
Pointers
9/27/16

Addresses	in	memory

• float values[100];

• 4(%ebp)

• read_int(&x);

• int* unsigned_output;

Pointers	in	C

• Like	any	other	variable,	must	be	declared:
• Using	the	format:			type *name;

• Example:	int *myptr;
• This	is	a	promise	to	the	compiler:

• This	variable	holds	a	memory	address.		If	you	follow	what	it	points	
to	in	memory	(dereference	it),	you’ll	find	an	integer.

• A	note	on	syntax:
• int* myptr; int * myptr; int *myptr;
• These	all	do	the	same	thing.	 (note	the	* position)

Declaring	pointer	variables

float f; //declares a float
int i = 0; //declares and initializes an int

float* fp; //declares a float pointer
int *ip = NULL; //declares and inits an

//int pointer

Pointers	store	addresses.

float f=0, *fp=NULL;
int i=0, *ip=NULL;

printf(”%f, %p\n", f, fp);
printf(”%d, %p\n", i, ip);

> 0.000000, 0x0
> 0, 0x0

Pointer	operators:	* and	&

• * is	the	value-at-address operator.
• AKA	the	dereference operator.

• & is	the	address-of operator.

float f, *fp;
fp = &f;
*fp = 0;

Putting	a	*	in	front	of	a	variable…

• When	you	declare the	variable:
• Declares	the	variable	to	be	a	pointer
• It	stores	a	memory	address

• When	you	use the	variable	(dereference):
• Like	putting	()	around	a	register	name
• Follows	the	pointer	out	to	memory
• Acts	like	the	specified	type	(e.g.,	int,	float,	etc.)

Suppose	we	set	up	a	pointer	like	this.
Which	expression	gives	us	5,	and	which	
gives	us	a	memory	address?

int *iptr = ???; //

A. Memory	address:	*iptr, Value	5:	iptr

B. Memory	address:	iptr, Value	5:	*iptr

5

10

2

…

…

So	we	declared	a	pointer…

• How	do	we	make	it	point	to	something?
1. Assign	it	the	address	of	an	existing	variable
2. Copy	some	other	pointer
3. Allocate	some	memory	and	point	to	it

• First,	let’s	look	at	how	memory	is	organized.

Memory

• Behaves	like	a	big	array	of	
bytes,	each	with	an	
address	(bucket	#).

• By	convention,	we	divide	
it	into	regions.

• The	region	at	the	lowest	
addresses	is	usually	
reserved	for	the	OS.

0x0

0xFFFFFFFF

Operating	system

Memory	- Text

• After	the	OS,	we	store	
the	program’s	code.

• Instructions	generated	
by	the	compiler.

0x0

0xFFFFFFFF

Operating	system

Code	(aka.	Text)

Memory	– (Static)	Data

• Next,	there’s	a	fixed-
size	region	for	static	
data.

• This	stores	static	
variables	that	are	
known	at	compile	time.
• Global	variables

0x0

0xFFFFFFFF

Operating	system

Code	(aka.	Text)

Data

Memory	- Stack

• At	high	addresses,	we	
keep	the	stack.

• This	stores	local	
(automatic)	variables.
• The	kind	we’ve	been	
using	in	C	so	far.
• e.g.,	int x;

0x0

0xFFFFFFFF

Operating	system

StackX:

Code	(aka.	Text)

Data

Memory	- Stack

• The	stack	grows	upwards	
towards	lower	addresses
(negative	direction).

• Example:	Allocating	array
• int array[4];

• (Note:	this	differs	from	
Python.)

0x0

0xFFFFFFFF

Operating	system

StackX:

array [0]

[4]

Code	(aka.	Text)

Data

Memory	- Heap

• The	heap	stores	
dynamically	allocated	
variables.

• When	programs	explicitly	
ask	the	OS	for	memory,	it	
comes	from	the	heap.
• malloc() function

0x0

0xFFFFFFFF

Operating	system

StackX:

Code	(aka.	Text)

Data

Heap

If	we	can	declare	variables	on	the	
stack,	why	do	we	need	to	dynamically	
allocate	things	on	the	heap?

A. There	is	more	space	available	on	the	heap.

B. Heap	memory	is	better.	(Why?)

C. We	may	not	know	a	variable’s	size	in	advance.

D. The	stack	grows	and	shrinks	automatically.

E. Some	other	reason.

Memory	- Heap

• The	heap	grows	
downwards,	towards	
higher	addresses.

• This	picture	is	not	to	
scale	– the	gap	is	huge.

0x0

0xFFFFFFFF

Operating	system

StackX:

Code	(aka.	Text)

Data

Heap

Which	region	would	we	expect	the	PC	
register	(%eip)	to	point	to?

A. OS

B. Text

C. Data

D. Heap

E. Stack

0x0

0xFFFFFFFF

Operating	system

Stack

Text

Data

Heap

What	should	happen	if	we	try	to	access	an	
address	that’s	NOT	in	one	of	these	regions?

A. The	address	is	allocated	to
your	program.

B. The	OS	warns	your	program.

C. The	OS	kills	your	program.

D. The	access	fails,	try	the	next
instruction.

E. Something	else

0x0

0xFFFFFFFF

Operating	system

Stack

Text

Data

Heap

Segmentation	Violation

Segmentation	Violation

• Each	region	also	known	as
a	memory	segment.

• Accessing	memory	outside
a	segment	is	not	allowed.

• Can	also	happen	if	you	try
to	access	a	segment	in	an
invalid	way.
• OS	not	accessible	to	users
• Text	is	usually	read-only

0x0

0xFFFFFFFF

Operating	system

Stack

Text

Data

Heap

• &	gives	us	the	address	of	a	variable	(a	pointer)
• *	allows	us	to	follow	the	address	to	memory,	accessing	
the	item	(dereference	the	pointer)

• Memory	model:
• So	far,	all	variables	on	stack.

• Up	next:	using	the	heap.
• We	may	not	know	the	size	of
a	variable	in	advance.	(dynamic)

Recap

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

So	we	declared	a	pointer…

• How	do	we	make	it	point	to	something?
1. Assign	it	the	address	of	an	existing	variable
2. Copy	some	other	pointer
3. Allocate	some	memory	and	point	to	it

The	Address	Of	(&)

• You	can	create	a	pointer	to	anything	by	taking	its	
address	with	the	address	of operator	(&).

The	Address	Of	(&)

int main() {
int x = 7;
int *iptr = &x;

return 0;
}

0x0

0xFFFFFFFF

Operating	system

Stack

Text

Data

Heap

7X:

iptr:

What	would	this	print?

int main() {
int x = 7;
int *iptr = &x;
int *iptr2 = &x;

printf(“%d %d ”, x, *iptr);
*iptr2 = 5;
printf(“%d %d ”, x, *iptr);

return 0;
}

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

7X:

iptr:

A.	7	7	7	7 B.	7	7	7	5 C.	7	7	5	5 D.	Something	else

So	we	declared	a	pointer…

• How	do	we	make	it	point	to	something?
1. Assign	it	the	address	of	an	existing	variable
2. Copy	some	other	pointer
3. Allocate	some	memory	and	point	to	it

Copying	a	Pointer

• We	can	perform	assignment	on	pointers	to	copy	
the	stored	address.

int x = 7;
int *iptr, *iptr2;
iptr = &x;
iptr2 = iptr;

Stack7X:

iptr: iptr2:

Pointer	Types

• By	default,	we	can	only	assign	a	pointer	if	the	type	
matches	what	C	expects.

• “Warning:	initialization	from	incompatible	pointer	
type”	(Don’t	ignore	this!)

int x = 7;
int *iptr = &x;

int x = 7;
float *fptr = &x;

void *

• There	exists	a	special	type,	void *,	which	represents	
“generic	pointer”	type.
• Can	be	assigned	to	any	pointer	variable
• int *iptr = (void *) &x;

• This	is	useful	for	cases	when:
1. You	want	to	create	a	generic	“safe	value”	that	you	can	

assign	to	any	pointer	variable.
2. You	want	to	pass	a	pointer	to	/	return	a	pointer	from	a	

function,	but	you	don’t	know	its	type.
3. You	know	better	than	the	compiler	that	what	you’re	doing	

is	safe,	and	you	want	to	eliminate	the	warning.

NULL:	A	special	pointer	value.

• You	can	assign	NULL to	any	pointer,	regardless	of	
what	type	it	points	to	(it’s	a	void *).
• int *iptr = NULL;
• float *fptr = NULL;

• NULL is	equivalent	to	pointing	at	memory	address	
0x0.		This	address	is	NEVER	in	a	valid	segment	of	
your	program’s	memory.
• This	guarantees	a	segfault if	you	try	to	deref it.
• Generally	a	good	ideal	to	initialize	pointers	to	NULL.

What	will	this	do?

int main() {
int *ptr;
printf(“%d”, *ptr);

}

A. Print	0
B. Print	a	garbage	value
C. Segmentation	fault
D. Something	else

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

Takeaway:	If	you’re	not	immediately	assigning	it	something	
when	you	declare	it,	initialize	your	pointers	to	NULL.	

So	we	declared	a	pointer…

• How	do	we	make	it	point	to	something?
1. Assign	it	the	address	of	an	existing	variable
2. Copy	some	other	pointer
3. Allocate	some	memory	and	point	to	it

Allocating	(Heap)	Memory

• The	standard	C	library	#include <stdlib.h>
includes	functions	for	allocating	memory

void *malloc(size_t size)
• Allocate	size bytes	on	the	heap	and	return	a	pointer	to	
the	beginning	of	the	memory	block

void free(void *ptr)
• Release	the		malloc’ed block	of	memory	starting	at
ptr back	to	the	system

Recall:	void *

• void * is	a	special	type	that	represents	“generic	pointer”.
• Can	be	assigned	to	any	pointer	variable

• This	is	useful	for	cases	when:
1. You	want	to	create	a	generic	“safe	value”	that	you	can	assign	to	

any	pointer	variable.
2. You	want	to	pass	a	pointer	to	/	return	a	pointer	from	a	function,	

but	you	don’t	know	its	type.
3. You	know	better	than	the	compiler	that	what	you’re	doing	is	

safe,	and	you	want	to	eliminate	the	warning.

• When	malloc() gives	you	bytes,	it	doesn’t	know	or	
care	what	you	use	them	for.

The	sizeof() operator

void *malloc(size_t size)
• Allocate	size bytes	on	the	heap	and	return	a	pointer	to	
the	beginning	of	the	memory	block

• How	much	memory	should	we	ask	for?

• Use	C’s	sizeof() operator:
int *iptr = NULL;
iptr = malloc(sizeof(int));

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

Create	an	integer	pointer,	
named	iptr,	on	the	stack.

Assign	it	NULL.

iptr:

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

Allocate	space	for	an	integer	on	
the	heap	(4	bytes),	and	return	a	
pointer	to	that	space.

Assign	that	pointer	to	iptr.

iptr:

What	value	is	stored	in	
that	area	right	now?

Who	knows…	Garbage.

?

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

Use	the	allocated	heap	space	by	
dereferencing	the	pointer.

iptr:

5

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

Free	up	the	heap	memory	we	used.

iptr:

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);
iptr = NULL;

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

Clean	up	this	pointer,	since	it’s
no	longer	valid.

iptr:

sizeof()

• Despite	the	()’s,	it’s	an	operator,	not	a	function
• Other	operators:

• addition	/	subtraction	(+	/	-)
• address	of	(&)
• indirection	(*)		(dereference	a	pointer)

• Works	on	any	type	to	tell	you	how	much	memory	it	
needs.

sizeof()example

struct student {
char name[40];
int age;
double gpa;

}

struct student *bob = NULL;
bob = malloc(sizeof(struct student));

I	don’t	ever	want	to	see	a	number	hard-coded	in	here!

How	many	bytes	is	this?
Who	cares…
Let	the	compiler	figure	that	out.

You’re	designing	a	system.		What	should	
happen	if	a	program	requests	memory	and	
the	system	doesn’t	have	enough	available?

A. The	OS	kills	the	requesting	program.
B. The	OS	kills	another	program	to	make	room.
C. malloc gives	it	as	much	memory	as	is	available.
D. malloc returns	NULL.
E. Something	else.

Running	out	of	Memory

• If	you’re	ever	unsure	of	malloc /	free’s behavior:
$ man malloc

• According	to	the	C	standard:
“The	malloc()	function	returns	a	pointer	to	the	allocated	
memory	that	is	suitably	aligned	for	any	kind	of	variable.		On	
error,	this	function	returns	NULL.”

• Further	down	in	the	“Notes”	section	of	the	manual:
“[On	Linux],	when	malloc returns	non-NULL	there	is	no	
guarantee	that	memory	is	really	available.		If	the	system	is	out	
of	memory,	one	or	more	processes	will	be	killed	by	the	OOM	
killer.”

Running	out	of	Memory

• If	you’re	ever	unsure	of	malloc /	free’s behavior:
$ man malloc

• According	to	the	C	standard:
“The	malloc()	function	returns	a	pointer	to	the	allocated	
memory	that	is	suitably	aligned	for	any	kind	of	variable.		On	
error,	this	function	returns	NULL.”

• Further	down	in	the	“Notes”	section	of	the	manual:
“[On	Linux],	when	malloc returns	non-NULL	there	is	no	
guarantee	that	memory	is	really	available.		If	the	system	is	out	
of	memory,	one	or	more	processes	will	be	killed	by	the	OOM	
killer.”

You	should	check	for	NULL	after	every	malloc():

struct student *bob = NULL;
bob = malloc(sizeof(struct student));

if (bob == NULL) {
/* Handle this. Often, print and exit. */

}

