Below are some excerpts from various FAQ's (Frequently Asked Questions) on Encryption.
What is cryptology? Cryptography? Plaintext? Ciphertext? Encryption? Key? The story begins: When Julius Caesar sent messages to his trusted acquaintances, he didn't trust the messengers. So he replaced every A by a D, every B by a E, and so on through the alphabet. Only someone who knew the ``shift by 3'' rule could decipher his messages. A cryptosystem or cipher system is a method of disguising messages so that only certain people can see through the disguise. Cryptography is the art of creating and using cryptosystems. Cryptanalysis is the art of breaking cryptosystems---seeing through the disguise even when you're not supposed to be able to. Cryptology is the study of both cryptography and cryptanalysis. The original message is called a plaintext. The disguised message is called a ciphertext. Encryption means any procedure to convert plaintext into ciphertext. Decryption means any procedure to convert ciphertext into plaintext. A key is usually a number which is used to easily encrypt or decrypt a message. What is public-key cryptography? In a classic cryptosystem, we have encryption we have two functions E and F, where E encrypts a message, and F decrypts an encrypted message. A user has two keys, a private key, K which only the user knows, and a public key X, which is computed from K, and which the user makes available to the public. Anyone wishing to send the user an encrypted message encrypts the message using the public key X. So once X is published, anyone can encrypt messages. Once encrypted, however, the message is very difficult to decrypt without knowledge of the private key K. With knowledge of the private key K, however, the message can be easily decrypted, however. If decryption D_K cannot be easily computed from public key X without knowledge of private key K, but readily with knowledge of K, then only the person who generated K can decrypt messages. That's the essence of public-key cryptography, introduced by Diffie and Hellman in 1976. How does public-key cryptography solve cryptography's Catch-22? In a classic cryptosystem, knowledge of the private key is required both to encrypt and decrypt a message. If you want your friends to be able to send secret messages to you, you need to give your friends the public key K, so that they can encrypt the message, and you have to make sure nobody other than them sees the private key K, since K is also used to decrypt the message. The problem with classic cryptosystems, then, is how to communicate the private key K to your friends. In a public-key cryptosystem, however, you just publish a public key X, and you don't have to worry about spies. Hence public key cryptography `solves' one of the most vexing problems of all prior cryptography: the necessity of establishing a secure channel for the exchange of the key. To establish a secure channel one uses cryptography, but private key cryptography requires a secure channel! In resolving the dilemma, public key cryptography has been considered by many to be a `revolutionary technology,' representing a breakthrough that makes routine communication encryption practical and potentially ubiquitous. What is the National Security Agency (NSA)? The NSA is the official communications security body of the U.S. government. It was given its charter by President Truman in the early 50's, and has continued research in cryptology till the present. The NSA is known to be the largest employer of mathematicians in the world, and is also the largest purchaser of computer hardware in the world. Governments in general have always been prime employers of cryptologists. The NSA probably possesses cryptographic expertise many years ahead of the public state of the art, and can undoubtedly break many of the systems used in practice; but for reasons of national security almost all information about the NSA is classified. Bamford's book [BAMFD] gives a history of the people and operations of the NSA. The following quote from Massey [MAS88] highlights the difference between public and private research in cryptography: ``... if one regards cryptology as the prerogative of government, one accepts that most cryptologic research will be conducted behind closed doors. Without doubt, the number of workers engaged today in such secret research in cryptology far exceeds that of those engaged in open research in cryptology. For only about 10 years has there in fact been widespread open research in cryptology. There have been, and will continue to be, conflicts between these two research communities. Open research is common quest for knowledge that depends for its vitality on the open exchange of ideas via conference presentations and publications in scholarly journals. But can a government agency, charged with responsibilities of breaking the ciphers of other nations, countenance the publication of a cipher that it cannot break? Can a researcher in good conscience publish such a cipher that might undermine the effectiveness of his own government's code-breakers? One might argue that publication of a provably-secure cipher would force all governments to behave like Stimson's `gentlemen', but one must be aware that open research in cryptography is fraught with political and ethical considerations of a severity than in most scientific fields. The wonder is not that some conflicts have occurred between government agencies and open researchers in cryptology, but rather that these conflicts (at least those of which we are aware) have been so few and so mild.''