Thread Synchronization

11/17/16

Threading: core ideas

* Threads allow more efficient use of resources.
* Multiple cores
* Down time while waiting for I/O

* Threads are better than processes for parallelism.
* Cheaper to create and context switch
* Easier to share information

* Threading makes programming harder.
* Need to think about how to split a problem up
* Need to think about how threads interact

Create and Join

* Each process starts with a single thread.

* Any thread can spawn new threads with create.

e Starts a new call stack for the thread.

 create specifies what function the thread starts with.
* Processes always start with main.
» Different threads can start with different functions.

e Returns the ID of the new thread.

* join causes one thread to block until another

thread completes.
* join must specify the ID of the thread to wait for.

* join gives access to the thread function’s return value.

Create and Join example

main () {
double x =1, yv = -1;
tid tl, t2;
double res;

tl = create(worker, Xx)
t2 = create (worker, v)
res = join(tl);

res += join(t2);
printf ("$d\n", res);

IMPORTANT: this is not
correct C code. We will
talk about the pthreads
library next week.

worker (double d) {
do work (&d) ;
return d;

Create and

Join illustrated

main thread

create () |-.._
create () | . peer thread 1
........... . R peer thread 2
ey | T T
o Join(td) do_work (&d) do work (&d)
main thread waits for —
thread 1 to terminate _ return d;
retnlriﬂfi! (peer threads
Jjoin (tl) returns |e,) SIS terminate)

join (t2)
Join (t2) returns

printf ()
exit ()
terminates
main thread and
any peer threads

Py
.
Py
Py
.
.
Py
.

.
.
Py
.
.
.s
.
s

Thread Ordering

(Why threads require care. Reasoning about this is hard.)

* As a programmer you have no idea when threads
will run. The OS schedules them, and the schedule
will vary across runs.

* It might decide to context switch from one thread
to another at any time.

* Your code must be prepared for this!

* Ask yourself: “Would something bad happen if we
context switched here?”

Example: The Credit/Debit Problem

* Say you have $1000 in your bank account
* You deposit S100
* You also withdraw $100

* How much should be in your account?

* What if your deposit and withdrawal occur at the
same time, at different ATMs?

Credit/Debit Problem: Race Condition

Thread T, Thread T,

Credit (int a) { Debit (int a) {
int b; int b;
b = ReadBalance (); b = ReadBalance ();
b =Db + a; b =Db - a;
WriteBalance (b); WriteBalance (b);

PrintReceipt (b); PrintReceipt (b);

Credit/Debit Problem: Race Condition

Say T, runs first

Read $1000 into b

Thread T, Thread T,
Credit (int a) { Debit (int a) {
int b; int b;
— b = ReadBalance (); b = ReadBalance ();
b =Db + a; b =Db - a;
WriteBalance (b); WriteBalance (b);

PrintReceipt (b); PrintReceipt (b);

Credit/Debit Problem: Race Condition

Say T, runs first

Read $1000 into b

Switch to Ty
Thread T, Read 51000 into b | Thread T,
Debit by $100 : :
Credit (int a) { Write $900 Debit (int a) {
int b; int b;
— b = ReadBalance (); b = ReadBalance ();
b =Db + a; b =Db - a;
WriteBalance (b); WriteBalance (b) ;e—

PrintReceipt (b); PrintReceipt (b);

Credit/Debit Problem: Race Condition

Say Tj runs first

Thread T,

Credit (int a) {
int b;

— b = ReadBalance
b =Db + a;
WriteBalance (b);

PrintReceipt (b);

Read $1000 into b

Switch to Ty

Read $1000 into b
Debit by $100
Write S900

Race Condition: outcome
depends on scheduling order
of concurrent threads.

()

Switch back to T,

Read $1000 into b
Credit S100
Write $1100

Thread T,
Debit (int a) {
int b;

}

b = ReadBalance () ;

b=Db - a;
WriteBalance (b) ;+«—
PrintReceipt (b);

What went wrong?

Bank gave you $100!

“Critical Section”

Thread T, Thread T,
Credit (int a) { Debit (int a) {
int b; int b;
Badness

b =Db + a; switch b=Db- a;

b = ReadBalance (); }_ ﬁcomﬁxt-{: b = ReadBalance ();
WriteBalance (b); here! WriteBalance (b);

PrintReceipt (b); PrintReceipt (b);
} }

Bank gave you $100!

What went wrong?

To Avoid Race Conditions

Thread O Thread 1
- Critical - - Critical -
- Section - - Section -

1. Identify critical sections

2. Use synchronization to enforce mutual exclusion
* Only one thread active in a critical section

What Are Critical Sections?

 Sections of code executed by multiple threads
* Access shared variables, often making local copy

* Places where order of execution or thread interleaving will
affect the outcome

* Must run atomically with respect to each other

e Atomicity: runs as an entire unit or not at all. Cannot be
divided into smaller parts.

Which code region is a critical

section?

Thread A

thread main ()
{ int a,b;

b = 10;
a=a + b;

saveShared(a) ;

+= 1

return a;

}

a = getShared() ;

—_—

e

—

Thread B

shared
memory

s = 40;

thread main ()
{ int a,b;

a = getShared() ;
b = 20;

a =a - b;
saveShared (a) ;

Which values might the shared s variable
hold after both threads finish?

Thread A Thread B

saveShared(a) ;

return a;

}

shared
memory

30 s = 40;
20 or 30
20, 30, or 50

. Another set of values

If A runs first

Thread A

main ()

{ int a,b;

a getShared() ;
b = 10;
a =a + b;

saveShared (a) ;

return a;

shared
memory

s = 50;

Thread B

main ()

{ int a,b;
a = getShared();
b = 20;
a =a - b;

saveShared(a) ;

return a;

B runs after A Completes

Thread A

main ()
{ int a,b;

a getShared() ;
b = 10;
a =a + b;

saveShared (a) ;

return a;

shared
memory

s = 30;

Thread B

main ()

{ int a,b;
a = getShared();
b = 20;
a = a - b;

saveShared (a) ;

return a;

What about interleaving?

Thread A

main ()
{ int a,b;

a getShared() ;
b = 10;
a = a + b;

saveShared(a) ;

return a;

shared
memory

s = 40;

Thread B

main ()

{ int a,b;
a = getShared();
b = 20;
a =a - b;

saveShared(a) ;

return a;

s there a race condition?

Suppose count is a global variable, multiple threads increment it:

count++;

Yes, there’s a race condition (count++ is a critical section).

No, there’s no race condition (count++ is not a critical section).
Cannot be determined.

How about if compiler implements it as:

movl (%edx), %eax // read count value
addl $1, S%eax // modify wvalue
movl %eax, (%edx) // write count

How about if compiler implements it as:

incl (%$edx) //
increment value

Mutex Locks

The OS provides the following atomic operations:

* Acquire/lock a mutex.

* If no other thread has locked the mutex, claim it.
 |f another thread holds the mutex, block.
* Threads unblocked in FIFO order.

e Release/unlock a mutex.

To enforce a critical section:

* Before the critical section, lock the mutex.
e After the critical section unlock the mutex.

Using Locks

Thread A

main ()
{ int a,b;

a getShared() ;
b = 10;
a=a + b;

saveShared(a) ;

return a;

shared
memory

s = 40;

Thread B

main ()

{ int a,b;
a = getShared();
b = 20;
a=a - b;

saveShared(a) ;

return a;

Using Locks

Thread A Thread B

main () main ()

{ int a,b; { int a,b;
acquire (1) ; acquire (1) ;
a = getShared(); a = getShared();
b = 10; b = 20;
a=a + b; a=a - b;
saveShared(a) ; saveShared (a) ;
release(l); release (1) ;
return a; shared return a;

} memory }

s = 40;

Lock 1; Held by: Nobody

Using Locks

Thread A Thread B

main () main ()

{ int a,b; { int a,b;
acquire (1) ; acquire (1) ;
a = getShared(); a = getShared();
b = 10; b = 20;
a=a + b; a=a - b;
saveShared(a) ; saveShared (a) ;
release(l) ; release(l) ;
return a; shared return a;

} memory }

s = 40;

Lock 1; Held by: Thread A

Using Locks

Thread A Thread B

main () main ()

{ int a,b; { int a,b;
acquire (1) ; acquire (1) ;
a = getShared(); a = getShared();
b = 10; b = 20;
a=a+ b; a=a - b;
saveShared(a) ; saveShared(a) ;
release(l); release (1) ;
return a; shared return a;

} memory }

s = 40;

Lock 1; Held by: Thread A

Using Locks

Thread A

main ()
{ int a,b;

acquire (1) ;

a getShared() ;
b = 10;

a =a + b;

saveShared(a) ;
release(l) ;

return a;

Lock already owned.

Must Wait!

Thread B

shared
memory

s = 40;
Lock 1;

main ()
{ int a,b;

acquire (1) ;

a = getShared() ;
b = 20;
a =a - b;

saveShared(a) ;
release (1) ;

return a;

Held by: Thread A

Using Locks

Thread A Thread B

main () main ()

{ int a,b; { int a,b;
acquire (1) ; acquire (1) ;
a = getShared(); a = getShared();
b = 10; b = 20;
a=a + b; a=a - b;
saveShared (a) ; saveShared (a) ;
release (1) ; release(1l);
return a; shared return a;

} memory }

s = 50;

Lock 1; Held by: Nobody

Using Locks

Thread A Thread B

main () main ()

{ int a,b; { int a,b;
acquire (1) ; acquire (1) ;
a = getShared(); a = getShared();
b = 10; b = 20;
a=a + b; a =a - b;
saveShared (a) ; saveShared(a) ;
release (1) ; release (1) ;
return a; shared return a;

} memory }

s = 30;

Lock 1; Held by: Thread B

Using Locks

Thread A Thread B

main () main ()

{ int a,b; { int a,b;
acquire (1) ; acquire(1l);
a = getShared(); a = getShared();
b = 10; b = 20;
a =a + b; a=a-Db;
saveShared (a) ; saveShared(a) ;
release (1) ; release(1l);
return a; Shared return a;

} memory }

s = 30;

Lock 1; Held by: Nobody

 No matter how we order threads or when we context switch,
result will always be 30, like we expected (and probably wanted).

Synchronizing Threads

Sometimes we want all threads to catch up to a
specific point before we continue.

* Think about parallelizing the polygons simulator.
* We could split up regions of the world across threads.

e We don’t want one thread to start round 2 before
another has finished round 1.

Solution: barriers

* A thread that calls barrier_wait will block until all
other threads have also called barrier_wait.

Barrier Example, N Threads

shared barrier b;

init barrier (&b, N); = B el B

create threads (N, func);

volid *func(void *arg) {
while (..) {
compute sim round ()

Barrier (O waiting)

barrier wait (&b)

Barrier Example, N Threads

Threads make progress computing

shared barrier b; current round at different rates.

Time

init barrier (&b, N);

create threads (N, func);
0

volid *func(void *arg) {
while (..) {
compute sim round ()

Barrier (O waiting)

barrier wait (&b)

Barrier Example, N Threads

Threads that make it to barrier must

shared barrier b; wait for all others to get there.

| | . Time
init barrier (&b, N);

create threads (N, func);

v
volid *func(void *arg) {
To T, T4

while (..) | Barrier (3 waiting)
compute sim round ()

barrier wait (&b)

Barrier Example, N Threads

shared barrier b;

init barrier (&b, N);

T~

create threads (N, func);

volid *func(void *arg) {
while (..) {
compute sim round ()

barrier wait (&b)

Barrier allows threads to pass when
N threads reach it.

Time

Matches

Barrier Example, N Threads

Threads compute next round, wait

shared barrier b; . .
on barrier again, repeat...

| | . Time
init barrier (&b, N);

create threads (N, func);

volid *func(void *arg) {

while () { Barrier (O waiting)

compute sim round ()
-

barrier wait (&b)

Thread operations

* Create

 Starts a new thread, calling a specified function.
e Returns the thread’s ID.
* join
* Block until a specified thread terminates.
* Gives access to the thread function’s return value.

* mutex_lock
e Block until the mutex is available, then claim it.

 mutex_unlock
* Release a mutex.
* barrier_wait
* Block until a specified number of threads reach the barrier.

Devise a parallel algorithm for max

Write pseudocode for main and a thread function
that uses (some of) create, join, mutex_lock,
mutex_unlock, and barrier_wait.

* Array size M
* N threads

* Version 1: each thread returns its local max
* Version 2: each thread updates a global max
* Version 3: the thread that found the max prints

