
Instruction	Set	
Architecture

9/20/16

Overview

• How	to	directly	interact	with	hardware

• Instruction	set	architecture	(ISA)
• Interface	between	programmer	and	CPU
• Established	instruction	format	(assembly	lang)

• Assembly	programming	(IA-32)

Abstraction

User	/	Programmer
Wants	low	complexity

Applications
Specific	functionality

Software	library
Reusable	functionality

Complex	devices
Compute	&	I/O

Operating	system
Manage	resources

Abstraction

Applications
Specific	functionality

Complex	devices
Compute	&	I/O

Operating	system
Manage	resources

Last	week:	Circuits,	Hardware	Implementation

This	week:	Machine	Interface

Compilation	Steps	(.c	to	a.out)
text

executable	
binary

C	program	(p1.c)

Executable	code	(a.out)

Usually	compile	to	a.out in
a	single	step:		gcc –m32	p1.c

-m32	tells	gcc to	compile	for
32-bit	Intel	machines

Compiler	(gcc –m32)

Reality	is	more	complex:	
there	are	intermediate	steps!

Compilation	Steps	(.c	to	a.out)
text

text

executable	
binary

Compiler	(gcc –m32 -S)

C	program	(p1.c)

Assembly	program	(p1.s)

Executable	code	(a.out)

You	can	see	the	results	of	
intermediate	compilation
steps	using	different	gcc flagsCS75

Assembly	Code
Human-readable	form	of	CPU	instructions
• Almost	a	1-to-1	mapping	to	Machine	Code
• Hides	some	details:

• Registers	have	names	rather	than	numbers
• Instructions	have	names	rather	than	variable-size	codes

We’re	going	to	use	IA32	(x86)	assembly
• CS	lab	machines	are	64	bit	version	of	this	ISA,	but	they	can	

also	run	the	32-bit	version	(IA32)	
• Can	compile	C	to	IA32	assembly	on	our	system:	

gcc –m32 -S code.c #	open	code.s in	vim	to	view

Compilation	Steps	(.c	to	a.out)
text

text

binary

executable	
binary

Compiler	(gcc –m32 -S)

Assembler	(gcc -c (or	as))

Linker	(gcc (or ld))

C	program	(p1.c)

Assembly	program	(p1.s)

Object	code	(p1.o)

Executable	code	(a.out)

Library	obj.	code		
(libc.a)

Other	object	files
(p2.o, p3.o, …)

You	can	see	the	results	of	
intermediate	compilation
steps	using	different	gcc flags

Object	/	Executable	/	Machine	
Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine	Code	(Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

int main()	{
int a	=	10;
int b	=	20;

a	=	a	+	b;

return	a;
}

Compilation	Steps	(.c	to	a.out)
text

text

binary

executable	
binary

Compiler	(gcc –m32 -S)

Assembler	(gcc -c (or	as))

Linker	(gcc (or ld))

C	program	(p1.c)

Assembly	program	(p1.s)

Object	code	(p1.o)

Executable	code	(a.out)

Library	obj.	code		
(libc.a)

Other	object	files
(p2.o, p3.o, …)

High-level	language

CPU-specific	format	(011010…)

Interface	for	speaking	to	CPU	

Instruction	Set	Architecture	(ISA)
• ISA	(or	simply	architecture):
Interface	between	lowest	software	level	and	the	
hardware.

• Defines	specification	of	the	language	for	controlling	
CPU	state:
• Provides	a	set	of	instructions
• Makes	CPU	registers	available
• Allows	access	to	main	memory
• Exports	control	flow	(change	what	executes	next)

Instruction	Set	Architecture	(ISA)

• The	agreed-upon	interface	between	all	software	
that	runs	on	the	machine	and	the	hardware	that	
executes	it.

I/O	systemCPU	/	Processor

Compiler
Operating

System

Application	/	Program

Digital	Circuits

Logic	Gates

Instruction	Set
Architecture

ISA	Examples

• Intel	IA-32	(80x86)
• ARM
• MIPS
• PowerPC
• IBM	Cell
• Motorola	68k

• Intel	IA-64	(Itanium)
• VAX
• SPARC
• Alpha
• IBM	360

How	many	of	these
have	you	used?

ISA	Characteristics

• Above	ISA:	High-level	language	(C,	Python,	…)
• Hides	ISA	from	users
• Allows	a	program	to	run	on	any	machine
(after	translation	by	human	and/or	compiler)

• Below	ISA:	Hardware	implementing	ISA	can	change	
(faster,	smaller,	…)
• ISA	is	like	a	CPU	“family”

Hardware	Implementation

High-level	language
ISA

Instruction	Translation

int sum(int x, int y)
{
int res;
res = x+y;
return res;

}

sum.c (High-level C)

sum:
pushl %ebp
movl %esp,%ebp
subl $24, %esp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
movl %eax, -12(%ebp)
leave
ret

sum.s (Assembly)

sum.s from sum.c:

gcc –m32 –S sum.c

Instructions	to	set	up	the	stack
frame	and	get	argument	values

An	add	instruction	to	compute	sum

Instructions	to	return	from	function

ISA	Design	Questions

int sum(int x, int y)
{
int res;
res = x+y;
return res;

}

sum.c (High-level C)

sum:
pushl %ebp
movl %esp,%ebp
subl $24, %esp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
movl %eax, -12(%ebp)
leave
ret

sum.s (Assembly)

sum.s from sum.c:

gcc –m32 –S sum.c

What	should	these	instructions	do?

What	is/isn’t	allowed	by	hardware?

How	complex	should	they	be?

Example:	supporting	multiplication.

C	statement:	A	=	A*B
Simple	instructions:

LOAD A, eax
LOAD B, ebx
PROD eax, ebx
STORE ebx, A

Powerful	instructions:

MULT B, A

Translation:
Load	the	values	‘A’	and	‘B’	from	memory	into	registers,	compute	
the	product,	store	the	result	in	memory	where	‘A’	was.

Which	would	you	use	if	you	were	
designing	an	ISA	for	your	CPU?		(Why?)
Simple	instructions:

LOAD A, eax
LOAD B, ebx
PROD eax, ebx
STORE ebx, A

Powerful	instructions:

MULT B, A

A. Simple
B. Powerful
C. Something	else

RISC	versus	CISC	(Historically)

• Complex	Instruction	Set	Computing	(CISC)
• Large,	rich	instruction	set
• More	complicated	instructions	built	into	hardware
• Multiple	clock	cycles	per	instruction
• Easier	for	humans	to	reason	about

• Reduced	Instruction	Set	Computing	(RISC)
• Small,	highly	optimized	set	of	instructions
• Memory	accesses	are	specific	instructions
• One	instruction	per	clock	cycle
• Compiler:	more	work,	more	potential	optimization

So	.	.	.	Which	System	“Won”?
• Most	ISAs	(after	mid/late	1980’s)	are	RISC

• The	ubiquitous	Intel	x86	is	CISC
• Tablets	and	smartphones	(ARM)	taking	over?

• x86	breaks	down	CISC	assembly	into	multiple,	RISC-
like,	machine	language	instructions

• Distinction	between	RISC	and	CISC	is	less	clear
• Some	RISC	instruction	sets	have	more	instructions	than	
some	CISC	sets

Intel	x86	Family	(IA-32)

Intel	i386	(1985)
• 12	MHz	- 40	MHz
• ~300,000	transistors
• Component	size:	1.5	µm

Intel	Core	i7	4770k	(2013)
• 3,500	MHz
• ~1,400,000,000	
transistors
• Component	size:	22	nm

Everything	in	this	family	uses	the	same	ISA	(Same	instructions)!

Assembly	Programmer’s	View	of	State
CPU

Memory

Addresses

Data

Instructions

Registers:
PC:	Program	counter	(%eip)
Condition	codes	(%EFLAGS)
General	Purpose	(%eax - %ebp)

Memory:
• Byte	addressable	array
• Program	code	and	data
• Execution	stack

name value
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%eip next instr
addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:
data
instrs
stack

0xffffffff

32-bit	Registers

BUS

Processor	State	in	Registers

• Information	about	
currently	executing	
program
• Temporary	data
(%eax - %edi)

• Location	of	runtime	stack
(%ebp,	%esp)

• Location	of	current	code	
control	point	(%eip,	…)

• Status	of	recent	tests	
%EFLAGS
(CF,	ZF,	SF,	OF)

%eip

General	purpose
registers

Current	stack	top

Current	stack	frame

Instruction	pointer	(PC)

CF ZF SF OF Condition	codes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

General	purpose	Registers
• Remaining	Six	are	for	instruction	operands
• Can	store	4	byte	data	or	address	value		(ex.		3	+	5)

Register	
name

Register
value

%eax 3

%ecx 5

%edx 8

%ebx

%esi

%edi
%esp

%ebp

%eip

%EFLAGS

The	low-order	2	bytes	and	two	low-order	1	
bytes	of	some	of	these	can	be	named.

%ax is	the	low-order	16	bits	of	%eax
%al is	the	low-order	8	bits	of	%eax

May	see	their	use	in	ops	involving	shorts	or	chars
31 16 15 8 7 0

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

%esi %si

%edi %di

%esp %sp

%ebp %bp

Types	of	IA32	Instructions

• Data	movement
• Move	values	between	registers	and	memory
• example:	movl

• Arithmetic
• Uses	ALU	to	compute	a	value
• example: addl

• Control
• Change	PC	based	on	ALU	condition	code	state
• example: jmp

Data	Movement

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Program	Counter	(PC): Memory	address	of	next	instr 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): Instruction contents	(bits)

Move	values	between	memory	and	registers	or	between	two	registers.

Arithmetic

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Program	Counter	(PC): Memory	address	of	next	instr 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): Instruction contents	(bits)

Use	ALU	to	compute	a	value,	store	result	in	register	/	memory.

Control

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Program	Counter	(PC): Memory	address	of	next	instr 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): Instruction contents	(bits)

Change	PC	based	on	ALU	condition	code	state.

Types	of	IA32	Instructions

• Data	movement
• Move	values	between	registers	and	memory

• Arithmetic
• Uses	ALU	to	compute	a	value

• Control
• Change	PC	based	on	ALU	condition	code	state

• Stack	/	Function	call			(We’ll	cover	these	in	detail	later)
• Shortcut	instructions	for	common	operations

Addressing	Modes

• Data	movement	and	arithmetic	instructions:
• Must	tell	CPU	where	to	find	operands,	store	result

• You	can	refer	to	a	register	by	using	%:
• %eax

• addl %ecx, %eax
• Add	the	contents	of	registers	ecx and	eax,	store	result	
in	register	eax.

Addressing	Mode:	Immediate

• Refers	to	a	constant	value,	starts	with	$

• movl $10, %eax
• Put	the	constant	value	10 in	register	eax.

Addressing	Mode:	Memory

• Accessing	memory	requires	you	to	specify	which	
address	you	want.
• Put	address	in	a	register.
• Access	with	()	around	register	name.

• movl (%ecx), %eax
• Use	the	address	in register	ecx to	access	memory,	store	
result	in	register	eax

Addressing	Mode:	Memory

• movl (%ecx), %eax
• Use	the	address	in	register	ecx to	access	memory,	store	
result	in	register	eax

(Memory)

name value

%eax 0

%ecx 0x1A68

…

CPU	Registers
0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

Addressing	Mode:	Memory

• movl (%ecx), %eax
• Use	the	address	in	register	ecx to	access	memory,	store	
result	in	register	eax

name value

%eax 0

%ecx 0x1A68

…

CPU	Registers
0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

(Memory)

1.	Index	into	memory	using	the	
address	in	ecx.

0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

Addressing	Mode:	Memory

• movl (%ecx), %eax
• Use	the	address	in	register	ecx to	access	memory,	store	
result	in	register	eax

name value

%eax 42

%ecx 0x1A68

…

CPU	Registers (Memory)

1.	Index	into	memory	using	the	
address	in	ecx.

2.	Copy	value	at	that	
address	to	eax.

Addressing	Mode:	Displacement

• Like	memory	mode,	but	with	constant	offset
• Offset	is	often	negative,	relative	to	%ebp

• movl -12(%ebp), %eax
• Take	the	address	in	ebp,	subtract	12 from	it,	index	into	
memory	and	store	the	result	in	eax

Addressing	Mode:	Displacement

• movl -12(%ebp), %eax
• Take	the	address	in	ebp,	subtract	12 from	it,	index	into	
memory	and	store	the	result	in	eax

(Memory)

name value

%eax 0

%ecx 0x1A68

%ebp 0x1A70

…

CPU	Registers

1.	Access	address:
0x1A70 – 12 = 0x1A64

0x0:

0x4:

0x8:

0xC:

…

0x1A64 11

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

0x0:

0x4:

0x8:

0xC:

…

0x1A64 11

0x1A68 42

0x1A6C

0x1A70 Not	this!

…

0xFFFFFFFF:

Addressing	Mode:	Displacement

• movl -12(%ebp), %eax
• Take	the	address	in	ebp,	subtract	12 from	it,	index	into	
memory	and	store	the	result	in	eax

(Memory)

name value

%eax 11

%ecx 0x1A68

%ebp 0x1A70

…

CPU	Registers

1.	Access	address:
0x1A70 – 12 = 0x1A64

2.	Copy	value	at	that	
address	to	eax.

Let’s	try	a	few	examples...

What	will	memory	look	like	after	these	instructions?
x	is 2	at	%ebp-8,	 y	is 3	at	%ebp-12,	 z	is 2	at	%ebp-16

movl -16(%ebp),%eax

sall $3, %eax

imull $3, %eax

movl -12(%ebp), %edx

addl -8(%ebp), %edx

addl %edx, %eax

movl %eax, -8(%ebp)

name value

%eax ?

%edx ?

%ebp 0x1270

address value

0x1260 2

0x1264 3

0x1268 2

0x126c

0x1270

…

Registers
Memory

What	will	memory	look	like	after	these	instructions?
x	is 2	at	%ebp-8,	 y	is 3	at	%ebp-12,	 z	is 2	at	%ebp-16

movl -16(%ebp),%eax

sall $3, %eax

imull $3, %eax

movl -12(%ebp), %edx

addl -8(%ebp), %edx

addl %edx, %eax

movl %eax, -8(%ebp)
address value

0x1260 53

0x1264 3

0x1268 24

0x126c

0x1270

…

address value

0x1260 53

0x1264 3

0x1268 2

0x126c

0x1270

…

address value

0x1260 2

0x1264 16

0x1268 24

0x126c

0x1270

…

address value

0x1260 2

0x1264 3

0x1268 53

0x126c

0x1270

…

A: B: C:

D:

Solution
x	is 2	at	%ebp-8,	 y	is 3	at	%ebp-12,	 z	is 2	at	%ebp-16

movl -16(%ebp), %eax

sall $3, %eax

imull $3, %eax

movl -12(%ebp), %edx

addl -8(%ebp), %edx

addl %edx, %eax

movl %eax, -8(%ebp)

Equivalent	C	code:

x = z*24 + y + x;

name value

%eax

%edx

%ebp 0x1270

0x1260 2

0x1264 3

0x1268 2

0x126c

0x1270

Solution
x	is 2	at	%ebp-8,	 y	is 3	at	%ebp-12,	 z	is 2	at	%ebp-16

movl -16(%ebp), %eax # R[%eax] ß z (2)

sall $3, %eax # R[%eax] ß z<<3 (16)

imull $3, %eax # R[%eax] ß 16*3 (48)

movl -12(%ebp), %edx # R[%edx] ß y (3)

addl -8(%ebp), %edx # R[%edx] ß y + x (5)

addl %edx, %eax # R[%eax] ß 48+5 (53)

movl %eax, -8(%ebp) # M[R[%ebp]+8]ß5 (x=53)

Equivalent	C	code:

x = z*24 + y + x;

name value

%eax

%edx

%ebp 0x1270

0x1260 2 z

0x1264 3 y

0x1268 2 x

0x126c

0x1270

Z*24

What	will	the	machine	state	be	after	
executing	these	instructions?
movl %ebp, %ecx

subl $16, %ecx

movl (%ecx), %eax

orl %eax, -8(%ebp)

negl %eax

movl %eax, 4(%ecx)

name value

%eax ?

%ecx ?

%ebp 0x456C

address value

0x455C 7

0x4560 11

0x4564 5

0x4568 3

0x456C
…

Solution

movl %ebp, %ecx # %ecx = 0x456c

subl $16, %ecx # %ecx = 0x455c

movl (%ecx), %eax # %eax = 7

orl %eax, -8(%ebp) # (4564) = 111 | 101

negl %eax # %eax = -7

movl %eax, 4(%ecx) # (4560) = -7

name value

%eax ?

%ecx ?

%ebp 0x456C

address value

0x455C 7

0x4560 11

0x4564 5

0x4568 3

0x456C

