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ABSTRACT 
The main objective of reinforcement learning (RL) is to 
enable an agent to act optimally to maximize the cumulative 
long-term reward. Q-learning is a model free RL algorithm, 
which iteratively learns a long-term reward function “Q” 
given the current state and action. The Deep Q-Learning 
Network (DQN) facilitates the Q-learning by modeling the 
Q-function as a neural network.  

This project implements and experiments such DQN 
models on the OpenAI Gym’s LunarLander-v2 environment, 
using a two-layer feed-forward network with a technique 
named “experience replay”. Extensive experiments are done 
to determine the neural network size and tune various hyper-
parameters including learning rate 𝛼, reward discount factor 
𝛾  and exploration-exploitation trade-off 𝜖 . Major findings 
include 1) the Lunar Lander favors a large hidden layer but 
not a deeper network; 2) a near-one reward discount is 
necessary for the model to consider final successful landing. 
Finally, our best model can stably achieve 280+ mean reward 
for a trial of 100 landing episodes. The code can be found at 
https://github.com/XinliYu/RL-Projects. 

1. PROBLEM DESCRIPTION 
Our problem is based on the OpenAI Gym’s LunarLander-
v2 environment. Gym is a toolkit for developing and 
comparing reinforcement learning algorithms. It supports 
teaching agents on a variety of tasks from walking to playing 
games like Pong, Pinball or Car Racing. In particular, this 
project focuses on the LunarLander-v2 environment, and the 
goal is to teach the agent “lunar lander” to successfully land 
on randomly generated surfaces on the “moon”. The 
following formally defines the state space, action space and 
the reward for this RL problem, according to [1]. 
State space. The state space for LunarLaner-v2 is an eight-
dimensional vector 

(𝑥, 𝑦, 𝑣), 𝑣*, 𝜃, 𝑣,, left_leg, right_leg) (1) 
providing information of the agent’s position (𝑥, 𝑦) in space, 
horizontal and vertical velocity 7𝑣), 𝑣*8, orientation in space 
𝜃, angular velocity 𝑣,, and two 0-1 flags left_leg, right_leg 
indicating whether the left foot/right foot is in contact with 
the ground. 
Action space. The action space has four actions available: 
doing nothing, firing the left orientation engine, firing the 
main engine, and firing the right orientation engine.  
Reward. The environment always has a landing pad for the 
lander at coordinates (0,0). Fuel is infinite. The total reward 
for moving from the top of the screen to the landing pad 
ranges from 100 to 140 points varying on the lander 
placement on the pad. If the lander moves away from the 

landing pad, then it is penalized the amount of reward that 
would be gained by moving towards the pad. An episode 
finishes if the lander crashes or comes to rest (the 
environment will return a 0-1 flag indicating if the episode 
finishes), receiving an extra -100 or +100 points respectively. 
Each leg ground contact is worth +10 points. Firing the main 
engine incurs a -0.3 point penalty for each occurrence.  

Remarks. Based on the description, the maximum 
reward for one episode should be around 260. However, 
in our experiments, 310+ reward is observed. 

Goal: The problem is considered solved when achieving a 
score of 200 points or higher on average over 100 
consecutive landing attempts. 

Difficulty: The LunarLander-v2 changes the shape of 
the landing surface every time. The lander must learn to 
land in all situations.  

2. Q-LEARNING ALGORITHM 
Q-Learning is a model-free RL algorithm that does not 
require an explicit definition of a Markov decision process. 
It trains an agent to learn an optimal policy from a dynamic 
environment, and the learned optimal policy tells the agent 
what action to take at each state. 

Given an environment, let 𝑆 denote the state space and 
𝐴 denote the action space. In Q-learning, the expected total 
long-term reward given a state 𝑠 and an action 𝑎 is predicted 
by the Q-function 𝑄(𝑠, 𝑎): 𝑆 × 𝐴 → ℝ , where the use of 
letter “Q” may be interpreted as the “quality” of the action 𝑎 
in the state 𝑠. The agent should take the optimal action 𝜋(𝑠) 
for a state 𝑠  such that the expected long-term reward is 
maximized, i.e.,   

𝜋(𝑠) = argmaxG	𝑄(𝑠, 𝑎), 
where 𝜋  denotes the optimal policy, an 𝑆 → 𝐴  map from 
states to actions. 

Q-learning applies a modified form of Bellman equation 
to learn the optimal policy. If we only consider 1-step 
transition 〈𝑠J, 𝑎J, 𝑟J, 𝑠JLM⟩	 where 𝑟 is the immediate reward 
of the current step, and sJLM is the next state, then we have: 

𝑄(𝑠J, 𝑎𝑡) = 𝑟𝑡 + 𝛾max𝑎 𝑄(𝑠JLM, 𝑎) (2) 

where 𝛾 ∈ [0,1]  is the discount factor specifying how far 
ahead in time the algorithm should look. This means the 
optimal long-term reward 𝑄(𝑠J, 𝑎J) for the current state 𝑠J 
and action 𝑎J , is the immediate reward plus a discounted 
optimal long-term reward for the next state.  

Remarks. For the lunar-lander problem, there is 120 
points for a good landing, a large portion of the reward 
we can earn. To prioritize this final success, we expect a 
good 𝛾 to be near 1. 
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In addition, we can use a learning rate 𝛼, which enables 
a moving averaging between old and new values of 𝑄. This 
allows the learning of 𝑄 to converge smoothly, even if our 
environment is noisy. The update formula with 𝛼 is then 

𝑄(𝑠J, 𝑎J) = (1 − 𝛼)𝑄(𝑠J, 𝑎J)
+ 𝛼(𝑟J + 𝛾maxGX

𝑄(𝑠𝑡+1, 𝑎𝑡+1)) (3) 

The equation (3) defines an iterative process. When both 
states and actions are discrete and finite, a straightforward 
method to solve (3) is to model 𝑄  as a matrix and then 
iteratively runs (3) until convergence. This is called the 
tabular Q-Learning method. 

Difficulty. Such method is difficult to deal with large 
and continuous state space. Our lunar lander problem 
has infinite continuous state space like velocity or angle. 
We can of course apply discretization techniques, but 
the performance will be hurt. 
Solution. Fortunately, Q-function in the Q-learning is a 
conceptually general function and can be implemented 
as any proper model. Therefore, we can implement it as 
a neural network, a popular machine learning approach 
successful in a wide spectrum of tasks.  

3. THE DEEP-Q LEARNING 
The Deep Q-learning is an extension of the Q-Learning 
algorithm by modeling the Q-function 𝑄(𝑠, 𝑎) as a (deep) 
neural network [1-2]. The discussions in the section hold for 
the general framework of deep Q-learning. Our concrete 
implementation of the neural network is in the next section. 

In this approach, the Q-function is a complicated 
composition of a variety of parameterized functions, taking 
the input 𝑠, 𝑎 and making predictions of long-term utility. A 
loss function 𝐿 is designed to measure how well 𝑄 makes the 
prediction. Finally, the parameters of 𝑄  are trained by 
calculating gradients of 𝐿  and applying optimization. The 
objective of Q-learning is to make the iterative process such 
like (2) converge, and then one choice of loss function is the 
“squared difference”, 

𝐿 = Z𝑄(𝑠J, 𝑎J) − [𝑟J + 𝛾maxG 𝑄(𝑠JLM, 𝑎)\]
^
 (4) 

where “max
G
𝑄(𝑠JLM, 𝑎) ” is evaluated using the current 

predictions, and “ 𝑟J + 𝛾maxG 𝑄(𝑠JLM, 𝑎) ” is like a target 
value for 𝑄(𝑠J, 𝑎J) in a classic regression problem . 

Single forward pass design. Again, let 𝑆 denote the state 
space, 𝐴 denote the action space, and |𝐴| be the number of 
actions in the action space. If our neural network strictly 
follows the definition of Q-function as an 𝑆 × 𝐴 → ℝ 
function, then we need |𝐴| forward passes in order to find the 
optimal 𝑎 for maximization max

G
𝑄(𝑠JLM, 𝑎). 

Following [1-2], we instead design a neural network 
𝒩(𝑠): 𝑆 → ℝ|a|. 𝒩 works like a score function, producing a 
|𝐴|-dimensional real-valued vector given a state 𝑠, and each 
score in this vector is the score for the corresponding action. 
If we denote 𝒩(𝑠)[𝑎] as the score in 𝒩(𝑠) corresponding to 
action 𝑎, then 𝑄(𝑠, 𝑎) is implicitly modelled as  

𝑄(𝑠, 𝑎) = 𝒩(𝑠)[𝑎] (5) 

The benefit of such 𝒩 is that it generates all scores in one 
forward pass, and then max

G
𝑄(𝑠JLM, 𝑎) = max𝒩(𝑠).  We 

will implement 𝒩  as a feed-forward network in the next 
section.  

Experience replay. The above design is observed to have 
serious stability issues, as shown later in Fig 2, if we always 
train (4) using the latest state transition. A technique called 
experience replay described in [3] is adopted by [1-2] to 
improve learning stability. It simply uses a list called replay 
memory to preserve a fixed number of recent historical state 
transitions (e.g. 10000 historical transitions, may come from 
multiple episodes). Every time we randomly sample a 
number of state transitions from the replay memory, pass 
them as a batch into the neural network for training.  

Remarks. This also improves training efficiency in 
practice. Training a model using batch data is much 
faster than one-by-one training when using a modern 
deep learning tool like Pytorch or Tensorflow. 

Exploration-exploitation trade-off. Q-learning needs to 
consider the exploration–exploitation tradeoff like other 
reinforcement learning algorithms. One way for this trade-
off is to look at the term “max

G
𝑄(𝑠JLM, 𝑎)” in (2) and (4). On 

one hand we need to explore the environment to get a more 
complete picture of transition and outcomes, which means 
we could choose some random action rather than the optimal 
action; on the other hand, we should always execute the 
current optimal action in order to effectively train the agent.  

We use a mixed strategy. Define a trade-off parameter 
𝜖 ∈ [0,1]. The agent has probability 𝜖 to randomly choose an 
action for the loss (4), rather than going for the optimal 
action. In addition, we also dynamically change 𝜖 overtime. 

• When training beings, the Q-function is not trained 
enough to make good prediction. In this case, going 
for the optimal action is not useful. Therefore, we 
should have larger 𝜖 at the early stage.  

• As the training goes on, the Q-function gains more 
predictive power, and we should gradually have 
more trust in its predicted utilities. Therefore, 𝜖 
should decrease overtime. 

To achieve above heuristics, we use three parameters 𝜖bcdec, 
𝜖fgh and 𝜖ijkdl, and in the range of [0,1]. Let 𝜖J be the value 
of 𝜖  for the 𝑡th state transition, then 𝜖M = 𝜖bcdec , and 𝜖J =
max7𝜖fgh, 𝜖ijkdlJmM 𝜖M8; that is, 𝜖J is decreased by a factor of 
𝜖ijkdl after every state transition. 
Learning rate. In deep Q-Learning, scheme similar to (3) is 
implemented by the optimizer, and our learning rate 𝛼 is the 
learning rate of the optimizer. 
Complete algortihm. Based on all previous discussion, our 
Q-learning algorithm have the following parameters: 1) the 
discount factor 𝛾; 2) the learning rate 𝛼; 3) the exploration-
exploitation trade-off parameters 𝜖bcdec, 𝜖fgh, 𝜖ijkdl ; 4) the 
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replay memory size, and the replay memory sample size for 
every state transition. 

 
4. THE FEED FORWARD NETWORK 

The previous section established the deep Q-learning 
framework. In this project, we try a feed-forward network 
(FFW) as the 𝒩 in (5).  

Remarks. FFW is one simplest type of neural networks. 
We make this choice because this lunar-lander problem 
is relatively simpler in comparison to other problems the 
deep learning approach usually target in practice (e.g. 
computer vision, NLP, etc.). By Occam’s razor, its 
simplicity matches the simplicity of FFW. 
An FFW is a composition of multiple “layers” of linear 

or non-linear functions [4], and an FFW with 𝐻  hidden 
layers can be written as the following, where the symbol “∘” 
denotes a function composition, 

FFW = 𝑓ghstc ∘ (𝑓M ∘ 𝑎M) ∘ … ∘ (𝑓v ∘ 𝑎v) ∘ 𝑓wtcstc  (6) 

Here the input layer 𝑓ghstc takes the input state vector (in our 
problem the 8-dimensional vector as in (1)) and generates a 
hidden state vector of dimension 𝑛M . A hidden layer 𝑓y ∘
𝑎y, 𝑖 = 1,… ,𝐻  consists of a transformation 𝑓y  and an 
activation function 𝑎y; every hidden layer takes a vector of 
dimension 𝑛y as its input, and we say 𝑓y has 𝑛y hidden units. 
If 𝑓y is a linear function or an affine function (linear plus bias) 
then we say 𝑓y  is a linear layer. For 𝑖 ≤ 𝐻 − 1, the hidden 
layer 𝑓y  produces a vector of dimension 𝑛yLM  for the next 
hidden layer; for 𝑖 = 𝐻 the hidden layer produces a vector 
for the output layer 𝑓wtcstc , and  𝑓wtcstc  generates a final 
state vector (in our case a 4-dimensional score vector for 
each candidate action). Usually 𝑓ghstc, 𝑓M, … , 𝑓v, 𝑓wtcstc have 
learnable parameters. Also note if 𝑓y takes an 𝑛g dimensional 
vector as its input, then we can say this hidden layer has 𝑛y 
hidden units. After defining the network as in (6), we also 

need to define a loss function (in our case (4)) and then use 
optimization to learn those learnable parameters. 

For our problem, we use an FFW with two linear hidden 
layers of units 256 and 128 by extensive experiments (see 
later Experiment 4). Let the activation functions be rectifiers 
𝑎y(𝐱) = relu(𝐱) = max(0, 𝐱)  (element-wisely set negative 
values as zero), and let 𝑓wtcstc be the identity function, then 
𝒩(𝑠) ≔ FFW�thdem�dhije(𝑠)
= 𝐀^relu7𝐀Mrelu7𝐀ghstc𝑠 + 𝐛ghstc8 + 𝐛M8 + 𝐛^  (7) 

where 𝐀ghstc is a 256 × 8 matrix, 𝐀M is a 256 × 128 matrix, 
𝐀^  is a 128 × 4  matrix, and 𝐛ghstc, 𝐛M, 𝐛^  are 256/128/4 
dimensional bias vectors.  

5. EXPERIMENTS 
Overview: We implemented the Algorithm 1 in Sec. 3 in 
Python 3 with a PyTorch based FFW. We first need to select 
a proper FFW to implement the Q-function, e.g. how many 
hidden layers, and how many units for each layer. The we 
will tune the hyperparameters to stretch the model 
performance as much as possible. Every training is using 
2000 episodes. After a model is trained, it will be tested by 
ten trials of 100 episodes, i.e. 1000 test episodes in total. 

Difficulty. An exhaustive grid search for parameter 
tuning is infeasible because we have multiple 
hyperparameters in Algorithm 1, and training a neural 
network is time consuming.  
Solution. Use the heuristics in Sec 2 and 3, e.g. 𝛾 should 
be near 1, more exploration when training begins, etc. 
Also use a medium-sized network to preliminarily test 
some guesses of parameters without obvious heuristics, 
like learning rate 𝛼 . After all, we choose our initial 
parameters as 𝛾 = 0.99, α = 10m� , and 𝜖bcdec = 1.0 , 
𝜖ijkdl = 0.998, 𝜖fgh = 0. We choose replay memory of 
size 65536, and a sample size of 32. 
During parameter tuning, each time we only vary one 
parameter with other parameters fixed to see the effect. 
The tuning results turn out very near our initial 
parameters. We discovered potential competitive or 
better options 𝜖bcdec = 0.5 and 𝜖ijkdl = 0.99. 

Experiment 1: network size selection & effectiveness of 
experience replay. We tested seven 2-layer networks with 
32/16, 64/32, 96/48, 128/64, 192/96, 256/128, 512/256 
hidden units, and three 3-layer networks with 128/64/32, 
256/128/64 and 512/256/128 hidden units. All layers have 
RELU as the activation excluding the last layer. We did 6 
times of trainings of 2000 episodes (exception: 512/256 and 
512/256/128 trained with extra 500 episodes), and ten 100-
episodes tests for each trained model (i.e. 1000 episodes for 
each trained model). The parameters are those recommended 
in above overview. Our best models include a 256/128 
model achieving mean test reward of 283, whose per-episode 
rewards in both training and test, and mean rewards in 
training are shown in Fig 1. A 512-256 network also achieves 
a mean test reward of 284. However, we decide to choose the 
256/128 model for this project because it uses less 



4 

 

computation time. In addition, we disable the experience 
replay of the best-performing 256/128 model and did another 
6 times of train/test for comparison. Results are shown in Fig 
2, which confirms the instability issue discussed in Ssec 3. 

 
Fig 1. Best result. Illustrates the reward overtime for our best 
performing FFW-Based Q-Learning of 256/128 hidden unites. 
Grey line: per-episode rewards; red line: 100-episode mean 
training rewards; blue line (top axis): per-episode reward during 
one trial. The oscillation of per-episode training reward (grey line) 
is normal and caused by the random sample and the stochastic 
optimization. Overall, the 100-episode mean training reward 
steadily grows, and the test reward consistently stays above 200. 

 
Fig 2. No experience replay. The same model configuration as 
Fig 1 with experience replay disabled: model is always trained by 
the last 32 state transitions rather than sample 32 state transitions 
from the replay memory. Instability is obvious in both training 
and test. Performance is also much worse than Fig 1. 

To have a more comprehensive comparison, we 
recorded the mean rewards of the last 100 episodes in 
training, and the mean rewards of all 1000 test episodes for 
each trained model. The mean rewards for both training and 
test for all networks are illustrated by box plots in Fig 3. The 
advantage of larger hidden layers is clear, but it is a 
surprise that a deeper 3-layer network performs worse and 
more unstable (higher mean-reward variance) than their 
corresponding 2-layer networks. A 512/256 generally 
network performs at the same level as a 256/128 network but 
need more computing time. This figure provides strong 
empirical support for our choice of the 256/128 network for 
this project.   

Experiment 2: The discount factor 𝛾 tuning is shown in 
Fig 4. We trained and tested twice for each 𝛾 = 0.87, 0.93, 
0.96, 0.99, 0.995 and , 0.999 and choose the better result 
for comparison. As explained before, since we have an 
ultimate goal of successful landing, intuitively 𝛾 should be 
large enough for the Q-learning to consider cumulative 
reward for a long future. We see 𝛾 = 0.99, 0.995 have good 
performance, but 𝛾 ≤ 0.96  is not working. However, an 
extreme value like 𝛾 = 0.999 also does not work, meaning 

it is still necessary for the model to consider immediate 
reward. 

 

 
Fig 3. Network size selection. Each training has 2000 episodes 
and each test is ten times of 100 episodes. Repeat training/test six 
times for each size configuration. Record the mean rewards for the 
last 100 episodes in training and the mean reward of all test 
episodes. Plot these mean rewards as box plots showing the 
median, the quartiles, the max/min and outliers (circles in the plot) 
of these mean rewards. One extra experiment of 256/128 model 
without experience replay is included, and its inferior performance 
is again obvious, consistent with Fig 2. 

 

 
Fig 4. Parameter tuning for 𝜸. (a) 100-episode mean reward 
trend over time; (b) train/test mean reward for different 𝜸s; (c) box 
plot for test rewards for each 𝜸. Based on the results, 𝜸 = 𝟎. 𝟗𝟗 is 
best, and 𝜸 ∈ (𝟎. 𝟗𝟗, 𝟎. 𝟗𝟗𝟓) should be good. 

Experiment 3: Tuning the exploration-exploitation trade-
off parameters 𝜖bcdec, 𝜖fgh, 𝜖ijkdl , introduced by the 
dynamic strategy of adjusting the trade-off in Sec 3. We 
discover the model, for this particular lunar-lander 
environment, is less sensitive to the trade-off than expected 
if trained by sufficiently many episodes. This is probably due 
to that LunarLander-v2 is not a complicated environment. 
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Nonetheless, the experiments also indicate certain level of 
exploration can make a faster learning. 

𝜖bcdec  is the initial trade-off as well as the maximum 
probability the model may explore a non-optimal action. We 
find from Fig 5 that even 𝜖bcdec = 0.01  leads to a good 
performance after 2000 episodes; however, the learning is 
slower and less stable. 𝜖bcdec = 0.5  seems to be a good 
option, fattest learning with less outliers, as shown in Fig 5 
(a)(c), even though 𝜖bcdec = 1.0 has best mean reward. 

 
Fig 5. Parameter tuning for 𝜖bcdec. 

The situation for 𝜖ijkdl  is similar. 𝜖ijkdl = 0.9  will 
effectively disable the exploration after 100 episodes, and the 
learning is slower and less stable.  A higher 𝜖ijkdl means 
less decrease of 𝜖 overtime and thus encourages exploration, 
resulting in a faster learning. Based on the results, 𝜖ijkdl =
0.99 could be a better choice than the initial guess of 0.998, 
faster training with less test outliers. 

 
Fig 6. Parameter tuning for 𝜖ijkdl. 

𝜖fgh determines how much chance to explore at a later 
stage of the training, when the model is growing stronger in 
evaluation. Intuitively, 𝜖fgh should not be large because, as 
randomness at a later stage of training makes less sense. 
Results in Fig 7 confirms this heuristic, with 𝜖fgh = 0 
clearly has the best performance.  

 

 
Fig 7. Parameter tuning for 𝜖jhi. 

Experiment 4: Tuning the learning rate 𝛼. Our models is 
sensitive to the learning rate, with a small working range 
[5 × 10m�, 5 × 10m�]. 

 
Fig 8. Parameter tuning for learning rate 𝛼. 

Future work on replay memory & sample size tuning. We 
experimented other options of replay memory size and replay 
sample size, and found the memory size should not be too 
short (no much difference from not using replay memory), or 
too high (like sampling the whole history, introducing much 
noise). Sample size does not have strong effect as long as it 
is not too small, because more samples is just like more 
training. Due to time and space limit, we are unable to 
present the full results, and this can be a future work. 
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