
The	Memory	Hierarchy
10/25/16



Transition

• First	half	of	course:	hardware	focus
• How	the	hardware	is	constructed
• How	the	hardware	works
• How	to	interact	with	hardware

• Second	half:	performance	and	software	systems
• Memory	performance
• Operating	systems
• Standard	libraries
• Parallel	programming



Making	programs	efficient

• Algorithms	matter
• CS35
• CS41

• Hardware	matters
• Engineering

• Using	the	hardware	properly	matters
• CPU	vs	GPU
• Parallel	programming
• Memory	hierarchy



Memory	so	far:	array	abstraction

• Memory	is	a	big	array	of	bytes.
• Every	address	is	an	index	into	this	array.

This	is	the	level	of	abstraction	at	which	an	assembly	
programmer	thinks.

C	programmers	can	think	even	more	abstractly	with	
variables.



Memory	Technologies

Latches
(registers,	cache)

Capacitors
(DRAM)

Magnetic
(hard	drives)

Flash
(SSDs)

Volatile

(loses	data	
without	
power)

Non-Volatile

(maintains	
data	when	
computer	is	
turned	off)

$

$$
$$$

$$
$$



The	Memory	Hierarchy

Local	secondary	storage	(disk,	SSD)

Main	memory
(DRAM)

Cache(s)
(SRAM)

Registers
1	cycle	to	access

few	cycles	to	access

~100	cycles	to	access

~100,000,000	cycles	to	access

Faster

Cheaper



Key	idea	this	week:	caching

• Store	everything	in	cheap,	
slow	storage.

• Store	a	subset	in	fast,	
expensive	storage.

• Try	to	guess	the	most	
useful	subset	to	cache.



A	note	on	terminology

• Caching:	the	general	principle	of	holding	a	small	
subset	of	your	data	in	fast-access	storage.

• The	cache:	SRAM	memory	inside	the	CPU.



Connecting	CPU	and	Memory
• Components	are	connected	by	a	bus:

• A	bus	is	a	bundle	of	parallel	wires	that	carry	
address,	data,	and	control	signals.

• Buses	are	typically	shared	by	multiple	devices.

Main
memory

I/O	
bridgeBus	interface

ALU

Register	file

CPU	chip

System	bus Memory	bus

Cache



ALU

Register	file

Bus	interface

A

0

Ax

Main	memory
I/O	bridge

%eax

CPU	chip

Cache

How	a	Memory	Read	Works

(1)	CPU	places	address	A on	the	memory	bus.

Load	operation: movl (A), %eax



ALU

Register	file

Bus	interface

X

0

Ax

Main	memory
I/O	bridge

%eax

CPU	chip

Cache

How	a	Memory	Read	Works

(2)	Main	Memory	reads	Address	A	from		
Memory	Bus,	fetches	data	X at	that	
address	and	puts	it	on	the	bus

Load	operation: movl (A), %eax



ALU

Register	file

Bus	interface

0

Ax

Main	memory
I/O	bridge

%eax

CPU	chip

Cache

Load	operation: movl (A), %eax

How	a	Memory	Read	Works

(3)	CPU	reads	X from	the	bus,	and	copies	it	
into	register	%eax. A	copy	also	goes	
into	the	on-chip	cache	memory

X X



ALU

Register	file

Bus	interface

0

A

Main	memory
I/O	bridge

%eax

CPU	chip

Cache

Write
1. CPU	writes	A	to	bus,	Memory	Reads	it	
2. CPU	writes	Y to	bus,	Memory	Reads	it	
3. Memory	stores	read	value,	y,	at	address	A

Y

Store	operation: movl %eax, (A)
Y

AY
Y



I/O	Bus:	connects	Devices	&	Memory

Main
memory

I/O	
bridgeBus	interface

ALU

Register	file

CPU	chip

System	bus Memory	bus

Disk	
controller

Graphics
controller

USB
controller

Mouse Keyboard Monitor
Disk

I/O	bus Expansion	slots	for
other	devices	such
as	network	controller.

Cache

OS	moves	data	between	Main	
Memory	&	Devices



Device	Driver:	OS	device-specific	code

Main
memory

I/O	
bridgeBus	interface

ALU

Register	file

CPU	chip

System	bus Memory	bus

Disk	
controller

Graphics
controller

USB
controller

Mouse Keyboard Monitor
Disk

I/O	bus

Cache

OS	driver	code	running	on	CPU	
makes	read	&	write	requests	to	
Device	Controller	via	I/O	Bridge



Abstraction	Goal

• Reality:	There	is	no	one	type	of	memory	to	rule	
them	all!

• Abstraction:	hide	the	complex/undesirable	details	
of	reality.

• Illusion:	We	have	the	speed	of	SRAM,	with	the	
capacity	of	disk,	at	reasonable	cost.



What’s	Inside	A	Disk	Drive?
SpindleArm

Actuator

Platters

Controller Electronics
(includes processor & memory) bus

connector

Image	from		Seagate	Technology

R/W head

Data	Encoded	as	
points	of	
magnetism	on	
Platter	surfaces

Device Driver (part of OS code) 
interacts with Controller to R/W to disk



Reading	and	Writing	to	Disk

disk	surface	
spins	at	a	fixed
rotational	rate
~7200	rotations/min

disk	arm	sweeps	across	
surface	to	position	
read/write	head	over	a	
specific		track.

Data	blocks	located	in	some	Sector of	some	Track on	some	Surface
1. Disk	Arm	moves	to	correct	track	(seek	time)
2. Wait	for	sector spins	under	R/W	head	(rotational	latency)
3. As	sector	spins	under	head,	data	are	Read	or	Written

(transfer	time) sector



Cache	Basics

• CPU	real	estate	
dedicated	to	cache

• Usually	two	levels:
• L1:	smallest,	fastest
• L2:	larger,	slower

• Same	rules	apply:
• L1	subset	of	L2

ALURegs

L2	Cache

L1

Main	Memory

Memory							Bus

CPU



Cache	Basics

• CPU	real	estate	
dedicated	to	cache

• Usually	two	levels:
• L1:	smallest,	fastest
• L2:	larger,	slower

• We’ll	assume	one	cache
(same	principles)

ALURegs

Cache

Main	Memory

Memory							Bus

CPU

Cache	is	a	subset	of	main	memory.
(Not	to	scale,	memory	much	bigger!)



Cache	Basics:	Read	from	memory

• In	parallel:
• Issue	read	to	memory
• Check	cache

ALURegs

Cache

Main	Memory

Memory							Bus

CPU

In	cache?

Request	data



Cache	Basics:	Read	from	memory

• In	parallel:
• Issue	read	to	memory
• Check	cache

• Data	in	cache	(hit):
• Good,	send	to	register
• Cancel/ignore	memory

ALURegs

Cache

Main	Memory

Memory							Bus

CPU

In	cache?



Cache	Basics:	Read	from	memory
• In	parallel:

• Issue	read	to	memory
• Check	cache

• Data	in	cache	(hit):
• Good,	send	to	register
• Cancel/ignore	memory

• Data	not	in	cache	(miss):
1. Load	cache	from	memory

(might	need	to	evict	data)
2. Send	to	register

ALURegs

Cache

Main	Memory

Memory							Bus

CPU

In	cache?

1.
(~200	cycles)

2.



Cache	Basics:	Write	to	memory
• Assume	data	already	cached

• Otherwise,	bring	it	in	like	read

1. Update	cached	copy.

2. Update	memory?

ALURegs

Cache

Main	Memory

Memory							Bus

CPU

Data



When	should	we	copy	the	written	
data	from	cache	to	memory?		Why?

A. Immediately	update	the	data	in	memory	when	we	
update	the	cache.

B. Update	the	data	in	memory	when	we	evict	the	data	
from	the	cache.

C. Update	the	data	in	memory	if	the	data	is	needed	
elsewhere	(e.g.,	another	core).

D. Update	the	data	in	memory	at	some	other	time.	
(When?)



When	should	we	copy	the	written	
data	from	cache	to	memory?		Why?

A. Immediately	update	the	data	in	memory	when	we	
update	the	cache.		(“Write-through”)

B. Update	the	data	in	memory	when	we	evict	the	data	
from	the	cache.		(“Write-back”)

C. Update	the	data	in	memory	if	the	data	is	needed	
elsewhere	(e.g.,	another	core).

D. Update	the	data	in	memory	at	some	other	time.	
(When?)



Cache	Basics:	Write	to	memory
• Both	options	(write-through,	write-back)	viable

• write-though:	write	to	memory	immediately
• simpler,	accesses	memory	more	often	
(slower)

• write-back:	only	write	to	memory	on	eviction
• complex	(cache	inconsistent	with	memory)
• potentially	reduces	memory	accesses	(faster)

Sells	better.
Servers/Desktops/Laptops



Discussion	Question

What	data	should	we	keep	in	the	cache?

What	principles	can	we	use	to	make	a	decent	guess?



Problem:	Prediction

• We	can’t	know	the	future…

• So…	are	we	out	of	luck?
What	might	we	look	at	to	help	us	decide?

• The	past	is	often	a	pretty	good	predictor…



Analogy:	two	types	of	Netflix	users

1:

2:

What	should	be	next	in	each	user’s	queue?



Critical	Concept:	Locality

• Locality:	we	tend	to	repeatedly	access	recently	
accessed	items,	or	those	that	are	nearby.

• Temporal	locality:	An	item	accessed	recently	is	
likely	to	be	accessed	again	soon.

• Spatial	locality:	We’re	likely	to	access	an	item	
that’s	nearby	others	we	just	accessed.



In	the	following	code,	how	many	examples	are	
there	of	temporal	/	spatial	locality?
Where	are	they?

A. 1	temporal,	1	spatial
B. 1	temporal,	2	spatial
C. 2	temporal,	1	spatial

void print_array(int *array, int num) {

int i;
for (i = 0; i < num; i++) {

printf(“%d : %d”, i, array[i]);
}

}

D. 2	temporal,	2	spatial
E. Some	other	number



Example

Temporal	Locality?

array,	num and	i used	over	and	over	again	in	each	iteration

Spatial	Locality?

array bucket	access
program	instructions

Programs	with	loops	tend	to	have	a	lot	of	locality	
and	most	programs	have	loops:	
it’s	hard	to	write	a	long-running	program	w/o	a	loop

33

void print_array(int *array, int num) {
int i;
for (i = 0; i < num; i++){
printf(“%d : %d”, i, array[i]);

}
}



Use	Locality	to	Speed-up	Memory	Access

Caching	Key	idea:	keep	copy of	“likely	to	be	accessed	
soon”	data	in	higher	levels	of	Memory	Hierarchy	to	make	
their	future	accesses	faster:

• recently	accessed	data	(temporal	locality)	
• data	nearby	recently	accessed	data	(spatial	locality)

If	program	has	high	degree	of	locality,	next	data	access	is	
likely	to	be	in	cache

- if	little/no	locality,	then	caching	won’t	help
+	luckily	most	programs	have	a	high	degree	of	locality

34



Discussion	Question

What	data	should	we	evict	from	the	cache?

What	principles	can	we	use	to	make	a	decent	guess?


