
Building	a	CPU
9/15/16

op	code

X

Y

X	op	Y

flags

Abstraction	of	your	Lab	3	ALU:

Inside	your	Lab	3	ALU:

op	code

X

Y

X	op	Y

flags

+

-

<<

…
MUX

Flag	
Logic

Circuits	inside	the	ALU

• Arithmetic	circuits
• Generally	one	circuit	for	each	possible	operation.

• Control	circuits
• Select	the	right	output
• Set	appropriate	flags

Circuits	around	the	ALU

• Where	do	the	inputs	come	from?
• X,	Y
• opcode

• Where	do	the	outputs	go?
• X	op	Y
• Flags

Recall	from	last	time…
Three	main	classifications	of	HW	circuits:
1. ALU:	implement	arithmetic	&	logic	functionality

(ex)	adder	to	add	two	values	together

2. Storage:	to	store	binary	values
(ex)	Register	File:	set	of	CPU	registers

3. Control:	support/coordinate	instruction	execution
(ex)	fetch	the	next	instruction	to	execute

Circuits	are	built	from	Logic	Gates	which	are	built	from	
transistors

HW Circuits
Logic Gates
Transistor

Recall	from	last	time…
Three	main	classifications	of	HW	circuits:

2. Storage:	to	store	binary	values
(ex)	Register	File:	set	of	CPU	registers

HW Circuits
Logic Gates
Transistor

Give	the	CPU	a	“scratch	space”	to	perform	
calculations	and	keep	track	of	the	state	its	in.

Memory	Circuits:	Starting	Small

• Store	a	0	or	1

• Retrieve	the	0	or	1	value	on	demand	(read)

• Set	the	0	or	1	value	on	demand	(write)

R-S	Latch:	Stores	Value	Q
When	R	an	S	are	both	1:	Store	a	value

R	and	S	are	never	both	simultaneously	0

• To	write	a	new	value:
• Set	S	to	0	momentarily	(R	stays	at	1):	to	write	a	1
• Set	R	to	0	momentarily	(S	stays	at	1):	to	write	a	0

Q (value	stored)

~Q

S

R

R-S	Latch

a

b

Gated	D	Latch
Controls	S-R	latch	writing,	ensures	S	&	R	never	both	0

D:		data	we	want	to	store
WE:		write-enable:	allow	data	to	be	stored

Latches	used	in	registers	(up	next)	and	SRAM	(caches,	later)
Fast,	not	very	dense,	expensive

DRAM:	capacitor-based:

Q (value	stored)

~Q

S

R

R-S	Latch
D

WE

What	gets	stored	when	WE=1?

A. Q	=	0
B. Q	=	1
C. Q	=	D
D. Q	=	~D
E. Something	else.

Q

~Q

S

R

D

WE

Registers

• Fixed-size	storage	(8-bit,	32-bit,	etc.)

• Gated	D	latch	lets	us	store	one	bit
• Connect	N	of	them	to	the	same	write-enable	wire!

Write-enable:

N-bit	input
wires	(bus):

N-bit	Register
Bit	0

Bit	1

Bit	N-1

…

“Register	file”
• A	set	of	registers	for	the	CPU	to	store	temporary	
values.

• You	(the	programmer)
can	directly	interact
with	the	register	file.

• Instructions	of	form:
• “add	R1	+	R2,	store	result	in	R3”

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

Memory	Circuit	Summary

• Lots	of	abstraction	going	on	here!
• Gates	hide	the	details	of	transistors.
• Build	R-S	Latches	out	of	gates	to	store	one	bit.
• Combining	multiple	latches	gives	us	N-bit	register.
• Grouping	N-bit	registers	gives	us	register	file.

• Register	file’s	simple	interface:
• Read	Rx’s	value,	use	for	calculation
• Write	Ry’s	value	to	store	result

Recall	again…
Three	main	classifications	of	HW	circuits:
1. ALU:	implement	arithmetic	&	logic	functionality

(ex)	adder	to	add	two	values	together

2. Storage:	to	store	binary	values
(ex)	Register	File:	set	of	CPU	registers

3. Control:	support/coordinate	instruction	execution
(ex)	fetch	the	next	instruction	to	execute

Circuits	are	built	from	Logic	Gates	which	are	built	from	
transistors

HW Circuits
Logic Gates
Transistor

Recall	again…
Three	main	classifications	of	HW	circuits:

3. Control:	support/coordinate	instruction	execution
(ex)	fetch	the	next	instruction	to	execute

HW Circuits
Logic Gates
Transistor

Keep	track	of	where	we	are	in	the	program.
Execute	instruction,	move	to	next.

CPU	so	far…

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

We	know	how	to	store	data	(in	register	file).
We	know	how	to	perform	arithmetic	on	it,	by	feeding	it	to	ALU.
Remaining	questions:

Which	register(s)	do	we	use	as	input	to	ALU?
Which	operation	should	the	ALU	perform?
To	which	register	should	we	store	the	result?

All	this	info	comes	from	
our	compiled	program:
a	series	of	instructions.

Recall:	Von	Neumann	Model

CPU
(Control	and
Arithmetic)

Input/Output

Program
and
Data

Memory

We’re	building	this.
Our	program	(instructions)	live	
here.		We’ll	assume	for	now	that	
we	can	access	it	like	an	array.

0:

1:

2:

3:

4:

…

N-1:

Mem Addresses	
(buckets)

CPU	Game	Plan

• Fetch	instruction	from	memory

• Decode	what	the	instruction	is	telling	us	to	do
• Tell	the	ALU	what	it	should	be	doing
• Find	the	correct	operands

• Execute	the	instruction	(arithmetic,	etc.)

• Store	the	result

Program	State

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Let’s	add	two	more	special	registers	(not	in	register	file)	to	keep	track	of	program.

Program	Counter	(PC): Memory	address	of	next	instr 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): Instruction contents	(bits)

Fetching	instructions.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Load	IR	with	the	contents	of	memory	at	the	address	stored	in	the	PC.

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): Instruction	at	Address	0

Decoding	instructions.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Interpret	the	instruction	bits:		What	operation?		Which	arguments?

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

Decoding	instructions.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Interpret	the	instruction	bits:		What	operation?		Which	arguments?

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

OP	Code	tells	
ALU	which	
operation	to	
perform.

Decoding	instructions.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Interpret	the	instruction	bits:		What	operation?		Which	arguments?

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

Register	ID	#’s	
specify	input	
arguments.

Executing	instructions.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Interpret	the	instruction	bits:		What	operation?		Which	arguments?

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

Let	the	ALU	do
its	thing.
(e.g.,	Add)

Storing	results.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

We’ve	just	computed	something.		Where	do	we	put	it?

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

Result	location	
specifies	
where	to	store	
ALU	output.

Why	do	we	need	a	program	counter?		Can’t	
we	just	start	at	0	and	count	up	one	at	a	
time	from	there?

A. We	don’t,	it’s	there	for	convenience.

B. Some	instructions	might	skip	the	PC	forward	by	more	

than	one.

C. Some	instructions	might	adjust	the	PC	backwards.

D. We	need	the	PC	for	some	other	reason(s).

Storing	results.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Interpret	the	instruction	bits:		What	operation?		Which	arguments?

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

Result	might	be:
Memory
Register
PC

Recap	CPU	Model

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Four	stages:	fetch	instruction,	decode	instruction,	execute,	store	result

Program	Counter	(PC): Memory	address	of	next	instr 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): Instruction contents	(bits)

Fetching	instructions.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Load	IR	with	the	contents	of	memory	at	the	address	stored	in	the	PC.

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): Instruction	at	Address	0

Decoding	instructions.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Interpret	the	instruction	bits:		What	operation?		Which	arguments?

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

Decoding	instructions.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Interpret	the	instruction	bits:		What	operation?		Which	arguments?

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

OP	Code	tells	
ALU	which	
operation	to	
perform.

Decoding	instructions.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Interpret	the	instruction	bits:		What	operation?		Which	arguments?

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

Register	ID	#’s	
specify	input	
arguments.

Executing	instructions.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Interpret	the	instruction	bits:		What	operation?		Which	arguments?

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

Let	the	ALU	do
its	thing.
(e.g.,	Add)

Storing	results.

32-bit	Register	#0WE
Data	in

32-bit	Register	#1WE
Data	in

32-bit	Register	#2WE
Data	in

32-bit	Register	#3WE
Data	in

…

MUX

MUX

Register	File

A
L
U

Interpret	the	instruction	bits:		Store	result	in	register,	memory,	PC.

Program	Counter	(PC): Address	0 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction	Register	(IR): OP	Code	|	Reg A	|	Reg B	|	Result

Result	might	be:
Memory
Register
PC

Clocking

• Need	to	periodically	transition	from	one	instruction	
to	the	next.

• It	takes	time	to	fetch	from	memory,	for	signal	to	
propagate	through	wires,	etc.
• Too	fast:	don’t	fully	compute	result
• Too	slow:	waste	time

Clock	Driven	System
• Everything	in	is	driven	by	a	discrete	clock
• clock:	an	oscillator	circuit,	generates	hi	low	pulse	
• clock	cycle:	one	hi-low	pair

• Clock	determines	how	fast	system	runs
• Processor	can	only	do	one	thing	per	clock	cycle

• Usually	just	one	part	of	executing	an	instruction
• 1GHz	processor:		

1	billion	cycles/second	à 1	cycle	every	nanosecond

Clock

1	cycle

1 0 1 0 1 0 1 0 1 0

Clock	and	Circuits
Clock	Edges	Triggers	events
• Circuits	have	continuous	values
• Rising	Edge:	trigger	new	input	values
• Falling	Edge:	consistent	output	ready	to	read
• Between	rising	and	falling	edge	can	have	
inconsistent	state	as	new	input	values	flow	
through	circuit

^ new
input

^ output
ready

^ new
input

Clock:

Time	per	instruction:	Laundry	Analogy

• Discrete	stages:	fetch,	decode,	execute,	store

• Analogy	(laundry):	washer,	dryer,	folding,	dresser

W Dy F Dr

4 Hours

Laundry
W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

4-hour	cycle	time.

Finishes	a	laundry	load	every	cycle.

(6	laundry	loads	per	day)

Pipelining	(Laundry)

DyW

FDyW

DrFDyW

DrFDyW

W

1	Hour

1st hour:

2nd hour:

3rd hour:

4th hour:

5th hour:

Steady	state:	One	load	finishes	every	hour!
(Not	every	four	hours	like	before.)

DF

EDF

SEDF

SEDF

F

1	Nanosecond

1st nanosecond:

2nd nanosecond:

3rd nanosecond:

4th nanosecond:

5th nanosecond:

Steady	state:	One	instruction	finishes	every	nanosecond!
(Clock	rate	can	be	faster.)

CPU	Stages:	fetch,	decode,
execute,	store	results

Pipelining	(CPU)

Pipelining

(For	more	details	about	this	and	the	other	things	we	
talked	about	here,	take	architecture.)

Coming	up	next	week…

• Talking	to	the	CPU:	Assembly	language

