A lightweight Python mobile robotics simulator

Explore wheeled robots with range, camera, light, and smell sensors
Design worlds with walls, bulbs, and food

Suitable for the classroom and research

Creates reproducible experiments

Easy to integrate with existing machine learning and Al systems

Creating Worlds and Robots Equipping Robots with Sensors

A world is a rectangular area with a given width and height . A robot is defined by a bounding box, with the origin at the
that may contain walls, bulbs, food, and robots (see above) [-7.5,-5 [7-5.-51 center. Sensors are placed relative to this bounding box.
° Items in the world are given coordinates, where the RangeSensors return distances in cm and may have a width
origin is defined to be the upper-left hand corner LightSensors return bright.ness [0,1]; light is blocked by walls
® Angles are given in degrees, where 0 is east, and — SmellSensors return reading [0,1]; odor spreads around walls

aitk.robots

https://artificialintelligencetoolkit.
github.io/aitk.robots/

angles increase in the counterclockwise direction [7-5:51 Cameras return images that include walls, bulbs, food, and robots
from aitk.robots import World, Scribbler from aitk.robots import RangeSensor, LightSensor, SmellSensor, Camera
world = World (width=200,height=150) # red robot has two range aensors with width like InfraRed sensors
add wall(color, x1, yl, x2, y2) botl.add device (RangeSensor (position=(6,-6) ,width=57.3,max=20,name="1eft-ir"))
world.add wall("blue",0,35,25,30,box=False) # angled wall botl.add device (RangeSensor (position=(6,6) ,width=57.3,max=20,name="right-ir"))
world.add wall("cyan",80,50,90,150) # box is default
world.add wall ("orange",690,50,110,60) # pink robot has semll sensors and a camera
add bulb(color, x, y, z, brightness) bot2.add device (SmellSensor (position=(6,-6) ,name="left-smell"))
world.add bulb("yellow",100,70,0,75.0) bot2.add device (SmellSensor (position=(6,6) ,name="right-smell"))
add food(x, y, pixel std dev), by default is white bot2.add device (Camera())
world.add food (10, 10, 50) # robots can also maintain state information, for example a timer
botl = Scribbler (x=150,y=100,a=35)# red is default color # could be used to ensure that a particular action is repeated N times
bot2 = Scribbler (x=40,y=130,a=75,color="pink") bot2.state["timer"] = 0
bot3 = Scribbler (x=60,y=30,a=0,color="yellow")
world.add robot (botl) # yellow robot has two light sensors
world.add robot (bot2) bot3.add device (LightSensor (position=(6,-6) ,name="left-light"))

world.add robot (bot3) bot3.add device (LightSensor (position=(6,6) ,name="right-light"))

Robot Movement Robot Controllers Running the Simulator

Set targets for translation and rotation:

- Use range [-1,1]

- Positive translation is forward, negative is back

- Positive rotation is left, negative is right
robot.move (translation, rotation)

Set velocity targets individually:
robot.translate (translation)
robot.rotate (rotation)

Reverse the current targets:
robot.reverse ()

Halt the robot:
robot.stop ()

Or set motor speeds for wheels in range [-1,1]:
robot.motors (left spd, right_spd)

Accessing Sensors & State

Access sensors by name (string) or by index

(integer) in the order that they were added:
robot[sensor name]
robot[sensor_index]

Get RangeSensordata:
robot[item] .get distance()

Get LightSensordata:
robot[item] .get brightness()

Get sSmellSensor data:
robot[item] .get reading()

Get Camera data:
robot[item] .get image ()

Access robot state information by key (string):
robot.state[key]

A robot controller is a function that:

- Takes a single parameter: either world or robot
- Returns True to end simulation immediately

- Checks state and sensors to choose move

- Does not use loops

The simulation repeatedly executes the
controller multiple times per second.

def controller (robot) :

"""Wander and avoid obstacles"""

if robot.stalled:
return True

v = robot["left-ir"].get max()

if robot["left-ir"].get distance ()<v:
robot.move (0.1, -0.3)

elif robot["right-ir"].get distance()<v:
robot.move (0.1, 0.3)

else:
robot.move (1, random()-0.5)

Other Robot Data & Methods

Determine velocity or whether stalled:
robot.get velocity ()
robot.stalled #True when stuck

When food is close, the robot may eat it:
robot.eat () #returns True when eaten

Create a speech bubble:
robot. speak (string)

Position the robot in world or find its position:
robot.set pose(x, y, a)
robot.get pose() #returns (x,y,a)

Running Experiments

There are three ways to run the simulator.
1. Indefinitely:

world. run (function, ..)
2. For a time limit:

world. seconds (seconds, function, ..)
3. For a step limit:

world.steps (steps, function, ..)
You must specify either a single function that
takes a world, or a list of functions that each
take a robot.

After a run concludes you may reset the robots

and world to their saved configuration:
world.reset ()

Set a new random seed for the simulator:
world.set seed(seed)

Set a new random position for a robot:
robot.set_random pose ()

Record a run:
recorder = world.record()

Execute the simulator as fast as possible:
world.run(function, real time=False)

Watch the recorded experiment:
recorder.watch ()

Save the recorded experiment as an animated

GIF or mp4:

recorder.save_as (filename)

