal of 
the data model in memory, with each class possessing the 
knowledge of how to translate itself into AI-ESTATE 
conformant XML. 

The GUI is composed of a set of classes inheriting from the 
standard Java Swing package. It does not contain a separate 
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data model, but rather communicates with the underlying 
data model directly, passing messages to the data model 
both to modify the data based on user input and to update 
the GUI display based on the current state of the model. 

The XML parser/validator makes use of the standard Java  
Document Object Model (DOM) XML parser both for 
reading the file into memory and for the XSD based 
validation. The DOM objects are then parsed by code 
specific to the application that extracts semantic information 
based on the AI-ESTATE specification and then creates 
new objects in the application's data model with the same 
semantic content. Application specific code also validates 
any EXPRESS constraints which are not checked by the 
XSD; as mentioned earlier, this includes verifying that the 
probability tables are well formed by ensuring that all rows 
are the same length, that the length is correct given the set 
of dependencies, and ensuring that each row sums to one.  

While these tests had to be hand written (as opposed to the 
XSD, which was extracted from the EXPRESS standard in 
an automated fashion), the engineering burden imposed was 
fairly minor. This is due to the fact that many constraints are 
already checked by the XSD, while others do not need to be 
checked, as they are true by construction (e.g., the standard 
has EXPRESS constraints to check that parent-child 
relationships are bi-directional, but since the application 
creates the links, it is impossible for a uni-directional 
relationship to exist. Thus, this constraint and a number of 
others like it did not need to be explicitly tested). Only a 
small number of tests actually had to be written by hand, 
and most of them were quite simple, taking only a few lines 
of code to perform. 

B. Team B Application 

Team B also developed a consolidated application that 
could handle both types of models, Fault Trees and 
Bayesian Networks. The application is written as a 
networked web application. The client consists of an Adobe 
Flash application written using the Flex software 
development kit (SDK). Flex allows for the creation of 
Flash applications using a combination of ActionScript and 
compilable XML to describe the user interface and provide 
behavior. The resulting application can be run in any 
browser that supports Flash 9. 

The server is implemented using Ruby on Rails, a popular 
web application framework. In this particular case, Rails is 
run under jRuby, the implementation of Ruby for the Java 
Virtual Machine. The main advantage to running Rails 
under jRuby is that jRuby provides full access to Java-based 
libraries from inside the Ruby language and thus Rails. This 
is an important design consideration because the Bayesian 
Network inference library used was the SMILE library 
written by the University of Pittsburgh. Although SMILE is 
a C++ library, a Java Native Interface (JNI) wrapper is also 

provided permitting access to the library inside Java. JRuby 
provides access to that from inside Rails’s Ruby code. 

Communication between the client and server is mediated 
using Adobe’s Action Message Format (AMF) for binary 
object serialization. Using binary serialization required 
writing all data models in both Ruby and ActionScript. 
Although serialization and deserialization are handled 
automatically by the client, server-side serialization and 
deserialization is accomplished using the RubyAMF 
component. On the server-side, all models are stored using 
the YAML Ain’t Markup Language (YAML) format to 
mimic the use of a proprietary format. YAML is a simple 
plain text format. 

The application has several distinct modes of operation 
meant to cover the specifications. The first mode is an edit 
mode where a model can be created, edited, loaded and 
saved. In edit mode, a user can create an entire model on the 
client-side by adding and editing Repair Items, Faults and 
Tests, arranging them in a Fault Tree or Bayesian Network 
and then send the model back to the server for saving. 
Because the application uses a simple file format for 
persistence, partial models can easily be saved and retrieved 
for later editing. 

The data model was designed to capture the main 
characteristics of the underlying information model without 
replicating it in its entirety in the class hierarchy. In many 
cases, EXPRESS entities were “de-normalized” as attributes 
of parent classes, especially when those entities were not 
required elsewhere in the application. However, when the 
objects are exported, they are “normalized” into an AI-
ESTATE compliant form. 

The second mode is a diagnostic mode where a model can 
be loaded from the server into the client and then used to 
perform diagnosis. In the case of the Fault Tree, all 
inference is performed client-side because of the simplicity 
of the inference mechanism in fault trees. The UI walks the 
user through the tree, prompting for test results and 
redisplaying the ambiguity group. In the case of the 
Bayesian Network, because of the computational resources 
required, inference is performed on the server-side. In this 
case, the UI presents all tests to the user. Any number of test 
results can be entered and then inference is performed using 
just those test results by sending them to the server. With 
each inference request, the server provides new conditional 
probabilities for the ambiguity group back to the client. 

C. Differences Between Applications 

Because the applications were created independently, there 
are several major differences in design between them. The 
first and most obvious is the fact that the language choices 
were quite different; Team A used a single language (Java), 
while Team B used a suite of several different languages to 
implement different features. Additionally, Team B used a 
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client/server architecture with a UI which ran in a web 
browser, while Team A created a stand-alone desktop 
application. 

There were also several design choices made by the two 
teams which could reflect different real world design 
requirements. For instance, Team A used the Part 28 format 
as its native file format, and the software data model closely 
paralleled the EXPRESS data model as a result. Team B, on 
the other hand, used YAML for serialization of its objects, 
giving it the equivalent of a “proprietary” file format, using 
Part 28 only for import/export purposes. The software data 
model for Team B was, therefore, much less similar to the 
EXPRESS data model; many of the intermediary layers of 
the object hierarchy in the EXPRESS model were 
compacted or left out of the software data model. 

The Team B model might better reflect the usage pattern of 
a legacy application, or an application which needed to store 
extra information (e.g. vendor specific data beyond the 
scope of AI-ESTATE) in a proprietary format, but still 
wanted to support AI-ESTATE compliant models. The 
Team A model, on the other hand, would be a better model 
for an application primarily designed to consume and 
produce models for use by other systems. An example of 
this would be an application for learning or improving 
models based on historical data, or an application for taking 
diagnostic models from many different vendors and 
providing a standard API for doing diagnosis with them in 
the field. 

7. THE DEMONSTRATION 
Because the main objective of the demonstration is to show 
successful model validation and exchange, a simple system 
was chosen so that it could be easily explained. This system 
was a simple door bell circuit as shown in Figure 3. The 
circuit contains three main items: a clapper-type bell, a push 
button-type switch, and a battery. This circuit can fail in 
several ways. The battery can die, the switch can fail to 
make contact, the switch can jam (thus working the first 
time but not the second time it is pushed), the clapper can 
be stuck open, the clapper can be stuck against the bell or 
the solenoid can be stuck.  

The circuit can be tested in a number of ways. The button 
can be pushed, it can be pushed twice in succession, a 
voltage meter can be used to test the battery, a stimulus can 
be applied to the bell, or a bridge can be applied at the 
switch. 

Two types of diagnostic models were created for this 
circuit, a Fault Tree and a Bayesian Network (Figure 4 and 
Figure 5 respectively). Both models were created using each 
team's application. The Part 28 EXPRESS XML 
representations of these models using the simplified AI-
ESTATE specification form the basis for the demonstration 

tests. For the first nine tests, specific errors were introduced 
into correct XML model files with the intent of testing 
import validation. Some of the errors can be caught by the 
XSD while others cannot, demonstrating the necessity of 
implementing some of the EXPRESS constraints in code. 

The final two tests show the round-trip process of exporting 
the model from one application, importing, modifying, and 
exporting the model with the second application, and then 
importing the model back into the first application. The first 
nine demonstration tests are described first. After that, the 
modifications to the models for the final two tests are 
shown. Note that all of the tests are single failure tests 
because XSD validation stops on the first failure found so 
while it would be possible to create a single model with all 
of the errors demonstrated in the tests, the XSD would still 
only find the first one. Therefore to demonstrate the XSD’s 
ability (or inability) to find errors requires that each model 
file only have one error. 

A. Importing with an Unknown Reference 

For this test, an element is made to reference a non-existent 
entity. Many elements reference other elements that are 
defined elsewhere in the document. They are able to do this 
by using the “ref” property. The value of the ref property 
must match the value of the “id” property of some element 
in the document. Starting with a correct XML model file for 
a Fault Tree, the ref property of the Diagnosisoutcome 
element is set to a value that does not correspond to the id 
of any element in the document, “sw-o-candidate.” 

As we expected, the XSD correctly caught the reference to 
the non-existent element as indicated by the message “XSD 
detected error:”. The somewhat intimidating error message 
that followed was produced by the Java DOM API used to 
validate the XML file: 

[Thu Oct 16 17:47:07 GMT-0400 2008] XSD detected error: 
Key 'Ai_estate___Diagnosisoutcome-keyref' with value 'sw-o-candidate' 
not found for identity constraint of element 'uos'. 
Full EXPRESS validation errors detected: 
Full EXPRESS validation aborted with XSD validation failure. 

This is one problem we found with XSD errors, they are 
very often difficult to interpret without some practice. 

 
Figure 3. Simple Doorbell Circuit 
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B. Importing with a Missing Required Element 

For this test, a required element is missing. The XSD 
enforces EXPRESS constraints for required properties by 
making the child element that represents the property a 
required element. Starting with a correct XML model file, 
the required “description” child element is removed from 
the Repairitem element, “switch.” 

As we expected, the XSD correctly caught the problem with 
the model. The error message indicates that the something is 
missing from the content of element “ai:Repairitem”. As we 
described above, the Description element was deleted to 
make this model incorrect. 

C. Importing with the Wrong Number of Elements 

For this test, an element has the wrong number of children. 
The XSD enforces EXPRESS cardinality constraints by 
requiring the correct number (minimum, maximum or other) 
of child elements. Starting with a correct XML model file, 
one of the Diagnosisoutcome elements is deleted from the 
Allowedoutcomes element of a Fault element. 

Here XSD validation correctly caught that the number of 
elements in the content of the tag “Allowedoutcomes” was 

wrong and missing a Diagnosisoutcome. This is what we 
expected to happen when trying to import this model. 

D. Importing with an Empty Element 

For this test, an element that can be empty (zero children are 
permitted) is omitted. In several places in the AI-ESTATE 
specification, entities reference collections that are 
permitted to be empty. When translated to XML, this means 
that the collection may have zero child elements. However, 
the tag representing the collection is still required even if it 
is just an empty tag. Starting with a correct XML model file, 
we remove the Currentdiagnosisoutcomes from a TestResult 
element. While the Currentdiagnosisoutcomes element—
which represents the current test result’s ambiguity group—
is permitted to be empty, the tag itself must be present. 

This file contains an error that is a fairly easy mistake to 
make when writing XML files. When writing the XML file, 
it is often tempting to leave out a tag when it has no content. 
In this case, the Currentdiagnosisoutcome tag was omitted 
from the model. However, as expected, XSD validation 
caught the error. 

E. Importing with a Missing Probability 

For this test, an error is introduced that is specific to the 
Bayesian Network model. In this case, a probability is 
missing. This is basically the same as the test in section B 
above but is conducted with a different XSD (the Bayesian 
Network XSD) and is provided to contrast what can and 
cannot be validated by XSDs. In this case the required 
Probability element of the Bayesttestoutcome element is 
removed. 

After attempting to import the erroneous model file, the 
console reported the following error: 

[Thu Oct 16 17:51:51 GMT-0400 2008] XSD detected error: 
cvc-complex-type.2.4.b: The content of element 'ai:Bayestestoutcome' is 
not complete. One of '{"":Probability, "":Confidence}' is expected. 
Full EXPRESS validation errors detected: 
Full EXPRESS validation aborted with XSD validation failure. 

Here we can see that the XSD caught the error of the 
missing Probability tag as we expected. 

F. Importing with Incorrect Minimal Outcomes 

In this test, an error is introduced by specifying an incorrect 
combination of values. The AI-ESTATE specification states 
that each Fault must have two Diagnosisoutcomes with 
values “good” and “candidate”. If there are more, then other 
values are permitted but there must at least be those two 
values. Here we introduce an error by changing the 
“candidate” outcome to be the “bad” outcome instead. 

Each application should reject this model because although 
it will pass XSD validation, the error will be caught by full 
EXPRESS validation. “Full EXPRESS validation” in this 

 
Figure 4. Fault Tree for Doorbell Circuit 

 
Figure 5. Bayesian Network for Doorbell Circuit 
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case and the ones that follow refers to the constraints in the 
EXPRESS model that could not be expressed in the XSD 
and must be checked by the additional code. 

After attempting to import the erroneous model file, the 
console reported the following error: 

[Thu Oct 16 17:52:36 GMT-0400 2008] No XSD errors detected. 
Full EXPRESS validation errors detected: 
_1617A054-58E2-6BC0-37BA-3A4642728560:Fault.allowedOutcomes 
must have at least have outcomes of 'good' and 'candidate'. 

Here we find our first error that cannot be detected by the 
XSD. In this case, we were able to detect that one of the two 
necessary outcomes was not provided. The full EXPRESS 
validation implemented in the application caught the error, 
but no XSD errors were detected. 

G. Importing with Duplicate Names 

For this test, an error is introduced that cannot be detected 
by XSD validation. Many EXPRESS entities in the AI-
ESTATE specification are required to have globally unique 
names. For example, it is not permitted to have a Repairitem 
named “Battery” and a Bayesfault named “Battery”. The 
second one must be named “Battery Fault” or anything not 
used elsewhere in the model. 

After attempting to import the erroneous model file, the 
console reported the following error: 

[Thu Oct 16 17:53:54 GMT-0400 2008] No XSD errors detected. 
Full EXPRESS validation errors detected: 
Battery:Fault has a conflicting name with _214D7F66-1EE0-B04B-D4D2-
3A44C2F55447:RepairItem 

For this test, we made names of two different entities in the 
XML file to be the same. The error indicates which two 
items share that name. 

H. Importing with Mismatched Dependencies 

For this test, we look at another constraint violation that 
cannot be detected by the XSD. The number of probabilities 
required in the Probability element of a Bayestestoutcome is 
a function of the number of children of its parent’s 
Dependsonelement and their cardinality. For this particular 
case, we look at the Bayestest for “push”. This test depends 
on two other tests and a single fault, each of which have a 
cardinality of two. This requires 23 probability values to be 
specified for each Bayestestoutcome. Instead we only 
specify 22 probability values for each Bayestestoutcome. 

After attempting to import the erroneous model file, the 
console reported the following error: 

[Thu Oct 16 17:54:19 GMT-0400 2008] No XSD errors detected. 
Full EXPRESS validation errors detected: 
_6D116E1F-4CA2-274A-C473-3A4803F313EE:BayesTestOutcome 
probability size should be 8 not 4 

_5DA9B1AB-8C6B-4D96-4D4C-3A4803F39BDD:BayesTestOutcome 
probability size should be 8 not 4 

The test demonstrated one of the more complicated 
constraints in the underlying AI-ESTATE specification and 
it was caught by the full EXPRESS validation. The number 
of probabilities enumerated in the Probabilities tag of a 
Bayestestoutcome must comport with the number and 
cardinalities of the Faults and or Tests that the parent 
Bayestest depends on. As the error message indicates, for a 
correct file, this would have been eight probabilities but the 
file only contained four. Again, the XSD detected no errors. 

I. Importing with Invalid Probabilities 

For this test we look at a constraint violation similar to that 
in section H that cannot be detected by the XSD. Looking at 
the same Bayestestoutcome elements, given a “pass” and a 
“fail” element, the corresponding probabilities enumerated 
in the Probability element must sum to one. Suppose we use 
the following XML fragment in our model: 

 
<ai:Bayestestoutcome id="_476389C2"> 
       <Valuedomain>pass</Valuedomain> 
       <Probability>0.99 0.98 0.99 0.02</Probability> 
</ai:Bayestestoutcome> 
<ai:Bayestestoutcome id="_CCD6D689"> 
       <Valuedomain>fail</Valuedomain> 
       <Probability>0.01 0.05 0.01 0.98</Probability> 
</ai:Bayestestoutcome> 

We need to sum the probabilities in the Valuedomain of 
“pass” and the corresponding probabilities in the 
Valuedomain of “fail.” Notice the first probability entries 
for the Probability element of the “pass” and “fail” 
Bayestestoutcomes, 0.99 and 0.01 sum to one as they 
should. However, if we look at the next set of 
corresponding entries, 0.98 and 0.05, we see that they do 
not sum to one. 

After attempting to import the erroneous model file, the 
console reported the following error: 

[Thu Oct 16 17:54:46 GMT-0400 2008] No XSD errors detected. 
Full EXPRESS validation errors detected: 
_6439B11A-80EA-3A3C-D430-
3A48CE83E26B:BayesTest.allowedOutcomes corresponding probabilities 
must approximately sum to 1.0 (not 1.03). 

Once again, this was caught by the full EXPRESS 
validation. The XSD detected no errors. 

J. Model Transfer: A-to-B-Edit-to-A 

For this test, we started out with the Fault Tree model 
loaded into Team A’s application. We note that for the Fault 
Tree model, a test result sequence of stim-fail, push/push-
pass leads to an ambiguous diagnosis of “Sol-O” (solenoid 
open) or “Clap-O” (clapper open). The model was then 
exported for use by Team B’s application. After importing 
the Fault Tree model, a new test was added to the model 
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“Open” (for “open” bell casing). By visual inspection of the 
opened bell, this test can resolve the previously noted 
ambiguity. After creating the test, it was added to the proper 
place in the Fault Tree. The model was then exported and 
then imported back into Team A’s application where the 
changes were visible. The process completed successfully 
as expected. 

K. Model Transfer: B-to-A-Edit-to-B 

For this test, we started out with the Bayes Network and 
Team B’s application. We first exported the model and 
loaded it into Team A’s application. For this test we noted 
that the battery, bell and switch are not the only components 
of the bell circuit. There is also the wiring. For this 
modification, we added a new Repairitem (wiring), a new 
Fault (wiring fault) and a new Test (short). For simplicity, 
we made the Test depend directly on only the wiring fault. 
After editing the model, we exported it and then re-imported 
it into Team B’s application where the changes were visible. 
The process completed successfully as expected. 

8. CONCLUSIONS 
Two of the primary motivations behind the DoD adopting 
consensus standards for ATS development are to reduce 
cost by improving interoperability and to minimize repeated 
design of similar systems. The IEEE SCC20 standards focus 
on promoting information interoperability between 
components of a test or health monitoring system. The 
emphasis by the DOD on acquisition reform based on 
commercial standards for ATS, combined with declining 
budgets mandates the need for more affordable health 
management system development and operation.  

A key objective of the demonstration reported here was to 
show that information can be shared between applications in 
such a way that re-engineering is minimized, external 
agreements on handling the data are minimized and, if 
possible, eliminated, and information validation is provided 
beyond simple structural validation. An associated concern 
is whether the implementation of standards purporting to 
provide these characteristics can be done in a cost-effective 
manner. It is clear from this demonstration that AI-ESTATE 
satisfies all of these concerns when exchanging diagnostic 
models. A pair of complete fault tree and Bayesian 
diagnostic systems was developed, including facilities to 
export, import, and semantically validate diagnostic models. 
Furthermore, these systems were developed from scratch by 
three graduate students working part time for four months. 
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