The pthread Library

11/22/16

Thread operations

* Create

 Starts a new thread, calling a specified function.
e Returns the thread’s ID.

* join
* Block until a specified thread terminates.
» Gives access to the thread function’s return value.
* lock/acquire
e Block until the mutex is available, then claim it.
e unlock/release
* Release a mutex.
* barrier_wait
* Block until a specified number of threads reach the barrier.

Some pthread library functions

pthread create
pthread join

pthread mutex lock
pthread mutex unlock

pthread barrier wait

pthread create

Returns zero on

success, honzero First arg is
on error. a thread ID
\ pointer.
. Second arg is
int pthread_creatgi////, second arg
pthread t |*thread, ////’

const pthread attr t |[rattr,

void * (*start routine) (void *),

voild [farq) ;
/ Third arg is the

thread function.

Fourth arg is a
pointer to the
function’s args.

vold™*

int pthread create(..,, void* args);

void*: a pointer to any type (a generic pointer)

all addresses are the same number of bytes
char *cptr; int *ptr; //store 4 byte addresses

can pass the address of any type as a void *
pthread create(.., &x); // addr of an int
pthread create(.., &ch); //addr of a char

cannot de-reference a void * pointer
*args = 6; //store6in 1 byte? 2 bytes? 4 bytes?

re-cast first before dereference
*((int *)args) = 6; //store6in4 bytes

pthread joiln

Returns zero on

success, honzero First arg is a
on error. thread ID
A to wait for.

int pthread_join(/////

pthread t [thread,|,

vold PF*retvall) ;

/

Second argis a
pointer to be filled
with the return value.

Example

/* pthreads "hello, world" program */
#include "pthreads.h"

Thread attributes
volid *hello(void *arqg); (usually NULL)

int main() {

(void *p)

pthread t tid[2]; / Thread arguments

pthread create(&tid[0], NULL, hello, NULL);
pthread create(&tid[1], NULL, hello, NULL)
pthread join(tid[0], NULL);

pthread join(tid[1l], NULL);

exit (0); \ return value
} (void **p)

vold *hello(void *arg) {
printf ("Hello, world!\n");
return NULL;

4

How can you pass multiple args to
a function with pthread create?

You’d like to call this function when you start your
thread:

int find max(int* array, 1nt size);

But the start routine has to have this signature:

volid * (*start routine) (void *);

How can you rewrite find_max as a start routine?

How can you pass multiple args to
a function with pthread create?

struct max args/{
int* arr;
int size;

by

void* find max(void* arg) {
int* arr = ((struct

max args*)arg)->arr;

pthread mutex t

pthread mutex t m; // should be global

// two ways to initialize (only do one)
*m = PTHREAD MUTEX INITIALIZER;

* pthread mutex init (&m, NULL) ;

pthread mutex lock (&mutex) ;
// critical section code
pthread mutex unlock (&mutex) ;

pthread mutex destroy (&mutex) ;

pthread barrier t

pthread barrier t b; // should be global

// i1nitialize with number of threads

pthread barrier init (&b, NULL, n threads);

// section of thread parallel code

pthread barrier wait (&b);

pthread barrier destroy(&b);

In-class example of hello.c

cd ~/cs31

mkdir inclass

cd inclass

cp —-r ~bryce/public/cs31/inclass/wl2/*

cd 11

make

./hello 5 # run a few times & try with diff num

vim hello.c
main:
pthread create(&tids[i], 0, thread hello, &tid args([i]);

// creates a thread (thread hello is function it will run)

thread hello: // each spawned thread’s “main” function

count += 1i; // count: a global wvar, all threads can access
// 1 is local: each tid gets copy on
// its private stack

More pthread library functions

* Exit a thread (can also return from thread function)
pthread exit

* Wait until another thread sends a signal
pthread cond wait

pthread cond signal
* These are tricky. We'll do an example next week.

Exercise: implement your parallel
algorithm for max.

Write c code using pthreads for main and a thread
function that uses pthread create and pthread join.

* Array size M
* N threads

* \VVersion 1: each thread returns its local max

Exercise: update your max solution to
find the K largest items.

Write c code using pthreads for main and a thread
function that uses pthread create, pthread _join, and
appropriate synchronization.

* Array size M
* N threads
* Fill an array with the K largest items

